Digital electronic E-BM-AES drivers
DIN-rail panel format, for proportional valves without transducer

E-BM-AES
Digital drivers ① supply and control the current to the solenoid of Atos proportional valves without transducer, according to the electronic reference input signal.
E-BM-AES operate direct and pilot operated proportional valves ZO-A without transducer.
Atos PC software allows to customize the driver configuration to the specific application requirements.

Electrical Features:
- 7 fast plug-in connectors ②
- USB port ③ always present - Mini USB type B
- DB9 CANopen ④ and PROFIBUS DP ⑤ communication connector
- RJ45 EtherCAT communication connectors ⑥ output and ⑦ input
- 4 leds for diagnostics ⑧ (see 4.1)
- ±5 Vcc output supply for external reference potentiometer
- Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +60 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive

Software Features:
- Intuitive graphic interface
- Setting of valve’s functional parameters: bias, scale, ramps, dither, PID gains
- Linearization function for hydraulic regulation
- W option max power limitation function
- Complete diagnostics of driver status
- Internal oscilloscope function
- In field firmware update through USB port

Fieldbus Features:
- Valve direct communication with machine control unit for digital reference, diagnostics and settings
- Fieldbus execution allow to operate the valves via fieldbus or via analog signals available on the connectors (see 4.2)

Table GS050-3/E

<table>
<thead>
<tr>
<th>MODEL CODE</th>
<th>Electronic in DIN rail panel format</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-BM - AE - S - NP - 01H / *</td>
<td>Set code (1)</td>
</tr>
<tr>
<td>01H / *</td>
<td>Series number</td>
</tr>
</tbody>
</table>

Options:
- A = max current limitation for Ex-proof valves
- C = current feedback 4 ÷ 20 mA for remote transducer, only in combination with option W
- I = current reference input 4 ÷ 20 mA (omit for standard voltage reference input ±10 Vcc)
- W = power limitation function

(1) Set code identifies the correspondence between the driver and the relevant valve

2 VALVES RANGE

<table>
<thead>
<tr>
<th>Valves</th>
<th>Pressure</th>
<th>Directional</th>
<th>Cartridge</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>RZMO</td>
<td>RZGO</td>
<td>AGMZO</td>
<td>DHRZO, DKZOR</td>
</tr>
<tr>
<td>Data sheet</td>
<td>FS007, FS065</td>
<td>FS015, FS070</td>
<td>FS035</td>
<td>FS050</td>
</tr>
<tr>
<td>Ex-proof</td>
<td>Rsma</td>
<td>Rzga</td>
<td>AGMZA</td>
<td>DHRZA</td>
</tr>
<tr>
<td>Data sheet</td>
<td>FX010</td>
<td>FX040</td>
<td>FX010</td>
<td>FX040</td>
</tr>
<tr>
<td>Driver model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options:
- LICZA, LIMZA, LIRZA
- QVHZO, QVKZOR
- LICZA, QVHZO, QVKZOR
MAIN CHARACTERISTICS

