ISO cartridge valves type LID*
Check function, high flow, Pmax 420 bar

Directional control valves in ISO cartridge design, specific for check functions. They are made by a functional cover 1 and a 2-way SC LI slip-in cartridge. Covers are available with different check functions:

LIDA, normally closed
LIDO, normally open
LIDB, normally closed with shuttle valve for pilot pressure selection
LIDR, normally closed with pilot operated check valve

The SC LI slip-in cartridge is available with different poppet shape to optimize the check control, see section 6.

It is made by a poppet 2 sliding into a sleeve 3 and kept in normally closed position (open position for type 62 and 63) by the spring 4 available with different cracking pressure values.

Size: 16 to 100 ISO 7368
Max flow up to 9000 l/min at Δp = 5 bar
Max pressure up to 420 bar

Cover according to ISO 7368

D = directional function

Cover configuration see section 2:
A = normally closed;
O = normally open;
B = with shuttle valve for pilot selection;
R = with hydraulically operated pilot check valve;

Size:
1 = 16; 4 = 40; 8 = 80 (only for LIDA)
2 = 25; 5 = 50; 10 = 100 (only for LIDA)
3 = 32; 6 = 63 (not for LIDO)
LIDO is available only in sizes 16 to 50

Seals material:
- = NBR
PE = FKM
BT = HNBR

Series number

Options: see section 3

Table H040-10/E
3 OPTIONS
For LIDA (sizes 16 and 25), for LIDO (all sizes) LIDB (sizes 40 ÷ 63), LIDR (sizes 40 ÷ 63):
/F/ = with external attachments Pp and underneath port X supplied plugged;
For LIDA, LIDO, LIDR:
/PP/ = prearranged for coupling to an intermediate element with position detector for safety valves, see tab. EY120.
For all models:
/SC/ = calibrated plugs different from standard ones reported in section 4. The restrictors configuration (if different from the standard) must be indicated at the end of the model code.

LIDB - 4 /E /* P

Channel where the restrictor has to be provided:
P = channel X, port P Z1 = channel Z1
F = channel F Z2 = channel Z2

06

Size of the throttling hole in tenths of millimeters:
05 = 0.5 mm 10 = 1 mm 17 = 1.7 mm
06 = 0.6 mm 12 = 1.2 mm 20 = 2 mm
08 = 0.8 mm 15 = 1.5 mm

4 STANDARD ORIFICES CONFIGURATION

<table>
<thead>
<tr>
<th>Cover</th>
<th>Port</th>
<th>LIDB-1</th>
<th>LIDB-2</th>
<th>LIDB-3</th>
<th>LIDB-4</th>
<th>LIDB-5</th>
<th>LIDB-6</th>
<th>LIDB-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
<td>- M4</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10A</td>
<td>- 12A</td>
<td>- 15F</td>
<td>- 15F</td>
<td>- 15F</td>
<td>- 15F</td>
<td>- 15F</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
<td>- M6</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>12A</td>
<td>- 15A</td>
<td>- 17A</td>
<td>- 20A</td>
<td>- 20A</td>
<td>- 20A</td>
<td>- 20A</td>
</tr>
<tr>
<td>Z2</td>
<td>-</td>
<td>- M4</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
<td>- M6</td>
</tr>
</tbody>
</table>

M4 ÷ M6 = screw size 10A ÷ 300F = calibrated orifices diameters in tenths of mm; A = short calibrated hole, F = long calibrated hole

5 MODEL CODE OF SLIP-IN CARTRIDGES

SC LI - 16 43 40 / F

Cartridge according to ISO 7368

Size, the same of relevant cover:
16 25 32 40 50 63 80 100

Type of poppet (not for LIDO)
32, 33 (size 16 to 100) = without damping nose
42 (size 16 to 80) = as 32 but with damping nose
43 (size 16 to 100) = as 33 but with damping nose

Spring cracking pressure:
1 = 0.3 bar for poppet 32, 42
1 = 0.6 bar for poppet 33, 43
2 = 1.5 bar for poppet 32, 42
3 = 3 bar for all poppets
6 = 5.5 bar for all poppets

