ISO cartridge valves type LIDEW* and LIDBH*
directional control, high flow, P_{max} 420 bar

Directional control valves in ISO cartridge design, used to intercept or to permit the flow passage according to the selected pilot control. They are made by a functional cover and a 2-way SC LI slip-in cartridge.

LIDEW: functional cover with or without pilot solenoid valve for cartridge operation, available in different configurations depending to the function to be performed.

LIDBH as LIDEW plus shuttle valve for pilot pressure selection.

The SC LI slip-in cartridge is available with different poppet shape to optimize the control, see section 6.

It is made by a poppet sliding into a sleeve and kept in normally closed position by the spring available with different cracking pressure values.

Size: 16 to 100 ISO 7368
Max flow up to 9000 l/min at Δp = 5 bar
Max pressure up to 420 bar

<table>
<thead>
<tr>
<th>MODEL CODE OF FUNCTIONAL COVERS</th>
<th>- for model code of slip-in cartridge, see section 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover according to ISO 7368</td>
<td></td>
</tr>
<tr>
<td>D = directional function</td>
<td></td>
</tr>
<tr>
<td>EW = with or without pilot solenoid valve</td>
<td></td>
</tr>
<tr>
<td>BH = as EW plus shuttle valve for pilot selection</td>
<td></td>
</tr>
</tbody>
</table>

Cover configuration see section 9
LIDEW: - (without pilot valve)
LIDBH: 1, 2, 4, 5, 6
LIDBH: 1A, 1C, 2A, 2C

<table>
<thead>
<tr>
<th>Size:</th>
<th>1 = 16</th>
<th>2 = 25</th>
<th>3 = 32</th>
<th>4 = 40</th>
<th>5 = 50</th>
<th>6 = 63</th>
<th>8 = 80</th>
<th>10 = 100</th>
</tr>
</thead>
</table>

Options, see section 3

(1) for solenoid valve’s characteristics, see following technical tables:

- **DHI** tech. table E010
- **DHE** tech. table E015
- **DHEP** tech. table TE030
- **DKE** tech. table E025
- **DKEP** tech. table TE030

![Diagram of ISO cartridge valves LIDEW and LIDBH](image)
HYDRAULIC SYMBOLS (cover configuration)

3 OPTIONS
For LIDEW*, LIDBH* covers (sizes 40…100):
/E = with external attachments Pp and underneath port X supplied plugged;
For all the models:
/B = cartridge piloted via port “B” of solenoid pilot valve;
/F = prearranged for coupling to an intermediate element with poppet position detector for safety function. See tab. EY120.
/WP = prolonged manual override protected by rubber cap for solenoid pilot valve. See table K150.
*** = Calibrated plugs different from standard ones reported in section 7. The restrictors configuration (if different from the standard) must be indicated at the end of the model code:

LIDEW2 - 1 */ EX 24DC ** P

Channel where the orifice has to be provided:
P = channel X, port P
F = channel F
Z1 = channel Z1
Z2 = channel Z2

06
Size of the throttling hole in tenths of millimeters:
05 = 0,5 mm 10 = 1 mm 17 = 1,7 mm
06 = 0,6 mm 12 = 1,2 mm 20 = 2 mm
08 = 0,8 mm 15 = 1,5 mm

4 STANDARD ORIFICES CONFIGURATION

<table>
<thead>
<tr>
<th>Port (only for LIDBH*-)</th>
<th>M4</th>
<th>M6</th>
<th>M6</th>
<th>M6</th>
<th>M6</th>
<th>M6</th>
<th>M6</th>
<th>M8</th>
<th>M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>12A</td>
<td>12A</td>
<td>15A</td>
<td>17A</td>
<td>20A</td>
<td>20A</td>
<td>20A</td>
<td>20A</td>
<td>25A</td>
</tr>
</tbody>
</table>

M4 ÷ M8 = screw size; 12A ÷ 20A = calibrated orifices diameter in tenths of mm; A = short calibrated hole
MODEL CODE OF SLIP-IN CARTRIDGES

<table>
<thead>
<tr>
<th>Cartridge according to ISO 7368</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC LI 16 43 40 1 40</td>
</tr>
</tbody>
</table>

Size, the same of relevant cover:
- 16
- 25
- 32
- 40
- 50
- 63
- 80
- 100

Model code
- 16 43

Type of poppet
- 32, 33 (size 16 to 100) = without damping nose
- 42 (size 16 to 80) = as 32 but with damping nose
- 43 (size 16 to 100) = as 33 but with damping nose

Spring cracking pressure
- 1 = 0.3 bar for poppet 32, 42
- 2 = 1.5 bar for poppet 32, 42
- 3 = 3 bar for all poppets
- 4 = 0.6 bar for poppet 33, 43
- 5 = 5.5 bar for all poppets

Seals material
- = NBR
- PE = FKM
- BT = HNBR

TYPE OF POPPET

<table>
<thead>
<tr>
<th>Type of poppet</th>
<th>32</th>
<th>33</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional sketch (Hydraulic symbol)</td>
<td></td>
</tr>
</tbody>
</table>