<table>
<thead>
<tr>
<th>Power supply (see 5.1, 5.2)</th>
<th>Nominal Rectified and filtered: +24 Vdc, Vrms = 20 ± 32 Vmax (ripple max 10 % Vp-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max power consumption</td>
<td>50 W</td>
</tr>
<tr>
<td>Current supplied to solenoids</td>
<td>(+24 V_{dc}) with +24 Vdc power supply to drive standard proportional valves (3.2 Ω solenoid)</td>
</tr>
<tr>
<td></td>
<td>(+24 V_{dc}) with +24 Vdc power supply to drive ex-proof proportional valves (3.2 Ω solenoid) for /A option</td>
</tr>
<tr>
<td>Analog input signals (see 5.3)</td>
<td>Voltage: maximum range ±10 Vdc; Input impedance: (R_i > 50 \Omega)</td>
</tr>
<tr>
<td>Monitor output (see 5.4)</td>
<td>Voltage: maximum range ±5 Vdc; (I_{max} \leq 5 \text{ mA})</td>
</tr>
<tr>
<td>Enable input (see 5.5)</td>
<td>Range: 0 ÷ 9 Vdc (OFF state), 15 ÷ 24 Vdc (ON state), 9 ÷ 15 Vdc (not accepted); Input impedance: (R_i > 87 \text{ k} \Omega)</td>
</tr>
<tr>
<td>Output supply (see 5.8)</td>
<td>±5 Vdc (I_{max} \leq 10 \text{ mA};) output supply for external potentiometer</td>
</tr>
<tr>
<td>Fault output (see 5.6)</td>
<td>Output range: 0 ÷ 24 Vdc (ON state) (\text{max} 24 \text{ Vdc}), (I_{max} \leq 100 \text{ mA})</td>
</tr>
<tr>
<td>Pressure transducer power supply (only for /N option)</td>
<td>+24 Vdc ([\text{max} 100 \text{ mA}]) for ex-proof proportional valves (E-ATR-8 see tech table GS465)</td>
</tr>
<tr>
<td>Alarms</td>
<td>Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, power supplies level, pressure transducer failure</td>
</tr>
<tr>
<td>Format</td>
<td>Plastic box; IP20 protection degree; L 35 - H 7.5 mm; DIN-rail mounting as per EN60715</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20 ÷ +60 °C (storage -25 ÷ +85 °C)</td>
</tr>
<tr>
<td>Mass</td>
<td>Approx. 330 g</td>
</tr>
<tr>
<td>Additional characteristics</td>
<td>Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply</td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC)</td>
<td>According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)</td>
</tr>
<tr>
<td>Communication interface</td>
<td>USB Atos ASCII coding, CANopen EN50325-4 + DS408, PROFIBUS DP EN50170-2/IEC61158, EtherCAT IEC61158</td>
</tr>
<tr>
<td>Communication physical layer</td>
<td>not insulated USB 2.0 + USB OTG, optical insulated USB CAN ISO1188, optical insulated CAN RS485, Fast Ethernet 100 Base TX</td>
</tr>
<tr>
<td>Recommended wiring cable</td>
<td>LIYCY shielded cables: 0.5 mm² max 50 m for logic, 1.5 mm² max 50 m for power supply and solenoids</td>
</tr>
<tr>
<td>Max conductor size (see 9)</td>
<td>2.5 mm²</td>
</tr>
</tbody>
</table>

Note: a maximum time of 500 ms (depending on communication type) have been considered between the driver energizing with the 24 Vdc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

CONNECTIONS AND LEDS

4.1 Diagnostic LEDs

Four LEDs show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.

<table>
<thead>
<tr>
<th>LED</th>
<th>COLOR</th>
<th>FUNCTION</th>
<th>FLASH RATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>GREEN</td>
<td>PW</td>
<td>OFF</td>
<td>Power supply OFF</td>
</tr>
<tr>
<td>L2</td>
<td>GREEN</td>
<td>ST</td>
<td>OFF</td>
<td>Fault present</td>
</tr>
<tr>
<td>L3</td>
<td>GREEN</td>
<td>ST</td>
<td>ON</td>
<td>No fault</td>
</tr>
<tr>
<td>L4</td>
<td>GREEN</td>
<td>ST</td>
<td>OFF</td>
<td>PWM command OFF</td>
</tr>
<tr>
<td>L5</td>
<td>GREEN</td>
<td>ST</td>
<td>ON</td>
<td>PWM command ON</td>
</tr>
</tbody>
</table>

A, B, C, F, G, H connectors included; E connector is available only for /W option
4.2 Connectors - 4 pin

