Axial piston pumps type PVPC
variable displacement, by a full line of mechanical controls

PVPC are variable displacement axial piston pumps for high pressure operation, with low noise level, suitable for hydraulic oils or synthetic fluids having similar lubricating characteristics. The actual displacement is dependent on the length of stroke of the pumping pistons. This length of stroke is determined by the position of the swash plate that is achieved by two servo pistons with differential areas, against a spring. The rotating barrel forces the pistons in a circular path in and out of the barrel and fluid displacement takes place. Typical section on side shows version L with manual pressure compensator and flow regulation. The available hydraulic controls are shown in sections. The wide range of electrohydraulic proportional controls is shown in tab. A170. SAE J744 mounting flange and shaft (see note 1). Max displacement: 29-46-73-88 cm³/rev. Max pressure: 290 bar working 350 bar peak.

MODEL CODE

<table>
<thead>
<tr>
<th>PVPC</th>
<th>X2E</th>
<th>C</th>
<th>046 / 31044 / 1</th>
<th>D</th>
<th>X</th>
<th>24DC</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable displacement axial piston pump</td>
<td>Eventual suffix for double pumps X2E = with a fixed displacement pump type PFE (see tab. A005).</td>
<td>Variable displacement axial piston pump: 029 = 29 cm³/rev 046 = 46 cm³/rev 073 = 73 cm³/rev 090 = 88 cm³/rev</td>
<td>Type of control (see section B): C = manual pressure compensator CH = manual pressure compensator, with venting R = remote pressure compensator L = load sensing (pressure & flow) LW = constant power (combined pressure & flow)</td>
<td>For electrohydraulic proportional controls, see table A170</td>
<td>Max displacement of axial piston pump: 029 = 29 cm³/rev 046 = 46 cm³/rev 073 = 73 cm³/rev 090 = 88 cm³/rev</td>
<td>Seals material: omit for NBR (mineral oil & water glycol) PE = FPM</td>
<td>See notes in section B</td>
<td>1) pumps with ISO 3019/2 mounting flange and shaft (option /M) are available on request</td>
</tr>
</tbody>
</table>

OPERATING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Pump model</th>
<th>PVPC-3029</th>
<th>PVPC-4046</th>
<th>PVPC-5073</th>
<th>PVPC-5090</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement [cm³/rev]</td>
<td>29</td>
<td>46</td>
<td>73</td>
<td>88</td>
</tr>
<tr>
<td>Theoretical max flow at 1450 rpm [l/min]</td>
<td>42</td>
<td>66.7</td>
<td>105.8</td>
<td>127.6</td>
</tr>
<tr>
<td>Max working pressure / Peak pressure [bar]</td>
<td>280/350</td>
<td>280/350</td>
<td>280/350</td>
<td>250/315</td>
</tr>
<tr>
<td>Min/Max inlet pressure [bar abs.]</td>
<td>0.8 / 25</td>
<td>0.8 / 25</td>
<td>0.8 / 25</td>
<td>0.8 / 25</td>
</tr>
<tr>
<td>Max pressure on drain port [bar abs.]</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Power consumption at 1450 rpm and at maximum pressure and displacement [kW]</td>
<td>19.9</td>
<td>31.6</td>
<td>50.1</td>
<td>54.1</td>
</tr>
<tr>
<td>Max torque on the first shaft [Nm]</td>
<td>19,000</td>
<td>19,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Max permissible load on drive shaft [N]</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Speed rating [rpm]</td>
<td>600 ÷ 3000</td>
<td>600 ÷ 2600</td>
<td>600 ÷ 2200</td>
<td>600 ÷ 1850</td>
</tr>
</tbody>
</table>

Notes:
- For speeds over 1800 rpm the inlet port must be under oil level with adequate pipes.
- Maximum pressure for all models with water glycol fluid is 160 bar, with option /PE is 190 bar.
- Max speed with options /PE and for water glycol fluid is 2000/1900/1600/1500 rpm respectively for the four sizes.
3 MAIN CHARACTERISTICS OF VARIABLE DISPLACEMENT AXIAL PISTON TYPE PVPC

Installation position
Any position. The drain port must be on the top of the pump. Drain line must be separated and unrestricted to the reservoir and extended below the oil level as far from the inlet as possible. Suggested maximum line length is 3 m.

