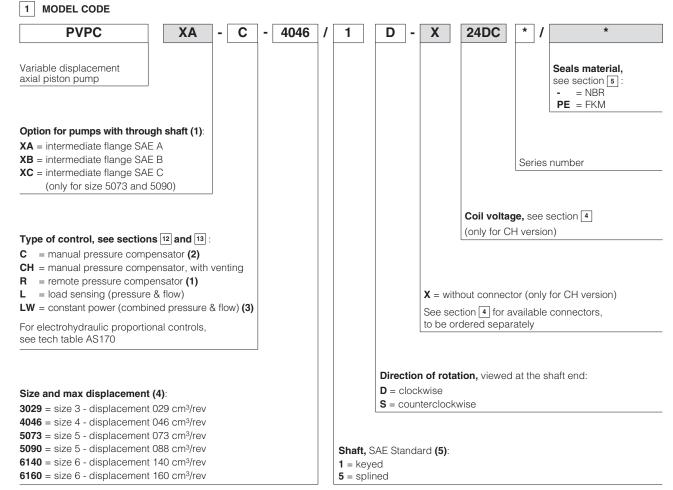


Axial piston pumps

variable displacement, mechanical controls

PVPC


Variable displacement axial piston pumps with swash plate design suited for high pressure open circuits.

They are characterized by low noise emission, short response time and flexible operation thanks to the wilde range of mechanical controls, see section [12] and [13].

For PVPC pumps with electrohydraulic proportional controls, see tech table AS170.

SAE J744 mounting flange and shaft.

Max displacement	Max pressure working	Max pressure peak
(cm³/rev)	(bar)	(bar)
29, 46, 73	280	350
88	250	315
140	350	420
160	315	390

- (1) Not available for PVPC size 6, see section 13
- (2) For PVPC size 6 the compensator type C can be also used for remote pressure control, see section [13]
- (3) For PVPC-LW the requested value of torque setting or power and speed must be specified in the pump order, e.g. 70 Nm or 10 kW at 1450 RPM
- (4) Optional intermediate displacements 35 and 53 cm³/rev are available on request
- (5) Pumps with ISO 3019/2 mounting flange and shaft (option /M) are available on request

2 GENERAL CHARACTERISTICS

Assembly position - see section 7	Any position. The drain port must be on the top of the pump. Drain line must be separated and unrestricted to the reservoir and extended below the oil level as far from the inlet as possible. Suggested maximum line length is 3 m.
Ambient temperature range	Standard = -25° C \div $+80^{\circ}$ C /PE option -15° C \div $+80^{\circ}$ C
Storage temperature	Standard = -40° C $\div +70^{\circ}$ C /PE option -20° C $\div +70^{\circ}$ C
Surface protection (pump body)	Black painting RAL9005
Compliance	RoHS Directive 2011/65/EU as last update by 2015/863/EU REACH Regulation (EC) n°1907/2006

3 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

PVPC size		30	29	40	46	50	73	50	90	61	40	61	60
Max displacement	(cm ³ /rev)	2	29	4	6	7:	3	8	8	14	40	16	60
Theoretical max flow at 1450 rpm	(l/min)	4	2	66	6,7	105	5,8	12	7,6	20	03	23	32
Max pressure working / peak	(bar)	280	/ 350	280	/ 350	280 /	350	250 ,	315	350	/ 420	315	/ 390
Min/Max inlet pressure	(bar abs.)	0,8	/ 25	0,8	/ 25	0,8	/ 25	0,8	/ 25	0,8	/ 25	0,8	/ 25
Max pressure on drain port	(bar abs.)	1	,5	1	,5	1,	5	1,	5	1	,5	1	,5
Power consumption at 1450 rpm and at max pressure and displacer		2	<u>?</u> O	3	2	5	2	5	5	12	20	12	22
Max torque on the shaft	(shaft type) (Nm)	Type 1 210	Type 5 270	Type 1 350	Type 5 440	Type 1 670	Type 5 810	Type 1 670	Type 5 810	Type 1 1300	Type 5 1660	Type 1 1300	Type 5 1660
Max torque at max working pressu	ire (Nm)	1:	28	20	03	32	28	35	50	78	30	80	03
Speed rating	(rpm)	500 ÷	3000	500 ÷	2600	500 ÷	2600	500 ÷	2200	500 ÷	2200	500 ÷	2000
Moment of inertia	(Kg/m²)	0,0	020	0,0	050	0,00	030	0,0	030	0,0	025	0,0	025
Body volume	(1)	0	,7	0	,9	1,	5	1	5	2	,8	2	,8

4 ELECTRICAL CHARACTERISTICS - for PVPC-CH

Insulation class	Н
Connector protection degree	IP 65
Relative duty factor	100%
Supply voltage tolerance	± 10%

4.1 COIL VOLTAGE - only for CH version

Average values based ambient/coil temperature of 20°C.

