MECHANICAL EARTH A2/Q V0 MAIN CONNECTOR - CURRENT/Z NC V+

ELECTRICAL/P_INPUT+

P_MONITOR 2 ENABLE ELECTRICAL/P_INPUT+

INSTALLATION TOOLS ACCORDING TO VALVE MODEL - not included

- Fastening bolts
- Wrenches
- Screwdriver
- Main connectors
- ISO socket head screws
- ISO mechanical pilot relief
- ISO air blinding
- ISO fastening bolts
- ISO 7-PIN main connector

PROGRAMMING TOOLS - not included

- USB connection KIT
- DVI
- Bluetooth connection KIT

DOWNLOAD AREA

- E-SW-BASIC free basic software can be downloaded upon web registration at www.atos.com

OVERVIEW

MECHANICAL

- In case of first commissioning, before the valve installation the whole system must be correctly flushed to grant the required cleanliness level.
- During the flushing operation use on-off or by-pass valves in place of the proportional valve.
- Remove protection pad P1 located on the valve bottom face only immediately before installation.
- Check the presence and correct positioning of the seals on valve ports.
- Verify that valve mounting surface is clean and free from damages or burns.
- Lock the fastening bolts respecting below sequence and tightening torque according to valve model.

ELECTRICAL

HYDRAULICS

SOFTWARE

CONTACT US

www.atos.com | support@atos.com

NOTE:

- Use of above metallic connectors is strongly recommended in order to fulfill EMC requirements.
- **WARNING:**
 - Do not leave valves unattended during electrical or wiring operations.
 - Connect the valve to the system: the system pressure will not increase until the mechanical pressure limiter remains unloaded.
 - Air blinding: release 2 or 3 turns the air bleed screw V.
 - Mon. P: the valve air line pressure until the oil leaking from the V port is assuamed from air bubbles.
 - **WARNING:**
 - Do not to remove connectors caps.

RECOMMENDED LIFCY

- Shaded cable: 7 x 0.75 mm² max. 20 m
- 7 x 1.75 mm² max. 40 m

TECHNICAL DATA

- **Valve size ISO 4401:**
 - n°4 M5:20 class:12.9
- **Valve size ISO 6264:**
 - n°4 M20

TIGHTENING TORQUE

- 8 mm wrench: 10 mm
- 10 mm wrench: 125 Nm
- 12 mm wrench: 600 Nm

Mounting surface layout

<table>
<thead>
<tr>
<th>Mounting surface layout</th>
<th>RZMO-REB-P</th>
<th>RZGO-REB-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n°4 M5:20 class:12.9</td>
<td>8 mm wrench: 10 mm</td>
<td>125 Nm</td>
</tr>
<tr>
<td>n°4 M20</td>
<td>10 mm wrench: 125 Nm</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

Programmable pin-out

- Reference input: differential 0÷10VDC / 4÷20mA
- Common mode: input 24VDC
- Reference input: direct/analogue
- Common mode: (power supply 0VDC) (power supply 24VDC)

ELECTRICAL WIRING EXAMPLES

MAIN CONNECTOR - VOLTAGE

- **REFERENCE INPUT - DIFFERENTIAL**
- **REFERENCE INPUT - DIRECT/ANALOGUE**
- **REFERENCE INPUT - RELAY**

MAIN CONNECTOR - CURRENT

- **REFERENCE INPUT - DIFFERENTIAL**
- **REFERENCE INPUT - DIRECT/ANALOGUE**

MONITOR OUTPUT

<table>
<thead>
<tr>
<th>Monitor output</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

HYDRAULICS

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 8 mm wrench: 10 mm
 - 10 mm wrench: 125 Nm

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 10 mm wrench: 125 Nm

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

HYDRAULICS

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 8 mm wrench: 10 mm
 - 10 mm wrench: 125 Nm

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 10 mm wrench: 125 Nm

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

ELECTRICAL

- **MONITOR OUTPUT**
 - 7 PIN MAIN CONNECTOR
 - Width: 22 mm
 - Height: 11 mm
 - Weight: 0.5 kg

