

Digital proportional 2-way cartridges high performance

2

L4

piloted, with on-board driver and two LVDT transducers

LIQZP-LEB, LIQZP-LES

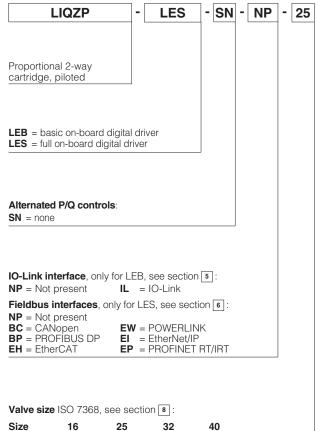
Digital high performance 2-way proportional cartridges specifically designed for high speed closed loop controls. They are equipped with two LVDT position transducers for best dynamics in not compensated flow regulations. The cartridge execution for blocks installation grants high flow capabilities and minimized pressure drops.

LEB basic execution with analog reference signal or IO-Link interface for valve settings, reference signals and real-time diagnostics.

LES full execution which includes also optional fieldbus interfaces for valve settings, reference signals and real-time diagnostics.

For both **LEB** and **LES**, USB port is always present for valve settings via Atos PC software.

Seals material, see section 10:


= NBR

BT = NBR low temperature

PE = FKM

Size: **16** ÷ **125** - ISO 7368 Max flow: **600** ÷ **22000 l/min** Max pressure: **420 bar**

1 MODEL CODE

Electronics options (1), not available for LEB-SN-IL:

F = fault signal
I = current reference input and monitor 4 ÷ 20 mA
Q = enable signal
Z = double power supply (only for LES), enable, fault and monitor signals - 12 pin connector

Poppet type, regulating characteristics:

L4 = linear

Configuration:
2 = 2 way

functional symbol

simplified symbol

Series

number

500

63

3000

800

80

4500

1200

100

7200

125

9350

250

50

2000

Nominal flow (I/min) at Δp 5 bar

I/min

Size

I/min

⁽¹⁾ Possible combined options: /FI, /IQ, /IZ

2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FS900** and in the user manuals included in the E-SW-* programming software.

WARNING

To avoid overheating and possible damage of the electronic driver, the valves must be never energized without hydraulic supply to the pilot stage. In case of prolonged pauses of the valve operation during the machine cycle, it is always advisable to disable the driver (option /Q or /Z). A safety fuse 2,5 A installed on 24VDC power supply of each valve is always recommended, see also power supply note at sections [15].

USB or Bluetooth connection

· C

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapte

E-A-SB-USB/OPT isolator

LES

WARNING

The loss of the pilot pressure causes the undefined position of the main poppet.

The sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet.

This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

3 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB/Bluetooth to the digital driver. For fieldbus/IO-Link versions, the software permits valve's parameterization through USB/Bluetooth also if the driver is connected to the central machine unit via fieldbus/IO-Link.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) IL (IO-Link) PS (Serial) IR (Infrared)

E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

E-SW-*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

<u>∠..</u>

WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

4 SMART TUNING

Smart tuning allows to adjust the cartridge dynamic response in order to match different performance requirements.

The cartridge is provided with 3 factory settings for the spool control:

- dynamic fast response time and high sensitivity for best dynamic performances. Default factory setting for cartridges
- balanced average response time and sensitivity suitable for major applications
- smooth attenuated response time and sensitivity to improve control stability in critical applications or in environments with electrical disturbances

Smart tuning setting can be switched from Dynamic (default) to Balanced or Smooth via software or fieldbus; if requested, performances can be further customized directly tuning each single control parameter. For details consult related manuals E-MAN-RI-* and Quickstart, see section [23].

For Response time and Bode diagrams see section 11.

5 IO-LINK - only for LEB, see tech. table GS520

IO-Link allows low cost digital communication between the valve and machine central unit. The valve is directly connected to a port of an IO-Link master (point-to-point connection) via low-cost unshielded cables for digital reference, diagnostic and settings. The IO-Link master works as a hub exchanging this information with the machine central unit via fieldbus.

6 FIELDBUS - only for LES, see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These execution allow to operate the valves through fieldbus or analog signals available on the main connector.

7 GENERAL CHARACTERISTICS

Assembly position	Any position
Subplate surface finishing to ISO 4401	Acceptable roughness index: Ra ≤0,8, recommended Ra 0,4 – Flatness ratio 0,01/100
MTTFd valves according to EN ISO 13849	75 years, for futher details see technical table P007
Ambient temperature range	Standard = -20° C \div $+60^{\circ}$ C /PE option = -20° C \div $+60^{\circ}$ C /BT option = -40° C \div $+60^{\circ}$ C
Storage temperature range	Standard = -20° C \div +70°C
Surface protection	Zinc coating with black passivation, galvanic treatment (driver housing)
Corrosion resistance	Salt spray test (EN ISO 9227) > 200 h
Vibration resistance	See technical table G004
Compliance	CE according to EMC directive 2014/30/EU (Immunity: EN 61000-6-2; Emission: EN 61000-6-3) RoHS Directive 2011/65/EU as last update by 2015/863/EU REACH Regulation (EC) n°1907/2006