Operating pressure

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal flow at Δp 5bar (l/min)</th>
<th>See diagrams Q/Δp at section [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>32</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>40</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>50</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>63</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>80</td>
<td>5500</td>
<td>5500</td>
</tr>
<tr>
<td>100</td>
<td>9000</td>
<td>9000</td>
</tr>
</tbody>
</table>

Area ratio A:Ap
- 32: 1:1.1
- 33: 1:1.5
- 42: 1:1.1
- 43: 1:1.5

Cracking pressure A→B
- Spring 1:
 - 1: 0.3 bar
 - 2: 1.5 bar
 - 3: 3 bar
 - 6: 6 bar

Cracking pressure B→A
- Spring 1:
 - 1: 0.3 bar
 - 2: 12.8 bar
 - 3: 32.5 bar
 - 6: 59.4 bar

Nominal flow at Δp 5bar (l/min)
- 16: 270
- 25: 550
- 32: 1000
- 40: 1700
- 50: 2500
- 63: 4000
- 80: 5500
- 100: 9000

Typical section
- Size 16: ![Typical section](image)
- Size 25: ![Typical section](image)
- Size 32: ![Typical section](image)
- Size 40: ![Typical section](image)
- Size 50: ![Typical section](image)
- Size 63: ![Typical section](image)
- Size 80: ![Typical section](image)
- Size 100: ![Typical section](image)

Area ratio A:Ap

- 1:1.1
- 1:1.5
- 1:1.1
- 1:1.5

Cracking pressure A→B

- Spring 1:
 - 1: 0.3 bar
 - 2: 1.5 bar
 - 3: 3 bar
 - 6: 6 bar

Cracking pressure B→A

- Spring 1:
 - 1: 0.3 bar
 - 2: 12.8 bar
 - 3: 32.5 bar
 - 6: 59.4 bar

Nominal flow at Δp 5bar (l/min)

- 16: 270
- 25: 550
- 32: 1000
- 40: 1700
- 50: 2500
- 63: 4000
- 80: 5500
- 100: 9000

Typical section

- Size 16: ![Typical section](image)
- Size 25: ![Typical section](image)
- Size 32: ![Typical section](image)
- Size 40: ![Typical section](image)
- Size 50: ![Typical section](image)
- Size 63: ![Typical section](image)
- Size 80: ![Typical section](image)
- Size 100: ![Typical section](image)
7 MAIN CHARACTERISTICS, SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

Assembly position / location Any position
Subplate surface finishing Roughness index Ra 0.4 - flatness ratio 0.01/100 (ISO 1101)
MTFd values according to EN ISO 13849 150 years, for further details see technical table P007

Compliance CE to Low Voltage Directive 2014/35/EU
RoHS Directive 2011/65/EU as last update by 2015/65/EU
REACH Regulation (EC) n°1907/2006

Ambient temperature Standard execution = -30°C + 70°C
/PE option = -20°C + 70°C
/FT option = -40°C + 70°C

Seals, recommended fluid temperature NBR seals (standard) = -20°C + 80°C, with HFC hydraulic fluids = -30°C + 50°C
FKM seals (/PE option) = -20°C + 80°C
HNBR seals (/FT option) = -40°C + 60°C, with HFC hydraulic fluids = -40°C + 50°C

Recommended viscosity 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s

Max fluid contamination level ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog

7.1 Coils characteristics

Insulation class Pilot valve E, EP: H (180°C) for DC coils F (155°C) for AC coils
Pilot valve I, H (180°C) for DC or AC coils

Protection degree to DIN EN 60529 IP 65 (with connectors 666, 667, 669 correctly assembled)

Relative duty factor 100%
Supply voltage and frequency See electric feature #)
Supply voltage tolerance ± 10%
Certification cURus North American Standard