HYDRAULICS

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 8 mm wrench: 10 mm
 - 10 mm wrench: 125 Nm

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 10 mm wrench: 125 Nm

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

HYDRAULICS

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 8 mm wrench: 10 mm
 - 10 mm wrench: 125 Nm

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 10 mm wrench: 125 Nm

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>

HYDRAULICS

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 8 mm wrench: 10 mm
 - 10 mm wrench: 125 Nm

- **Mounting surface layout**
 - RZMO-REB-P | RZGO-REB-P |
 - n°4 M5:20 class:12.9
 - 10 mm wrench: 125 Nm

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>7 PIN MAIN CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>22 mm</td>
</tr>
<tr>
<td>Height</td>
<td>11 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
</tr>
</tbody>
</table>
STEP 4 SOFTWARE

SOFTWARE

0,6 Nm

STORE

5

CONNECTION

CONFIGURATION

BACK UP

Remark: proportional valves with integral electronics are factory preset with default parameter and ready to use after piping and electrical connections. **Play with parameters is optional, not mandatory!**

REMARK: For more info please refer to **STARTUP-BTH guide**

tightening torque, in order to preserve valve’s IP protection

Remark: Once removed the USB cable **E-C-SB-USB/M12**, apply the correct tightening torque, in order to preserve valve’s IP protection characteristics.

REMARK: proportional valves with integral electronics are factory preset with default parameter and ready to use after piping and electrical connections. **Play with parameters is optional, not mandatory!**

Bias setting: BIAS AND SCALE

- **Bias settings:** apply the input signal equal to 0 bar
- **relief valves:** increase the Bias until the pressure starts to increase, then lightly reduce the Bias just to bring back the pressure lightly over the minimum regulated value
- **reducing valves:** increase the Bias until is reached the minimum desired value of starting pressure

Scale setting: apply the max input signal; adjust the Scale to obtain the max regulated pressure

BIAS AND SCALE

Bias setting: apply the input signal equal to 0 bar

- **relief valves:** increase the Bias until the pressure starts to increase, then lightly reduce the Bias just to bring back the pressure lightly over the minimum regulated value
- **reducing valves:** increase the Bias until is reached the minimum desired value of starting pressure

Scale setting: apply the max input signal; adjust the Scale to obtain the max regulated pressure

Ramps

Ramps setting: select the required ramp configuration and adjust the ramp time to optimize the pressure response according to the system characteristics

- **No Ramp:** no ramps selected
- **Single Ramp:** setup Ramp 1
- **Double Ramp:** setup Ramp 1 and 2

Pressure Instability or vibration

- **Presence of air in the solenoid:** perform air bleeding procedure – see **STEP 3.1**
- **Valve vibration or noise:** check eventual anomalies in the hydraulic circuit as the presence of air

1. Store the valve is OFF LINE, check connection procedure – see **STEP 4, section 4.1**

Software parameters modifications have no effect on the valve

Software parameters modifications have no effect on the valve

Software parameters modifications have no effect on the valve

TROUBLESHOOTING

Value vibration or noise

- **Presence of air in the solenoid:** perform air bleeding procedure – see **STEP 3.1**

Value does not follow the reference signal

- **Value is powered off:** verify presence of 24 Vdc power supply
- **Value is disabled:** verify presence of 24 Vdc on enable pin - only for /Q and /Z options
- **Value is OFF LINE:** check connection procedure – see **STEP 4, section 4.1**

Pressure instability or vibration

- **Solenoid power:** press Voltage **Standard button** to automatically set the analog input signal to voltage
- **Supply the max input signal:** press Voltage **Standard button**
- **Supply the max input signal:** press Voltage **Standard button**
- **Supply the max input signal:** press Voltage **Standard button**
- **Supply the max input signal:** press Voltage **Standard button**

Software parameters modifications have no effect on the valve

Software parameters modifications have no effect on the valve

Software parameters modifications have no effect on the valve