8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

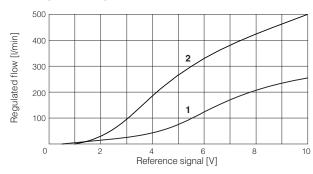
Size	16	25	32	40	50	63	80	100	125
Nominal flow Δp A-B [I/min]									
$\Delta p = 5 \text{ bar}$	250	500	800	1200	2000	3000	4500	7200	9350
$\Delta p = 10 \text{ bar}$	350	700	1100	1700	2800	4250	6350	10200	13200
Max permissible flow	600	1200	1800	2500	4000	6000	10000	16000	22000
Max pressure [bar]			Ports	A, $B = 420$) X =	350 Y	∕ ≤ 10		
Nominal flow of pilot valve at $\Delta p = 70$ bar [I/min]	4	8	20	40	40	100	100	100	100
Leakage of pilot valve at P = 100 bar [I/min]	0,2	0,2	0,3	0,7	0,7	1	1	1	1
Piloting pressure [bar]		min: 40%	of system	pressure	max 35	50 recor	nmended	140 ÷ 160	
Piloting volume [cm³]	1,6	2,2	7,0	9,4	17,7	32,5	39,5	49,5	124,9
Piloting flow (1) [I/min]	4	5,3	14	19	35,5	56	60	60	88,1
Response time 0 ÷ 100% step signal (2) [ms]	24	25	28	30	30	35	40	50	90
Hysteresis [% of the max regulation]					≤ 0,1				
Repeatability [% of the max regulation]					± 0,1				
Thermal drift			zero p	point displa	acement <	1% at ∆T	= 40°C		

⁽¹⁾ With step reference input $0 \div 100\%$

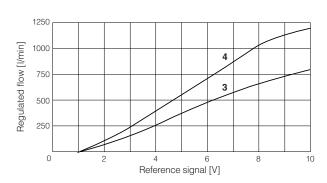
9 ELECTRICAL CHARACTERISTICS

Power supplies	Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)					
Max power consumption	50 W	50 W				
Max. solenoid current	2,6 A					
Coil resistance R at 20°C	3 ÷ 3,3 Ω					
Analog input signals	Voltage: range ±10 Current: range ±20	VDC (24 VMAX toller) mA	/ 1 1	pedance: Ri > 50 k Ω pedance: Ri = 500 Ω		
Monitor outputs	Output range:		$@$ max 5 mA $@$ max 500 Ω load res	sistance		
Enable input	Range: 0 ÷ 5 VDC (O	FF state), 9 ÷ 24 VDC (ON state), 5 ÷ 9 VDC	(not accepted); Input in	mpedance: Ri > 10 kΩ	
Fault output		24 VDC (ON state > [oltage not allowed (e.		OFF state < 1 V) @ m ads)	nax 50 mA;	
Alarms		cted/short circuit, ca cer malfunctions, alar		O ,	ver/under temperature,	
Insulation class	' '	occuring surface tem ards ISO 13732-1 and	· ·	,		
Protection degree to DIN EN60529	IP66 / IP67 with mat	ing connectors				
Duty factor	Continuous rating (E	D=100%)				
Tropicalization	Tropical coating on	electronics PCB				
Additional characteristics				diagnostic (only for Linst reverse polarity of		
Communication interface	USB Atos ASCII coding	IO-Link Interface and System Specification 1.1.3	CANopen	PROFIBUS DP EN50170-2/IEC61158	EtherCAT POWERLINK EtherNet/IP PROFINET IO RT/IRT	
	0	SDCI				
Communication physical layer	not insulated USB 2.0+USB OTG		optical insulated CAN ISO11898	optical insulated RS485	Fast Ethernet, insulated 100 Base TX	
Recommended wiring cable	mmended wiring cable LiYCY shielded cables, see section 19					

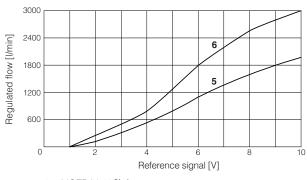
Note: a maximum time of 800 ms (1000 ms just for size 125), depending on communication type, has to be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

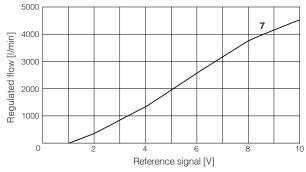

⁽²⁾ With pilot pressure = 140 bar, see datailed diagrams in section 11.2

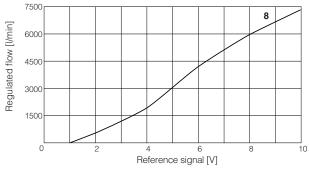
10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

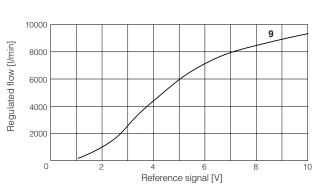

Seals, recommended fluid	I temperature	NBR seals (standard) = -20° C \div +60°C, with HFC hydraulic fluids = -20° C \div +50°C FKM seals (/PE option) = -20° C \div +80°C NBR low temp. seals (/BT option) = -40° C \div +60°C, with HFC hydraulic fluids = -20° C \div +50°C				
Recommended viscosity		20÷100 mm²/s - max allowed ra	20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s			
Max fluid	normal operation	ISO4406 class 18/16/13 NAS1	see also filter section at			
contamination level	longer life	ISO4406 class 16/14/11 NAS1	www.atos.com or KTF catalog			
Hydraulic fluid		Suitable seals type	Classification	Ref. Standard		
Mineral oils		NBR, FKM, NBR low temp.	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524		
Flame resistant without wa	iter	FKM	HFDU, HFDR	ISO 12922		
Flame resistant with water		NBR, NBR low temp.	HFC	130 12922		