8 ELECTRIC FEATURES

<table>
<thead>
<tr>
<th>Solenoid valve type</th>
<th>External supply nominal voltage ± 10% (1)</th>
<th>Voltage code</th>
<th>Type of connector</th>
<th>Power consumption (3)</th>
<th>Code of spare coil DHI</th>
<th>Colour of coil label DHI</th>
<th>Code of spare coil DHE, DHEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHI</td>
<td>12 LC</td>
<td>12 DC</td>
<td>or 666</td>
<td>33 W (DHI)</td>
<td>COU-12DC</td>
<td>green</td>
<td>COE-12DC</td>
</tr>
<tr>
<td>DKE</td>
<td>12 DC</td>
<td>12 DC</td>
<td>or 666</td>
<td>30 W (DHEP)</td>
<td>COU-220DC</td>
<td>black</td>
<td>COE-220DC</td>
</tr>
<tr>
<td>DHEP</td>
<td>12 DC</td>
<td>12 DC</td>
<td>or 666</td>
<td>60 VA (DHL)</td>
<td>COI-110/50/60AC</td>
<td>yellow</td>
<td>COE-110/50/60AC</td>
</tr>
<tr>
<td></td>
<td>24 DC</td>
<td>24 DC</td>
<td>or 666</td>
<td>58 VA (DHEP)</td>
<td>COI-230/50/60AC</td>
<td>white</td>
<td>COE-230/50/60AC</td>
</tr>
<tr>
<td></td>
<td>110 DC</td>
<td>110 DC</td>
<td>or 666</td>
<td>6 VA (DHL)</td>
<td>COI-115/60/AC</td>
<td>light blue</td>
<td>COE-115/60/AC</td>
</tr>
<tr>
<td></td>
<td>220 DC</td>
<td>220 DC</td>
<td>or 666</td>
<td>12 VA (DHL)</td>
<td>COI-230/50/60AC</td>
<td>silver</td>
<td>COE-230/50/60AC</td>
</tr>
<tr>
<td>DKE</td>
<td>12 DC</td>
<td>12 DC</td>
<td>or 666</td>
<td>36 W</td>
<td>CAE-12DC</td>
<td>-</td>
<td>CAE-12DC</td>
</tr>
<tr>
<td></td>
<td>14 DC</td>
<td>14 DC</td>
<td>or 666</td>
<td>30 W</td>
<td>CAE-24DC</td>
<td>-</td>
<td>CAE-24DC</td>
</tr>
<tr>
<td></td>
<td>28 DC</td>
<td>28 DC</td>
<td>or 666</td>
<td>28 VA (DHEP)</td>
<td>CAE-28DC</td>
<td>-</td>
<td>CAE-28DC</td>
</tr>
<tr>
<td></td>
<td>110 DC</td>
<td>110 DC</td>
<td>or 666</td>
<td>58 VA (DHEP)</td>
<td>CAE-110DC</td>
<td>-</td>
<td>CAE-110DC</td>
</tr>
<tr>
<td></td>
<td>220 DC</td>
<td>220 DC</td>
<td>or 666</td>
<td>58 VA (DHEP)</td>
<td>CAE-220DC</td>
<td>-</td>
<td>CAE-220DC</td>
</tr>
<tr>
<td>DKE</td>
<td>110/50/60 AC (2)</td>
<td>100 VA (7)</td>
<td>-</td>
<td>CAE-110/50/60AC</td>
<td>CAE-120/60AC</td>
<td>-</td>
<td>CAE-120/60AC</td>
</tr>
<tr>
<td></td>
<td>120/60 AC (2)</td>
<td>130 VA (7)</td>
<td>-</td>
<td>CAE-120/60AC</td>
<td>CAE-230/50/60AC</td>
<td>-</td>
<td>CAE-230/50/60AC</td>
</tr>
<tr>
<td></td>
<td>110/50/60 AC (2)</td>
<td>669</td>
<td>36 W</td>
<td>-</td>
<td>CAE-110/50/60AC</td>
<td>-</td>
<td>CAE-120/60AC</td>
</tr>
<tr>
<td></td>
<td>230/50/60 AC (2)</td>
<td></td>
<td></td>
<td></td>
<td>CAE-230/50/60AC</td>
<td>-</td>
<td>CAE-230/50/60AC</td>
</tr>
<tr>
<td></td>
<td>110/50/60 AC (2)</td>
<td></td>
<td></td>
<td></td>
<td>CAE-230/50/60AC</td>
<td>-</td>
<td>CAE-230/50/60AC</td>
</tr>
<tr>
<td></td>
<td>230/50/60 AC (2)</td>
<td></td>
<td></td>
<td></td>
<td>CAE-230/50/60AC</td>
<td>-</td>
<td>CAE-230/50/60AC</td>
</tr>
</tbody>
</table>

(1)For other supply voltages available on request see technical tables E010, E015, E025, TE030.
(2)Coil can be supplied also with 60 Hz of voltage frequency: in this case the performances are reduced by 10 + 15%. The power consumption is 55 VA (DHI), 58 VA (DHE, DHEP) and 90 VA (DKE, DKEP).
(3)Average values based on tests performed at nominal hydraulic condition and ambient/coil temperature of 20°C.
(4)When solenoid is energized, the inrush current is approx 3 times the holding current. Inrush current values correspond to a power consumption of about 150 VA.
(5)Only for DHE, DHEP
(6)Only for DHI
(7)When solenoid is energized, the inrush current is approx 3 times the holding current.
Valve pressure drop \(\Delta p \) [bar] vs. Flow [l/min]

- **Size 16**
- **Size 25**
- **Size 32**
- **Size 40**
- **Size 50**
- **Size 63**
- **Size 80**
- **Size 100**

1 = poppet type 32 and 33
2 = poppet type 42 and 43

Q/\(\Delta p \) DIAGRAMS based on mineral oil ISO VG 46 at 50 °C
Size 16 ÷ 63
Drawing of size 50
dotted line: example of double solenoid version

Size 80 and 100
dotted line: example of AC solenoid version

Notes referred to the below table:
(1) LIDEW1*, LIDBH*A: solenoid at side of port Y of cover;
LIDEW2*, LIDBH*C: solenoid at side of port X of cover;

Overall dimensions refer to the pilot valves with connectors type 666.