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>PIN</th>
<th>SIGNAL</th>
<th>TECHNICAL SPECIFICATIONS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>V+</td>
<td>Power supply 24 Voc (see 5.1)</td>
<td>Input - power supply</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>V0</td>
<td>Power supply 0 Voc (see 5.1)</td>
<td>Gnd - power supply</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>VL+</td>
<td>Power supply 24 Voc for driver's logic and communication (see 5.2)</td>
<td>Input - power supply</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>VL0</td>
<td>Power supply 0 Voc for driver's logic and communication (see 5.2)</td>
<td>Gnd - power supply</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>ENABLE</td>
<td>Enable (24 Voc) or disable (0 Voc) the driver, referred to VL0 (see 5.5)</td>
<td>Input - on/off signal</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>FAULT</td>
<td>Fault (0 Voc) or normal working (24 Voc), referred to VL0 (see 5.6)</td>
<td>Output - on/off signal</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>VL0</td>
<td>Ground for ENABLE and FAULT</td>
<td>Gnd - digital signals</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>EARTH</td>
<td>Connect to system ground</td>
<td></td>
</tr>
</tbody>
</table>

C

C1
- Negative current to solenoid S1

C2
- Positive current to solenoid S1

C3
- Negative current to solenoid S2

C4
- Positive current to solenoid S2

E

E1
- Power supply +24 Voc

E2
- Positive pressure transducer input signal: ±10 Vdc / ±20 mA maximum range (see 5.7)

E3
- Do not connect

E4
- Common GND for transducer power, signals and external potentiometer

F

F1
- External potentiometer power supply +5 Vdc @ 10mA (see 5.8)

F2
- Positive reference input signal: ±10 Vdc / ±20 mA maximum range

F3
- Negative reference input signal for INPUT+

F4
- External potentiometer power supply -5 Vdc @ 10mA (see 5.8)

G

G1
- Connect to system ground

G2
- Analog ground for MONITOR and external potentiometer

G3
- Only for /W option, 2nd monitor output signal: ±5 Vdc maximum range (see 5.4)

G4
- Monitor output signal: ±5 Vdc maximum range (see 5.4)

H

H1
- Power supply 0 Vdc for digital input (see 5.2)

H2
- Digital input 0 ÷ 24Vdc, referred to VL0

H3
- Digital input 0 ÷ 24Vdc, referred to VL0

H4
- Power supply 24 Vdc for digital input (see 5.2)

Pressure transducer connections - only for /W option

Voltage

- **AGND**
 - **TR+**
 - **VF+24V**
 - **V0**
 - **V-**

Current

- **TR+**
 - **V+**
 - **Vout**
 - **V+24V**

Potentiometer connection

- **AGND (1)**
 - **INPUT+**
 - **+5V_REF**
 - **-5V_REF**
 - **10 kΩ**
 - **for 1 single solenoid valve**

- **AGND (1)**
 - **INPUT+**
 - **+5V_REF**
 - **-5V_REF**
 - **10 kΩ**
 - **for 1 double solenoid valve**

4.3 Communication connectors ① ② ④ ⑤ ⑥ ⑦ ⑧ ⑨

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TECHNICAL SPECIFICATION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN L</td>
<td>Bus line (low)</td>
</tr>
<tr>
<td>3</td>
<td>CAN GND</td>
<td>Signal zero data line</td>
</tr>
<tr>
<td>5</td>
<td>CAN SHLD</td>
<td>Shield</td>
</tr>
<tr>
<td>7</td>
<td>CAN H</td>
<td>Bus line (high)</td>
</tr>
</tbody>
</table>

5. USB connector - Mini USB type B ① always present

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TECHNICAL SPECIFICATION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND_USB</td>
<td>Signal zero data line</td>
</tr>
</tbody>
</table>

6. BP fieldbus execution, connector - DB9 - 9 pin

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>TECHNICAL SPECIFICATION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHIELD</td>
<td>Bus line (low)</td>
</tr>
<tr>
<td>3</td>
<td>LINE-B</td>
<td>Bus line (high)</td>
</tr>
<tr>
<td>5</td>
<td>DGNND</td>
<td>Data line and termination signal zero</td>
</tr>
<tr>
<td>6</td>
<td>+5V</td>
<td>Termination supplysignal</td>
</tr>
</tbody>
</table>

(1) shield connection on connector's housing is recommended

GS050
5 SIGNALS SPECIFICATIONS

Atos digital drivers are CE marked according to the applicable directives (e.g., Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table F003 and in the user manuals included in the E-SW-* programming software.