11 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

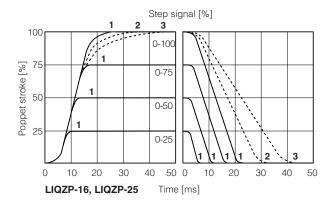

11.1 Regulation diagrams (values measured at Δp 5 bar)

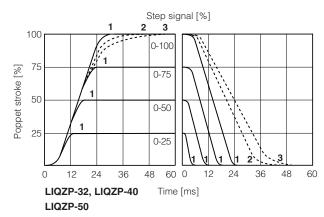

1 = LIQZP-L*-162L4 **2** = LIQZP-L*-252L4

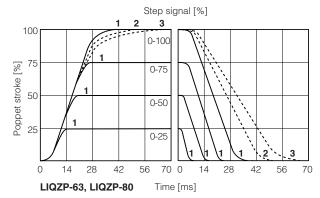

3 = LIQZP-L*-322L4 **4** = LIQZP-L*-402L4

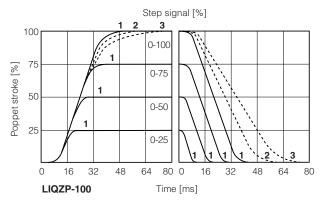

5 = LIQZP-L*-502L4 **6** = LIQZP-L*-632L4

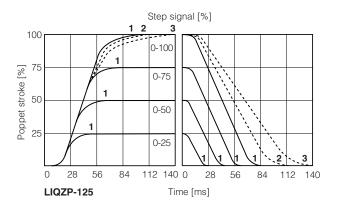
7 = LIQZP-L*-802L4


 $8 = LIQZP-L^*-1002L4$




9 = LIQZP-L*-1252L4

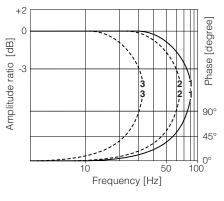

11.2 Response time

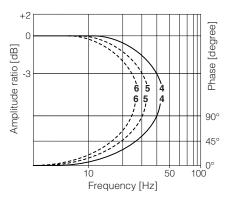

The response times in below diagrams are measured at different steps of the reference input signal. They have to be considered as average values.

¹ = dynamic **2** = balanced (*) **3** = smooth (*)

^(*) Response time is represented only for 0-100% step; for intermediate steps, the response time increment of presets 2 (balanced) and 3 (smooth) with respect to the preset 1 (dynamic) is proportional to the step amplitude of the reference input signal

11.3 Bode diagrams LIQZP-L*-162L4


Stated at nominal hydraulic conditions

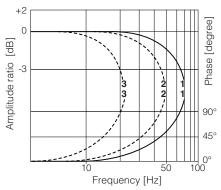

50% ± 5% nominal stroke:

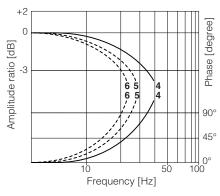
- 1 = dynamic
- 2 = balanced
- 3 = smooth

10% ↔ 90% nominal stroke:

- 4 = dynamic
- **5** = balanced
- 6 = smooth

11.4 Bode diagrams LIQZP-L*-252L4


Stated at nominal hydraulic conditions

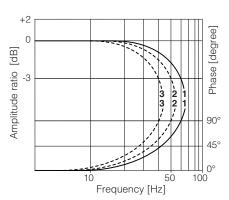

50% ± 5% nominal stroke:

- 1 = dvnamic
- 2 = balanced
- 3 = smooth

10% ↔ 90% nominal stroke:

- 4 = dynamic
- 5 = balanced
- **6** = smooth

11.5 Bode diagrams LIQZP-L*-322L4


Stated at nominal hydraulic conditions

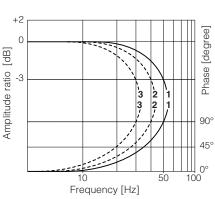
50% ± 5% nominal stroke:

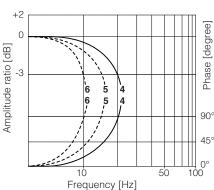
- 1 = dynamic
- 2 = balanced
- 3 = smooth

10% ↔ 90% nominal stroke:

- 4 = dynamic
- 5 = balanced
- 6 = smooth

11.6 Bode diagrams LIQZP-L*-402L4


Stated at nominal hydraulic conditions

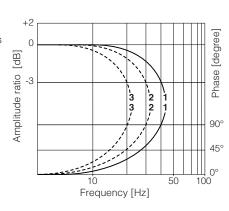

50% ±5% nominal stroke:

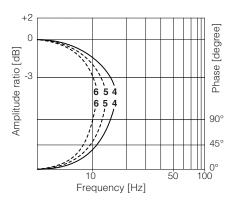
- 1 = dynamic
- 2 = balanced
- 3 = smooth

10% ↔ 90% nominal stroke:

- **4** = dvnamic
- **5** = balanced
- **6** = smooth

11.7 Bode diagrams LIQZP-L*-502L4


Stated at nominal hydraulic conditions

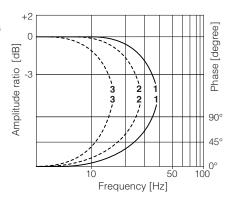

50% ± 5% nominal stroke:

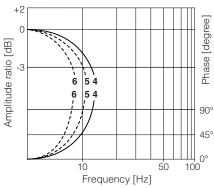
- 1 = dynamic
- 2 = balanced
- **3** = smooth

10% ↔ 90% nominal stroke:

- 4 = dynamic
- 5 = balanced
- **6** = smooth

11.8 Bode diagrams LIQZP-L*-632L4


Stated at nominal hydraulic conditions

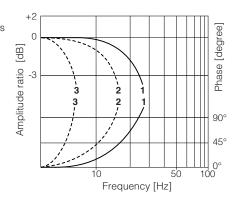

50% ± 5% nominal stroke:

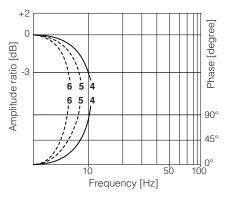
- 1 = dynamic
- 2 = balanced
- $\mathbf{3} = \text{smooth}$