6 TYPE OF POPPET

<table>
<thead>
<tr>
<th>Type of poppet</th>
<th>32</th>
<th>33</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional sketch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating pressure</th>
<th>420 bar max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal flow at Δp 5 bar (l/min) see diagrams Q/Δp at section 3</td>
<td>270</td>
</tr>
<tr>
<td>Size 16</td>
<td>25</td>
</tr>
<tr>
<td>270</td>
<td>550</td>
</tr>
<tr>
<td>550</td>
<td>1000</td>
</tr>
<tr>
<td>600</td>
<td>1400</td>
</tr>
<tr>
<td>Typical section</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area ratio A/Δp</th>
<th>1:1.1</th>
<th>1:1.5</th>
<th>1:1.1</th>
<th>1:1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracking pressure A→B</td>
<td>0.3 bar</td>
<td>0.6 bar</td>
<td>0.3 bar</td>
<td>0.6 bar</td>
</tr>
<tr>
<td>2</td>
<td>1.5 bar</td>
<td>-</td>
<td>1.5 bar</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3 bar</td>
<td>2.5 bar</td>
<td>3 bar</td>
<td>2.5 bar</td>
</tr>
<tr>
<td>6</td>
<td>6 bar</td>
<td>6 bar</td>
<td>6 bar</td>
<td>6 bar</td>
</tr>
<tr>
<td>Cracking pressure B→A</td>
<td>3 bar</td>
<td>0.9 bar</td>
<td>3 bar</td>
<td>0.9 bar</td>
</tr>
<tr>
<td>2</td>
<td>12.8 bar</td>
<td>-</td>
<td>12.8 bar</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>32.5 bar</td>
<td>3.8 bar</td>
<td>32.5 bar</td>
<td>3.8 bar</td>
</tr>
<tr>
<td>6</td>
<td>59.4 bar</td>
<td>9 bar</td>
<td>59.4 bar</td>
<td>9 bar</td>
</tr>
</tbody>
</table>

Seals material:
- = NBR
PE = FKM
BT = HNBR
Ports P, A, B, X, Z1, Z2:
420 bar

Mineral oils
- Hydraulic fluid
- NBR, FKM, HNBR

DIN 51524
- ISO 12922
- HL, HLP, HLPD, HVLP, HVLPD
- HFDU, HFDR
- HFC

Suitable seals type
- Classification
- Ref. Standard

NBR seals (standard)
- -20°C ÷ +80°C
- -20°C ÷ +50°C
- -20°C ÷ +80°C

FKM seals (/PE option)
- -20°C ÷ +80°C
- -40°C ÷ +50°C

HNBR seals (/BT option)
- -40°C ÷ +60°C
- -40°C ÷ +50°C

Recommended viscosity
- 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s

Max fluid contamination level
- ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog

Functional cover operating pressure
- Ports P, A, B, X, Z1, Z2: 420 bar

MAIN CHARACTERISTICS, SEALS AND HYDRAULIC FLUID

Type of poppet:
- **52** = normally closed, only for LIDA;
- **62** = normally open without damping nose, only for LIDO;
- **63** = normally open with damping nose, only for LIDO

<table>
<thead>
<tr>
<th>Type of poppet</th>
<th>52</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure</td>
<td>420 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal flow at Δp 5 bar (l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size 16</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Functional sketch (Hydraulic symbol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area ratio A:AP</td>
<td>1:1,1</td>
<td>1:1,1</td>
<td>1:1,1</td>
</tr>
<tr>
<td>Cracking pressure</td>
<td>Spring 1</td>
<td>0,3 bar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,5 bar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 (1)</td>
<td>3 bar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6 bar</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Depending on the spring cracking pressure and the area ratio of the poppet

Assembly position / location
- Any position

Subplate surface finishing
- Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)

MTTFd values according to EN ISO 13849
- 150 years, for further details see technical table P007

Compliance
- RoHS Directive 2011/65/EU as last update by 2015/65/EU
- REACH Regulation (EC) n°1907/2006

Ambient temperature
- Standard execution = -30°C ÷ +70°C
- PE option = -20°C ÷ +70°C
- BT option = -40°C ÷ +70°C

Seals, recommended fluid temperature
- NBR seals (standard) = -20°C ÷ +80°C, with HFC hydraulic fluids = -20°C ÷ +50°C
- FKM seals (PE option) = -20°C ÷ +80°C
- HNBR seals (BT option) = -40°C ÷ +60°C, with HFC hydraulic fluids = -40°C ÷ +50°C

Recommended viscosity
- 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s

Max fluid contamination level
- ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog

Hydraulic fluid
- Suitable seals type
- Classification
- Ref. Standard

<table>
<thead>
<tr>
<th>Mineral oils</th>
<th>NBR, FKM, HNBR</th>
<th>HL, HLP, HLPD, HVLP, HVLPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame resistant without water</td>
<td>FKM</td>
<td>HFDU, HFDR</td>
</tr>
<tr>
<td>Flame resistant with water</td>
<td>NBR, HNBR</td>
<td>HFC</td>
</tr>
</tbody>
</table>