Generic electrical output signals of the valve (e.g., fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine’s safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

5.1 Power supply (V+ and V0)
The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

The separate power supply for driver’s logic on pin A3 and A4, allow to remove solenoid power supply from pin A1 and A2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each power supply: 2.5 A time lag fuse.

5.2 Power supply for driver’s logic and communication (VL+ and VL0)
The power supply for driver’s logic and communication must be appropriately stabilized or rectified: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

5.3 Reference input signal (INPUT+)
The driver controls in closed loop the current to the valve proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and ±20 mA for /W option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.

Drivers with fieldbus interface (BC, BP, EH) can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 – 24VDC.

5.4 Monitor output signals (MONITOR and MONITOR2)
The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference). Monitor output signal is factory preset according to selected valve code, default settings is ±5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.

Option /W
The driver generates a second analog output signal (MONITOR2) proportional to the actual system pressure.

The separate power supply for driver’s logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

The output maximum range is ±5 VDC; default setting is 0 – 5 VDC.

5.5 Enable input signal (ENABLE)
To enable the driver, supply 24 VDC on pin B1: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to activate the communication and the other driver functions when the valve must be disabled for safety reasons. This condition does not comply with European Norms EN13849-1 (ex EN954-1).

5.6 Fault output signal (FAULT)
Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal broken for 4 – 20 mA input, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal.

5.7 Remote pressure transducer input signal (TR+)- only for /W option
Analog pressure transducers can be directly connected to the driver.

Analog input signal is factory preset according to selected driver code, defaults are 0 – 10 VDC for standard and ±20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. Note: transducer feedback can be read as a digital information through fieldbus communication - software selectable.

5.8 Output supply for external potentiometer (+5V_REF)- not available for EH version
The reference analog signal can be generated by one external potentiometer directly connected to the driver, using the ±5 VDC supply output available at pin F1 and F4.

Note: using an external potentiometer, the reference input signal must be set via software at ±5 VDC (default ±10 VDC, see 5.3)

5.9 Possible combined options: /AI, /AW, /IW, /AIW, /ACW, /CIW, /ACIW, /CW

6 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve’s functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS00). For fieldbus versions, the software permits valve’s parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver’s options (see table GS50).

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared)
E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
 EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)
E-SW- /PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated! For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection.

Free programming software, web download:
E-SW-BASIC web download = software can be downloaded upon web registration at www.atos.com ; service and DVD not included

Upon web registration user receive via email the Activation Code (software free license) and login data to access Atos Download Area

DVD programming software, to be ordered separately:
E-SW-/PQ DVD first supply = software has to be activated via web registration at www.atos.com ; 1 year service included

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos Download Area

E-SW-*/N/PQ DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

Atos Download Area: direct access to latest releases of E-SW software, manuals, USB drivers and fieldbus configuration files at www.atos.com

USB Adapters, Cables and Terminators, can be ordered separately
7 MAIN SOFTWARE PARAMETER SETTINGS

The following is a brief description of the main settings and features of digital drivers.

For a detailed descriptions of available settings, wirings and installation procedures, please refer to the user manual included in the E-SW programming software:

7.1 Scale
Scale function allows to set the maximum current supplied to the solenoid, corresponding to the max valve regulation, at maximum reference signal value. This regulation allows to adapt the maximum current supplied from the driver to the specific nominal current of the proportional valves to which the driver is coupled; it is also useful to reduce the maximum valve regulation in front of maximum reference signal. Two different Scale regulations are available for double solenoid valves: ScaleA for positive reference signal and ScaleB for negative reference signal.