10% ↔ 90% nominal stroke:

- 4 = dynamic
- **5** = balanced
- 6 = smooth

11.9 Bode diagrams LIQZP-L*-802L4


Stated at nominal hydraulic conditions

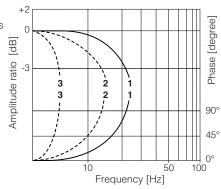

50% ± 5% nominal stroke:

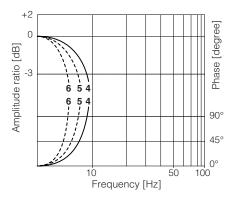
- 1 = dynamic
- 2 = balanced
- 3 = smooth

10% ↔ 90% nominal stroke:

- 4 = dynamic
- 5 = balanced
- 6 = smooth

11.10 Bode diagrams LIQZP-L*-1002L4


Stated at nominal hydraulic conditions

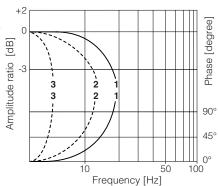

50% ± 5% nominal stroke:

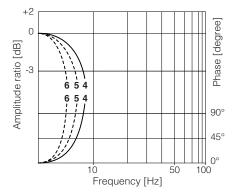
- 1 = dynamic
- 2 = balanced
- 3 = smooth

 $10\% \leftrightarrow 90\%$ nominal stroke:

- 4 = dynamic
- 5 = balanced
- $\mathbf{6} = \text{smooth}$

11.11 Bode diagrams LIQZP-L*-1252L4


Stated at nominal hydraulic conditions


50% ± 5% nominal stroke:

- 1 = dynamic
- 2 = balanced
- 3 = smooth

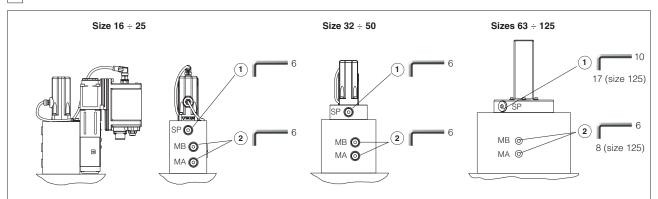
10% ↔ 90% nominal stroke:

- 4 = dynamic
- 5 = balanced
- 6 = smooth

12 ELECTRONICS OPTIONS - not available for LEB-SN-IL

- **F** = This option permits to monitor the eventual fault condition of the driver, as for example the solenoid short circuit/not connected, reference signal cable broken for option /I, poppet position transducer broken, etc. see 15.7 for signal specifications.
- I = This option provides 4 ÷ 20 mA current reference and monitor signals, instead of the standard 0 ÷ 10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- Q = This option permits to inhibit the valve function without removing the power supply to the driver. Upon disable command the current to the solenoid is zeroed and the valve's poppet moves to rest position.
 The option /Q is suggested for all cases where the valve has to be frequently inhibited during the machine cycle see 15.5 for signal specifications.
- **Z** = This option provides, on the 12 pin main connector, the following additional features:

Fault output signal - see above option /F Enable input signal - see above option /Q


Repeat enable output signal - only for LEB-SN-IL (see 15.6)

Power supply for driver's logics and communication - only for LES (see 15.2)

13 POSSIBLE COMBINED OPTIONS

/FI, /IQ, /IZ

14 AIR BLEEDING

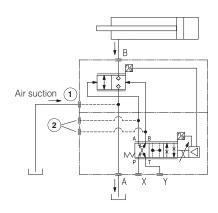
1 Air suction port:

 N° 1 plug G1/4" for sizes 16 to 50

N° 1 plug G1/2" for sizes 63 to 100

N° 1 plug G1" for size 125

To be used only in case port A is connected to tank and subjected to negative pressure, consult our technical office.


2 Air bleeding:

 N° 2 plugs G1/4" for size 16 to 100

N° 2 plugs G3/8" for sizes 125

At the machine commissioning it is advisable to bleed the air from piloting chambers, by loosening the 2 plugs shown in the picture.

Operate the valve for few seconds at low pressure and then lock the plugs.

15 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, ISO 4413).

For **LEB-SN-IL** signals see section [16]

15.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μ F/40 V capacitance to three phase rectifiers. In case of separate power supply see 15.2.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

15.2 Power supply for driver's logic and communication (VL+ and VL0) - only for /Z option

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 uF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 9 and 10, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

15.3 Flow reference input signal (Q_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

15.4 Flow monitor output signal (Q_MONITOR) - not for /F

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

15.5 Enable input signal (ENABLE) - not for standard and /F

To enable the driver, supply a 24 VDC on pin 3 (pin C): Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition does not comply with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

15.6 Repeat enable output signal (R_ENABLE) - only for LEB-SN-NP with /Z option

Repeat enable is used as output repeater signal of enable input signal (see 15.5).

15.7 Fault output signal (FAULT) - not for standard and /Q

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

16 IO-LINK SIGNALS SPECIFICATIONS - only for LEB-SN-IL

16.1 Power supply for IO-Link communication (L+ and L-)

The IO-Link master provides dedicated 24 VDC power supply for IO-Link communication.

Maximum power consumption: 2 W

Internal electrical isolation of power L+, L- from P24, N24

16.2 Power supplyfor drive logic and valve regulation (P24 and N24)

The IO-Link master provides dedicated 24 VDC power supply for valve regulation, logics and diagnostics.

Maximum power consumption: 50 W

Internal electrical isolation of power P24, N24 from L+, L-

16.3 IO-Link data line (C/Q)

C/Q signal is used to establish communication between IO-Link master and valve.