Ambient temperature
From -20°C to +70°C

Fluid
Hydraulic oil as per DIN 51524...535; for other fluids see section [1]

Recommended viscosity
15÷100 mm²/sec at 40°C (ISO VG 15÷100). Maximum start-up viscosity: 1000 mm²/sec

Fluid contamination class
ISO 4401 class 2/19/16 NAS 1638 class 10 (filters at 25 µm value with ß25 ≥ 75 recommended)

Fluid temperature
-20°C +60°C -20°C +50°C (water glycol) -20°C +80°C (seals /PE)

3.1 Coils characteristics (for version CH)

<table>
<thead>
<tr>
<th>Insulation class</th>
<th>Connector protection degree</th>
<th>Relative duty factor</th>
<th>Supply voltage and frequency</th>
<th>Supply voltage tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>IP-65</td>
<td>100%</td>
<td>See electric feature [5]</td>
<td>± 10%</td>
</tr>
</tbody>
</table>

4 ELECTRIC CONNECTORS ACCORDING TO DIN 43650 FOR VERSION CH

The connectors must be ordered separately

<table>
<thead>
<tr>
<th>Code of connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-666</td>
<td>Connector IP-65, suitable for direct connection to electric supply source</td>
</tr>
<tr>
<td>SP-667</td>
<td>As SP-666 connector IP-65 but with built-in signal led, suitable for direct connection to electric supply source</td>
</tr>
</tbody>
</table>

5 ELECTRIC FEATURES FOR VERSION CH

<table>
<thead>
<tr>
<th>External supply nominal voltage ±10%</th>
<th>Power consumption</th>
<th>Nominal current</th>
<th>Coil characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT CURRENT</td>
<td>12 DC</td>
<td>19.2 W</td>
<td>1.61 A 0.80 A</td>
</tr>
<tr>
<td>24 DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATE CURRENT</td>
<td>24V/0AC 110/50 AC</td>
<td>19 W</td>
<td>0.89 A 0.19 A 0.09 A</td>
</tr>
<tr>
<td>220/50 AC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insulation Class: H
Protection degree: IP65

Average values based ambient/coil temperature of 20°C.

6 INSTALLATION POSITION

The pump is supplied with drain D2 open, and D1 plugged. Before installation fill the pump with hydraulic oil for at least 3/4 of its volume, keeping it in horizontal position. With exception of pump mounted below the oil level, we recommend to interpose a baffle plate between inlet and drain line.

<table>
<thead>
<tr>
<th>VERTICAL INSTALLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSIDE THE TANK</td>
</tr>
<tr>
<td>Minimum oil level equal or above the pump mounting surface. A ≥ 200mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HORIZONTAL INSTALLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSIDE THE TANK</td>
</tr>
<tr>
<td>Minimum oil level equal or above the pump mounting surface. A ≥ 200mm</td>
</tr>
</tbody>
</table>

IN: Inlet line - D1: drain line - A: minimum distance between inlet and drain line - B+C: permissible suction height - C: inlet line immersion dept
7.1 Noise level curves

Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics - Test procedure to define the ambient noise level - Pumps

Shaft speed: 1450 rpm.

7.2 Operating limits

1 = Volumetric efficiency
2 = Overall efficiency
3 = Flow versus pressure curve
4 = Power consumption with full flow
5 = Power consumption at pressure compensation

7.3 Response times

7.3.1 Response times and pressure peak due to variation 0% → 100% → 0% of the pump displacement, obtained with an instantaneously opening and shut-off of the delivery line.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>T1 (ms)</th>
<th>T2 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVPC-*-3029</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>PVPC-*-4046</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>PVPC-*-5073</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>PVPC-*-5090</td>
<td>53</td>
<td>28</td>
</tr>
</tbody>
</table>

7.3.2 Variation of inlet pressure and reduction of displacement with increasing speed rating
Manual pressure compensator

The pump displacement decreases when the line pressure approaches the setting pressure of the compensator. The pump supplies only the fluid required by the system. Pressure may be steplessly adjusted at the pilot valve.

Compensator setting range: 20 ÷ 350 bar (315 bar for 090)
Compensator standard setting: 280 bar (250 bar for 090)

Manual pressure compensator with venting

As C plus venting function, when a long unloading time is required and heat generation and noise have to be kept at lowest level.

Venting valve solenoid voltage, see section /L51883
Venting valve OFF = null displacement
Venting valve ON = max displacement
Compensator setting range: 20 ÷ 350 bar (315 bar for 090)
Compensator standard setting: 280 bar (250 bar for 090)

Remote pressure compensator

As C, but with remote setting of the compensator by means of a pressure relief valve on the piloting line X.

This version can be obtained from version L using a blind plug UNI 5923 M4x12 in pos. /L54706 and a restrictor M4 drilled ø 0,75 mm in pos. /L54707.