7.2 Bias and Threshold
Proportional valves may be provided with a dead band in the hydraulic regulation corresponding to their switch-off status. This dead band discontinuity in the valve’s regulation can be compensated by activating the Bias function, which adds a fixed preset Bias value to the reference signal (analog or fieldbus external input). The Bias function is activated when the reference signal overcomes the Threshold value, preset into the driver. The Bias setting allows to calibrate the Bias current to the specific proportional valve to which the driver is coupled. The Threshold setting is useful to avoid undesired valve regulation at zero reference signal when electric noise is present on the analog input signal: smaller threshold reduces the reference signal dead band, greater values are less affected by electric noise presence.

If fieldbus reference signal is active (see 5.3), threshold should be set to zero. Two different Bias regulations are available for double solenoid valves: positive reference signals activate BiasA and negative reference signals activate BiasB. Refer to the programming manuals for a detailed description of other software selectable Bias functions.

7.3 Offset
Proportional valves may be provided with zero overlapping in the hydraulic regulation corresponding to zero reference input signal (valve’s central spool position). The Offset function allows to calibrate the Offset current, required to obtain valve’s spool central position, to the specific hydraulic system setup (e.g. valve applied to cylinder with differential areas).

7.4 Ramps
The ramp generator allows to convert sudden change of electronic reference signal into smooth time-dependent increasing/decreasing of the current supplied to the solenoid. Different ramp mode can be set:

- single ramp for any reference variation
- two ramps for increasing and for decreasing reference variations
- four ramps for positive/negative reference signals and increasing/decreasing reference variations

Ramp generator is useful for application where smooth hydraulic actuation is necessary to avoid machine vibration and shocks. If the proportional valve is driven by a closed loop controller, the ramps can lead to unstable behaviour, for these applications ramp function can be software disabled (default setting).

7.5 Linearization - E-SW level 2 functionality
Linearization function allows to set the relation between the reference input signal and the controlled valve’s regulation. Linearization is useful for applications where it is required to linearize the valve’s regulation in a defined working condition.

7.6 Variable Dither
The dither is the frequency modulation of the current supplied to the solenoid. To reduce the hysteresis should be selected a lower value of frequency, despite a lower regulation stability, because a small vibration in the valve regulating parts considerably reduces static friction effects.

To improve the regulation stability, should be selected a high value of frequency, despite a higher hysteresis. This solution in some application can lead to vibration and noise. Normally, the right setting is a compromise and depends on system setup. E-BM-AES drivers allow to realize a variable dither frequency that linearly depends on the demanded current: variable dither frequency allows an higher degree to optimize the valve hysteresis.

7.7 Hydraulic Power Limitation - only for /W option
Digital E-BM-AES drivers with /W option electronically perform hydraulic power limitation on:

- direct and pilot operated flow control valves
- direct and pilot operated directional control valves + mechanical pressure compensator
- variable displacement pumps with proportional flow regulator (e.g. PVPAC-1-LOZ, tech table A170)

The driver receives the flow reference signal by the analog external input INPUT+ (see 5.3) and a pressure transducer, installed in the hydraulic system, has to be connected to the driver’s analog input TR (see 5.7).

When the actual requested hydraulic power p x Q (TR x INPUT+) reaches the max power limit (p1 x Q1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve’s regulated flow:

\[
\text{Flow regulation} = \text{Min} \left(\frac{\text{PowerLimit [sw setting]}}{\text{Transducer Pressure [TR]}}, \text{Flow Reference [INPUT+]} \right)
\]

Regulation curve 1 with and 2 without power limitation. p1 x Q1 = max power limit.
OVERALL DIMENSIONS [mm]

A,B,C,F,G,H connectors included; E connector is available only for /W option

(*) Space to remove the connectors

INSTALLATION

To wire cables in the connectors:
1. insert cable into the termination
2. turn screw with a screwdriver

Note: max conductor size: 2.5 mm²
tightening torque: 0.4 ÷ 0.6 Nm

To extract the connectors:
1. push lever
2. pull connector

To insert the connectors:
1. push the connector in its slot

Note: all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot (e.g. connector A can not be inserted into connector slot of B, C, E, F, G, H)