17 ELECTRONIC CONNECTIONS AND LEDS

17.1 Main connector signals - 7 pin - standard, /F and /Q options (A1)

PIN	Standard	/Q	/F	TECHNICAL SPECIFICATIONS	NOTES
А	V+			Power supply 24 Vpc	Input - power supply
В	V0			Power supply 0 Vpc	Gnd - power supply
	AGND		AGND	Analog ground	Gnd - analog signal
		ENABLE		Enable (24 VDC) or disable (0 VDC) the valve, referred to V0	Input - on/off signal
D	Q_INPUT+			Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
				Defaults are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
Е	INPUT-			Negative reference input signal for Q_INPUT+	Input - analog signal
	Q_MONITOR	referred to:		Flow monitor output signal: ±10 Vpc / ±20 mA maximum range	Output - analog signal
F	AGND	V0		Defaults are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /l option	Software selectable
			FAULT	Fault (0 Vbc) or normal working (24 Vbc)	Output - on/off signal
G	EARTH			Internally connected to the driver housing	

17.2 Main connector signal - 12 pin - /Z option (A2)

PIN	LEB /Z	LES /Z	TECHNICAL SPECIFICATIONS	NOTES
	V+		Power supply 24 Vpc	Input - power supply
1	V0		Power supply 0 Vpc	Gnd - power supply
2	ENABLE re	ferred to:	Enable (24 Vpc) or disable (0 Vpc) the valve	Input - on/off signal
4	Q INPUT+	•	Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
4	Q_INFUI+		Defaults are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
5	INPUT-		Negative reference input signal for Q_INPUT+	Input - analog signal
6	Q_MONITOR	referred to:	Flow monitor output signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
0	AGND	VL0	Defaults are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /l option	Software selectable
7	AGND		Analog ground	Output - analog signal
'		NC	Do not connect	Gnd - analog signal
8	R_ENABLE		Repeat enable, output repeter signal of enable input, referred to V0	Output - on/off signal
0		NC	Do not connect	
9	NC		Do not connect	
9		VL+	Power supply 24 VDc for driver's logic and communication	Input - power supply
10	NC		Do not connect	
10		VL0	Power supply 0 Vpc for driver's logic and communication	Gnd - power supply
11 PE	FAULT refe V0	rred to:	Fault (0 Vbc) or normal working (24 Vbc)	Output - on/off signal
	EARTH		Internally connected to the driver housing	

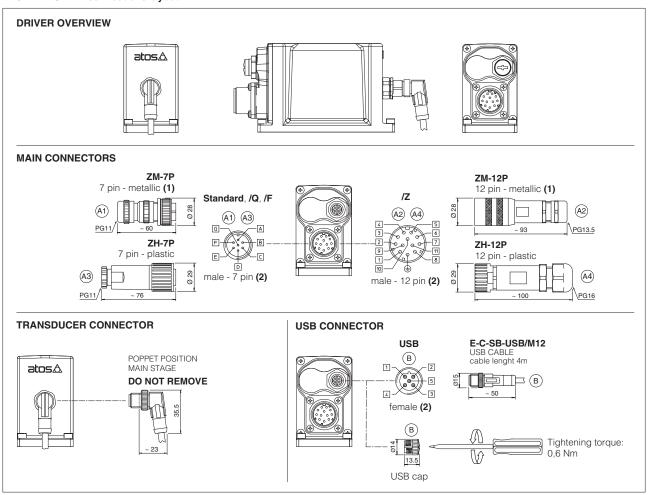
 $\textbf{Note:} \ \text{do not disconnect VL0 before VL+} \ \text{when the driver} \ \text{is connected to PC USB} \ \text{port}$

17.3 IO-Link connector signals - M12 - 5 pin - Coding A, port class B $\stackrel{\frown}{A}$ only for LEB-SN-IL

PIN	SIGNAL	TECHNICAL SPECIFICATIONS	NOTES
1	L+	Power supply 24 Vpc for IO-Link communication	Input - power supply
2	P24	Power supply 24 Vpc for valve regulation, logics and diagnostics	
3	L-	Power supply 0 Vpc for IO-Link communication Gnd - power su	
4	C/Q IO-Link data line Input / O		Input / Output - signal
5	N24	Power supply 0 Vpc for valve regulation, logics and diagnostics Gnd - power	

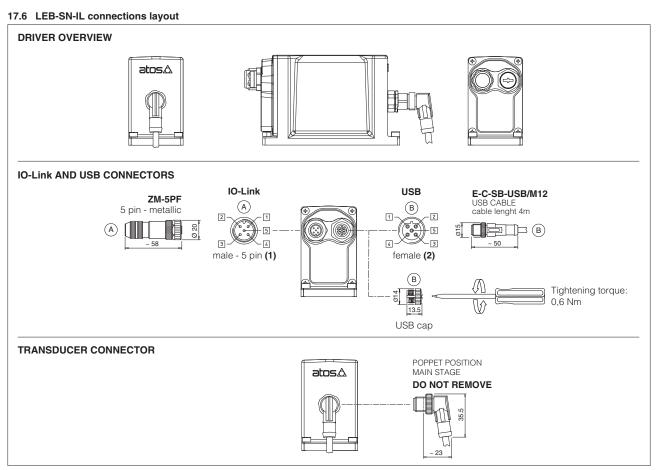
Note: L+, L- and P24, N24 are electrically isolated