Flow direction
- As shown in the symbols of table 8

Functional cover operating pressure
- Ports P, A, B, X, Z1, Z2: 420 bar
10 QΔp DIAGRAMS based on mineral oil ISO VG 46 at 50°C

10.1 SC LI slip-in cartridges, poppet type 32, 33, 42, 43

size 16

size 25

size 32

size 40

size 50

size 63

size 80

size 100

High flow - series 40
1 = poppet type 32 and 33
2 = poppet type 42 and 43
10.2 SC LI slip-in cartridges, poppet type 52, 62, 63

Differential pressure A/B [bar] vs Flow [l/min]

Size 16

Size 25

Size 32

Size 40

Size 50

Note: For LIDA-80 and LIDA-100 the cover has round shape.
LIDB

<table>
<thead>
<tr>
<th>Covers</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>K</th>
<th>Port Pp-Dr</th>
<th>Port Z1-Z2</th>
<th>Seals</th>
<th>Fastening bolts (2)</th>
<th>Tightening torque (Nm)</th>
<th>Mass (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIDB-1</td>
<td>70</td>
<td>65</td>
<td>40</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-108</td>
<td>Nr. 4 M8x45</td>
<td>35</td>
<td>2.2</td>
</tr>
<tr>
<td>LIDB-2</td>
<td>85</td>
<td>85</td>
<td>40</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-108</td>
<td>Nr. 4 M12x45</td>
<td>125</td>
<td>2.6</td>
</tr>
<tr>
<td>LIDB-3</td>
<td>100</td>
<td>100</td>
<td>60</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-2043</td>
<td>Nr. 4 M16x55</td>
<td>300</td>
<td>3.1</td>
</tr>
<tr>
<td>LIDB-4</td>
<td>125</td>
<td>125</td>
<td>60</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3043</td>
<td>Nr. 4 M20x70</td>
<td>600</td>
<td>7</td>
</tr>
<tr>
<td>LIDB-5</td>
<td>140</td>
<td>140</td>
<td>70</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3043</td>
<td>Nr. 4 M20x80</td>
<td>600</td>
<td>10.1</td>
</tr>
<tr>
<td>LIDB-6</td>
<td>180</td>
<td>180</td>
<td>80</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>G 3/8</td>
<td>G 3/8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3050</td>
<td>Nr. 4 M30x60</td>
<td>2100</td>
<td>17.9</td>
</tr>
</tbody>
</table>

(1) The position of external attachments Pp, Dr, Z1 and Z2 are inverted each others respect to the showed sketch
(2) Hexagon socket head screw according to DIN 912 class 12.9

LIDR

<table>
<thead>
<tr>
<th>Covers</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>K</th>
<th>Port Pp-Dr</th>
<th>Port Z1-Z2</th>
<th>Seals</th>
<th>Fastening bolts (2)</th>
<th>Tightening torque (Nm)</th>
<th>Mass (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIDR-1</td>
<td>70</td>
<td>65</td>
<td>40</td>
<td>3.3</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-108</td>
<td>Nr. 4 M8x45</td>
<td>35</td>
<td>2.5</td>
</tr>
<tr>
<td>LIDR-2</td>
<td>85</td>
<td>85</td>
<td>40</td>
<td>8</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-108</td>
<td>Nr. 4 M12x45</td>
<td>125</td>
<td>2.9</td>
</tr>
<tr>
<td>LIDR-3</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-2043</td>
<td>Nr. 4 M16x55</td>
<td>300</td>
<td>3.4</td>
</tr>
<tr>
<td>LIDR-4</td>
<td>125</td>
<td>125</td>
<td>60</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3043</td>
<td>Nr. 4 M20x70</td>
<td>600</td>
<td>7.3</td>
</tr>
<tr>
<td>LIDR-5</td>
<td>140</td>
<td>140</td>
<td>70</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3043</td>
<td>Nr. 4 M20x80</td>
<td>600</td>
<td>10.4</td>
</tr>
<tr>
<td>LIDR-6</td>
<td>180</td>
<td>180</td>
<td>80</td>
<td>3.5</td>
<td>3.5</td>
<td>G 1/4</td>
<td>G 3/8</td>
<td>G 3/8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 OR-3050</td>
<td>Nr. 4 M30x60</td>
<td>2100</td>
<td>18.3</td>
</tr>
</tbody>
</table>

(1) The position of external attachments Pp, Dr, Z1 and Z2 are inverted each others respect to the showed sketch
(2) Hexagon socket head screw according to DIN 912 class 12.9