Compensator setting range: 20 ÷ 350 bar (315 bar for 090)
Compensator standard setting: 280 bar (250 bar for 090)

Load sensing

The pump displacement is automatically adjusted to maintain a constant (load independent) pressure drop across an external throttle. Changing the throttle regulation, the pump flow is consequently adjusted.

Load sensing control always incorporates an hydraulic compensator to limit the maximum pressure.

Compensator setting range: 20 ÷ 350 bar (315 bar for 090)
Compensator standard setting: 280 bar (250 bar for 090)
Differential pressure setting range: 10 ÷ 40 bar
Differential pressure standard setting: 14 bar

Constant power

In order to achieve a constant drive torque with varying operating pressure. The swashing angle and therefore the outlet flow is varied so that the product of flow and pressure remains constant.

For the best regulation, minimum working pressure is 80 bar.

While selecting LW control, the required value of power must be communicated with the order (ex. 10 kW at 1450 rpm).
DIMENSIONS OF PVPC-3029: BASIC VERSION “C” CONTROL

PORTS DIMENSION
IN = Flange SAE 3000 1 1/4"
OUT = Flange SAE 6000 3/4"
D1, D2 = 1/2" BSPP
Ⅱ = Regulation screw for max displacement 1,5 cm³/rev per turn. Adjustable range 50% to 100% of max displacement.
In case of double pump the regulation screw is not always available, please contact our technical office.

Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted.

Mass: 18 kg
DIMENSIONS OF PVPC-*4046: BASIC VERSION “C” CONTROL

PORTS DIMENSION
IN = Flange SAE 3000 1 1/2"
OUT = Flange SAE 6000 1"
D1, D2 = 1/2" BSPP

 SHAFT TYPE “1”
SAE “BB” SPLINED
15 TEETH 16/32 PITCH
30˚ INVOLUTE SPLINE

 SHAFT TYPE “5”
SAE “B” SPLINED
13 TEETH 16/32 PITCH
30˚ INVOLUTE SPLINE

INTERMEDIATE FLANGE SAE “A” FOR PFE-31
SAE “A” SPLINED
9 TEETH 16/32 PITCH
135 Nm MAX

INTERMEDIATE FLANGE SAE “B” FOR PFE-41
SAE “B” SPLINED
13 TEETH 16/32 PITCH
250 Nm MAX

Mass: 24 kg

In case of double pump the regulation screw is not always available, please contact our technical office.

Drawing shows pumps with clockwise rotation (option D); pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted.
DIMENSIONS OF PVPC-*5073 and PVPC-*5090: BASIC VERSION "C" CONTROL

Shaft Type "1" Shaft Type "5"

Intermediate Flange SAE "A" for PFE-31

Intermediate Flange SAE "B" for PFE-41

Intermediate Flange SAE "C" for PFE-51

Ports Dimension

IN = Flange SAE 3000 2"
OUT = Flange SAE 6000 1 1/4"
D1, D2 = 3/4" BSPP

= Regulation screw for max displacement 3.2 cm/rev per turn.
Adjustable range 50% to 100% of max displacement.
In case of double pump the regulation screw is not always available, please contact our technical office.

Mass: 33 kg

Drawing show pumps with clockwise rotation (option D); pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted.
DIMENSIONS OF PVPC: OTHER CONTROLS

1. Regulation screw for max displacement. Adjustable range 50% to 100% of max displacement.

In case of double pump the regulation screw is not always available, please contact our technical office.

Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted and also the consequently position of the control groups.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Version</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVPC-*3029</td>
<td>CH</td>
<td>144</td>
<td>111</td>
<td>-</td>
<td>-</td>
<td>102</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>L-R</td>
<td>144</td>
<td>111</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>LW</td>
<td>144</td>
<td>111</td>
<td>-</td>
<td>211</td>
<td>104</td>
<td>20</td>
</tr>
<tr>
<td>PVPC-*4046</td>
<td>CH</td>
<td>153</td>
<td>111</td>
<td>-</td>
<td>-</td>
<td>102</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>L-R</td>
<td>153</td>
<td>111</td>
<td>109</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>LW</td>
<td>153</td>
<td>111</td>
<td>-</td>
<td>235</td>
<td>111</td>
<td>26</td>
</tr>
<tr>
<td>PVPC-*5073</td>
<td>CH</td>
<td>166</td>
<td>111</td>
<td>-</td>
<td>-</td>
<td>102</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>L-R</td>
<td>166</td>
<td>111</td>
<td>122</td>
<td>-</td>
<td>-</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>LW</td>
<td>166</td>
<td>111</td>
<td>-</td>
<td>258</td>
<td>120</td>
<td>35</td>
</tr>
</tbody>
</table>

TIGHTENING TORQUE = 15 Nm max