17.4 Communications connectors $\ensuremath{\,\mathbb{B}}$ - $\ensuremath{\,\mathbb{C}}$

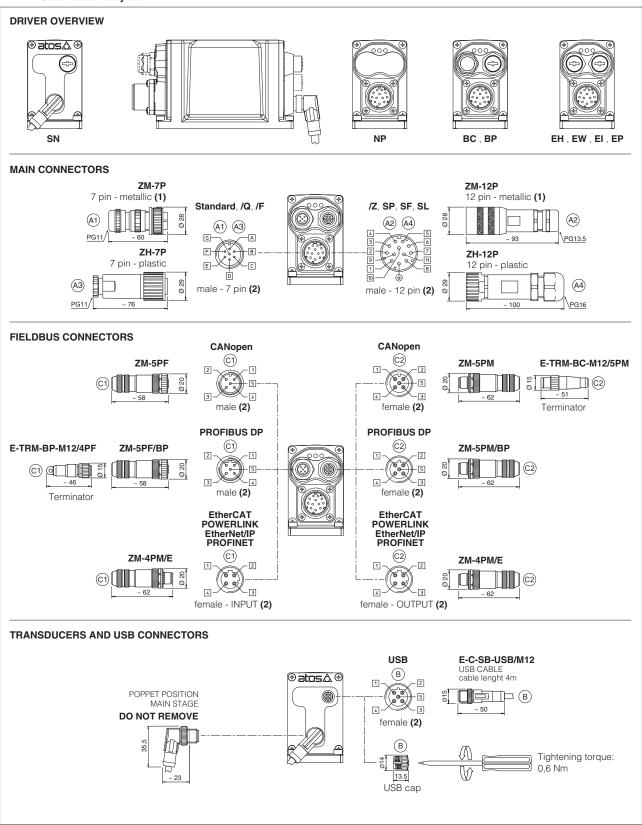

	B USB connector - M12 - 5 pin always present				
PIN	SIGNAL	TECHNICAL SPECIFICATION (1)			
1	+5V_USB	Power supply			
2	ID	Identification			
3	GND_USB	Signal zero data line			
4	D-	Data line -			
5	D+	Data line +			

©1) ((i) (ii) BP fieldbus execution, connector - M12 - 5 pin				
PIN	SIGNAL	TECHNICAL SPECIFICATION (1)			
1	+5V	Termination supply signal			
2	LINE-A	Bus line (high)			
3	DGND	Data line and termination signal zero			
4	LINE-B	Bus line (low)			
5	SHIELD				

(c1) (© BC fieldbus execution, connector - M12 - 5 pin					
PIN	SIGNAL	TECHNICAL SPECIFICATION (1)				
1	CAN_SHLD	Shield				
2	not used	©1 - ©2 pass-through connection (2)				
3	CAN_GND	Signal zero data line				
4	CAN_H	Bus line (high)				
5	CAN_L	Bus line (low)				


©1) (©1 ©2 EH, EW, EI, EP fieldbus execution, connector - M12 - 4 pin			
PIN	SIGNAL	TECHNICAL SPECIFICATION (1)		
1	TX+	Transmitter		
2	RX+	Receiver		
3	TX-	Transmitter		
4	RX-	Receiver		
	SHIELD			

17.5 LEB-SN-NP connections layout



(1) Use of metallic connectors is strongly recommended in order to fulfill EMC requirements

(2) Pin layout always referred to driver's view

17.7 LES connections layout

(1) Use of metallic connectors is strongly recommended in order to fulfill EMC requirements

(2) Pin layout always referred to driver's view

17.8 Diagnostic LEDs - only for LES

Three leds show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.

FIELDBUS	NP Not Present	BC CANopen	BP PROFIBUS DP	EH EtherCAT	EW POWERLINK	EI EtherNet/IP	EP PROFINET	L1 L2 L3
L1	VALVE STATUS							
L2	NE	TWORK STAT	US	NETWORK STATUS			0	
L3	SC	LENOID STAT	US	LINK/ACT				

18 IN / OUT FIELDBUS COMMUNICATION CONNECTORS

Two fieldbus communication connectors are always available for digital drivers executions BC, BP, EH, EW, EI, EP. This features allows considerable technical advantages in terms of installation simplicity, wirings reduction and also avoid the usage expensive T-connectors.

For BC and BP executions the fieldbus connectors have an internal pass-through connection and can be used like end point of the fieldbus network, using an external terminator (see tech table **GS500**).

For EH, EW, EI and EP executions the external terminators are not required: each connector is internally terminated.

BC and BP pass-through connection fieldbus network fieldbus network fieldbus interface

19 CONNECTORS CHARACTERISTICS - to be ordered separately

19.1 Main connectors - 7 pin

CONNECTOR TYPE	POWER SUPPLY AND SIGNALS	POWER SUPPLY AND SIGNALS		
CODE	A1) ZM-7P	(A3) ZH-7P		
Туре	7pin female straight circular	7pin female straight circular		
Standard	According to MIL-C-5015	According to MIL-C-5015		
Material	Metallic	Plastic reinforced with fiber glass		
Cable gland	PG11	PG11		
Recommended cable	LiYCY 7 x 0,75 mm ² max 20 m (logic and power supply) or LiYCY 7 x 1 mm ² max 40 m (logic and power supply)	LiYCY 7 x 0,75 mm ² max 20 m (logic and power supply) or LiYCY 7 x 1 mm ² max 40 m (logic and power supply)		
Conductor size	up to 1 mm ² - available for 7 wires	up to 1 mm2- available for 7 wires		
Connection type	to solder	to solder		
Protection (EN 60529)	IP 67	IP 67		

19.2 Main connectors - 12 pin

CONNECTOR TYPE	POWER SUPPLY AND SIGNALS	POWER SUPPLY AND SIGNALS
CODE	(A2) ZM-12P	(A4) ZH-12P
Туре	12pin female straight circular	12pin female straight circular
Standard	DIN 43651	DIN 43651
Material	Metallic	Plastic reinforced with fiber glass
Cable gland	PG13,5	PG16
Recommended cable	LiYCY 12 x 0,75 mm ² max 20 m (logic and power supply)	LiYCY 10 x 0,14mm² max 40 m (logic) LiYY 3 x 1mm² max 40 m (power supply)
Conductor size	0,5 mm² to 1,5 mm² - available for 12 wires	0,14 mm² to 0,5 mm² - available for 9 wires 0,5 mm² to 1,5 mm² - available for 3 wires
Connection type	to crimp	to crimp
Protection (EN 60529)	IP 67	IP 67

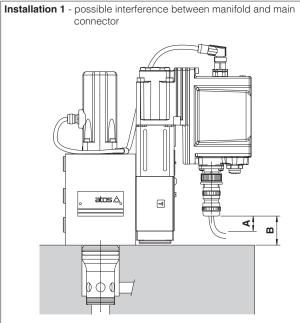
19.3 IO-Link connector - only for LEB-SN-IL

CONNECTOR TYPE	IL IO-Link
CODE	(A) ZM-5PF
Туре	5pin female straight circular
Standard	M12 coding A – IEC 61076-2-101
Material	Metallic
Cable gland Pressure nut - cable diameter 6÷8 mm	
Recommended cable	5 x 0,75 mm² max 20 m
Connection type	screw terminal
Protection (EN 60529)	IP 67

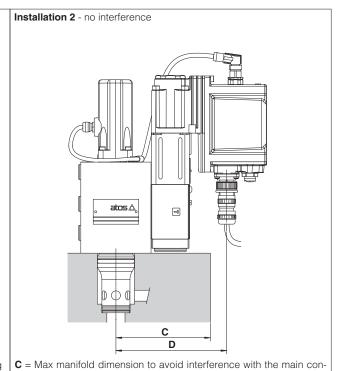
19.4 Fieldbus communication connectors

CONNECTOR TYPE	OR TYPE BC CANopen (1)		BP PROFI	BUS DP (1)	EH EtherCAT, EW POWERLINK, EI EtherNet/IP, EP PROFINET (2)		
CODE	©1) ZM-5PF	©2 ZM-5PM	©1 ZM-5PF/BP ©2 ZM-5PM/BP		C1 C2	ZM-4PM/E	
Type	5 pin female	5 pin male	5 pin female	5 pin male		4 pin male	
Туре	straight circular straight circular straight		straight circular		straight circular		
Standard	M12 coding A –	IEC 61076-2-101	M12 coding B – IEC 61076-2-101		M12 coding D – IEC 61076-2-101		
Material	Me	tallic	Metallic			Metallic	
Cable gland	Pressure nut - cab	le diameter 6÷8 mm	Pressure nut - cable diameter 6÷8 mm		Pressure nut - cable diameter 4÷8 mr		
Cable	CANbus Stand	dard (DR 303-1)	PROFIBUS DP Standard		Ethernet standard CAT-5		
Connection type	screw	terminal	screw terminal		terminal block		
Protection (EN 60529)	IF	67	IF	67		IP 67	

(1) E-TRM-** terminators can be ordered separately - see tech table GS500


(2) Internally terminated

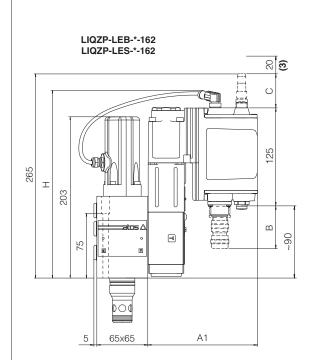
20 FASTENING BOLTS AND VALVE MASS

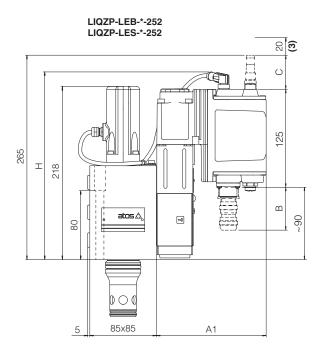

Type	Size	Fastening bolts (1)	Mass [kg]
	16	4 socket head screws M8x90 class 12.9 Tightening torque = 35 Nm	5,6
	25	4 socket head screws M12x100 class 12.9 Tightening torque = 125 Nm	8,2
	32	4 socket head screws M16x60 class 12.9 Tightening torque = 300 Nm	10,9
	40	4 socket head screws M20x70 class 12.9 Tightening torque = 600 Nm	16,7
LIQZP	50	4 socket head screws M20x80 class 12.9 Tightening torque = 600 Nm	23,9
	63	4 socket head screws M30x120 class 12.9 Tightening torque = 2100 Nm	44,0
	80	8 socket head screws M24x80 class 12.9 Tightening torque = 1000 Nm	71,6
	100	8 socket head screws M30x120 class 12.9 Tightening torque = 2100 Nm	122,5
	125	8 socket head screws M36x260 class 12.9 Tightening torque = 3600 Nm	375

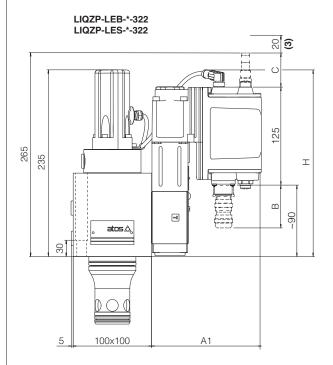
(1) Fastening bolts supplied with the valve

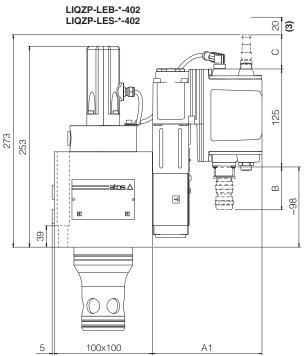
21 MAIN CONNECTORS INSTALLATION DIMENSIONS

- **A** = 15 mm space to remove the 7 or 12 pin main connectors
- B = Clearance between main connector to valve's mounting surface. See the below table to verify eventual interferences, depending to the valve size and connector type

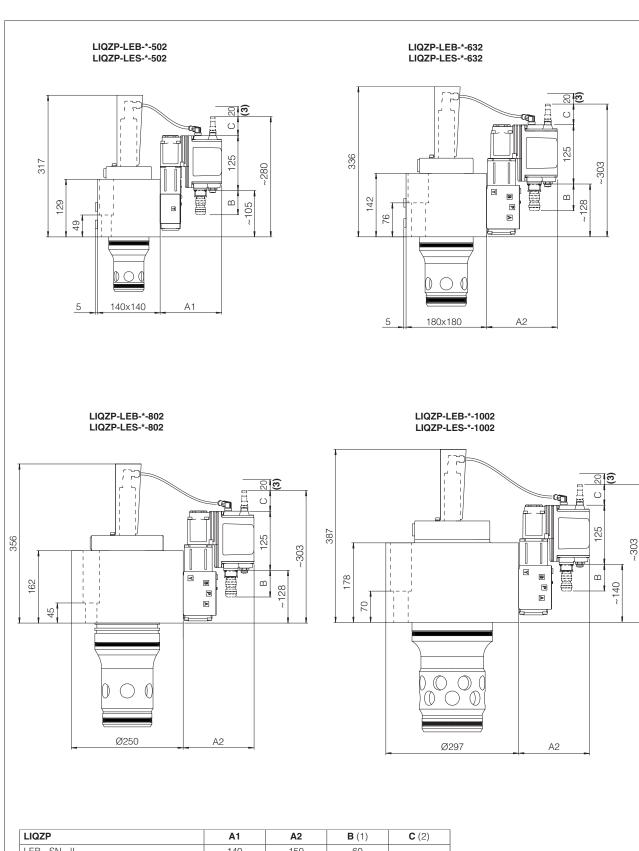


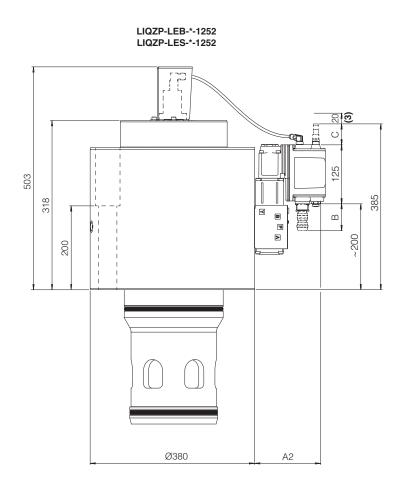

Reference	Main connector		Valve size							
dimension	code	16	25	32	40	50	63	80	100	125
	ZM-7P	32	32	32	40	45	68	68	80	142
В	ZH-7P	(1)	(1)	(1)	(1)	29	52	52	64	125
ь	ZM-12P	(1)	(1)	(1)	(1)	(1)	35	35	47	108
	ZH-12P	(1)	(1)	(1)	(1)	(1)	(1)	(2)	40	101
C (max)	-	104	114	121	134	141	172	202	229	271
D	-	124	134	141	154	161	192	222	249	291


nector, see below table


Above dimenions refer to the main connector fully screwed to driver's connector. The space **A** = 15 mm to remove the connector must be considered **(1)** The connector installation can be performed only if the valve's driver protrudes from the edge of the relevant mounting manifold as rapresented in above "Installation 2"

(2) The connector installation may be critic, depending to the cable size and bending radius




LIQZP	A1	B (1)	C (2)	Н
LEB - SN - IL	140	60	-	242
LEB - SN - NP	140	60	-	242
LES - SN - NP, BC, BP, EH	140	60	50	235
LES - SN - EW, EI, EP	155	60	50	235

- (1) The indicated dimension refers to the main connector ZM-7P. See section 21 for main connectors installation dimensions
- (2) The indicated dimension refers to the longer main connector. For dimensions of all connectors, see sections 17.5, 17.6 and 17.7
- (3) Space required for connector cable and for connector removal

LIQZP	A1	A2	B (1)	C (2)
LEB - SN - IL	140	150	60	-
LEB - SN - NP	140	150	60	-
LES - SN - NP, BC, BP, EH	140	150	60	50
LES - SN - EW, EI, EP	155	165	60	50

- (1) The indicated dimension refers to the main connector ZM-7P. See section 21 for main connectors installation dimensions
- (2) The indicated dimension refers to the longer main connector. For dimensions of all connectors, see sections 17.5, 17.6 and 17.7
- (3) Space required for connector cable and for connector removal

LIQZP	A2	B (1)	C (2)
LEB - SN - IL	140	60	-
LEB - SN - NP	140	60	-
LES - SN - NP, BC, BP, EH	140	60	50
LES - SN - EW, EI, EP	155	60	50

- (1) The indicated dimension refers to the main connector ZM-7P. See section [21] for main connectors installation dimensions
- (2) The indicated dimension refers to the longer main connector. For dimensions of all connectors, see sections 17.5, 17.6 and 17.7
- (3) Space required for connector cable and for connector removal

Note: for mounting surface and cavity dimensions, see table P006

23 RELATED DOCUMENTATION

FS001 FS900	Basics for digital electrohydraulics Operating and maintenance information for proportional valves	P006 QB340			
GS500 GS510 GS520 K800	Programming tools Fieldbus IO-Link interface Electric and electronic connectors	QF340 E-MAN- E-MAN-	RI-LEB	art for LES valves commissioning TEB/LEB user manual TES/LES user manual	