External supply nominal voltage ±10%		Voltage code	Power consumption	Nominal current	Coil characteristics	
DIRECT CURRENT	12 DC 24 DC	12DC 24DC	19,2 W	1,61 A 0,80 A	Insulation Class: H Protection degree: IP65	

4.2 ELECTRIC CONNECTORS ACCORDING TO DIN 43650 - to be ordered separately

Code of connector	Description		
SP-666 Connector IP-65			
SP-667 Connector IP-65 but with built-in signal led			

5 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

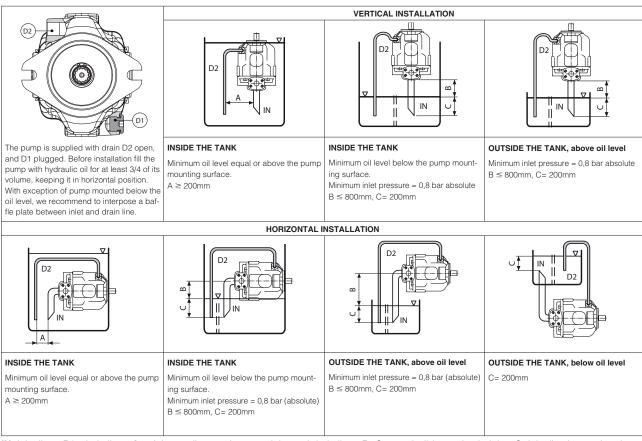
Seals, recommended fluid	temperature	NBR seals (standard) = -25°C \div +80°C, with HFC hydraulic fluids = -20°C \div +50°C FKM seals (/PE option) = -20°C \div +80°C				
Recommended viscosity		15÷35 mm²/s - max allowed range: min 10 cSt (at 80°C) - max 1500 cSt at cold startup (-25°C)				
Max fluid	normal operation	ISO4406 class 20/18/13 NAS	see also filter section at			
contamination level	longer life	ISO4406 class 18/16/11 NAS1638 class 7		www.atos.com or KTF catalog		
Hydraulic fluid		Suitable seals type	Classification	Ref. Standard		
Mineral oils		NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524		
Flame resistant without water		FKM	HFDU, HFDR (1)	ISO 12922		
Flame resistant with water		NBR	HFC (1)	100 12922		

(1) See section 6

6 PERFORMANCE RESTRICTIONS WITH FLAME RESISTANT FLUIDS

6.1 HFDU and HFDR - Phosphate ester

PVPC size		3029	4046	5073	5090	6140 / 6160	
Max pressure working / peak							
Max speed	(1) (rpm @ VMAX)	2050	1850	1700	1550	(0)	
Ambient temperature range	(°C)	-10 ÷ +80				(2)	
Bearing life (% of bearing life wi	th mineral oil) (%)		90				


- (1) With an inlet pressure of 1 bar abs
- (2) For information about size 6140, contact Atos technical office

6.2 HFC - Water-glycol (35 ÷ 55 % of water)

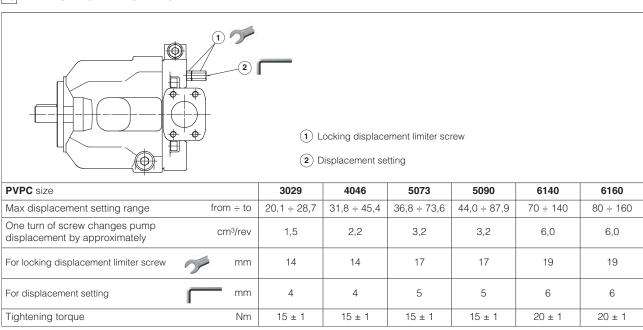
PVPC size		3029	4046	5073	5090	6140 / 6160
Max pressure working / peak	(bar)		180	/ 210		
Max speed	(1) (rpm @ VMAX)	2050	1850	1700	1550	(2)
Ambient temperature range	(°C)		-10 ÷ +60			(2)
Bearing life (% of bearing life wi	th mineral oil) (%)		40			

- (1) With an inlet pressure of 1 bar abs
- (2) For information about size 6140 and 6160, contact Atos technical office

7 INSTALLATION POSITION

8 MAX PERMISSIBLE LOAD ON DRIVE SHAFT

PVPC size			3029	4046	5073	5090	6140	6160
Fax = axial load	Frad	N	1000	1500	2000	2000	2000	2000
Frad = radial load	L/2 L/2	N	1500	1500	3000	3000	3000	3000

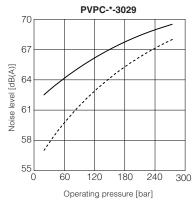

9 VARIATION OF MAX SPEED VS INLET PRESSURE

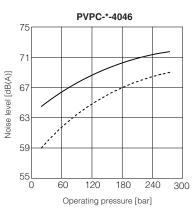
Inlet pressure			Displacement %			
bar abs.	65	70	80	90	100	
0,8	120	115	105	97	90	
0,9	120	120	110	103	95	% variation
1,0	120	120	115	107	100	
1,2	120	120	120	113	106	of the
1,4	120	120	120	120	112	max. speed
1,6	120	120	120	120	117	1
2,0	120	120	120	120	120	

Example

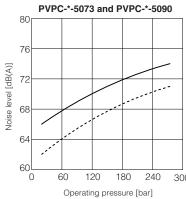
Displacement: 80% - Inlet pressure: 1,0 bar - Speed: 115%

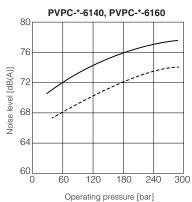
10 MAX DISPLACEMENT SETTING

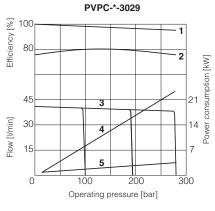


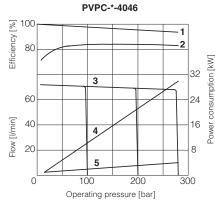

11 DIAGRAMS at 1450 rpm (based on mineral oil ISO VG 46 at 50°C)

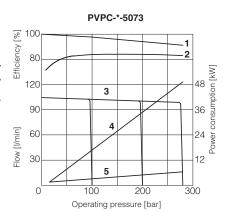
11.1 Noise level curves

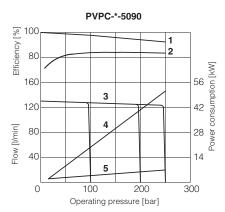

Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics - Test procedure to define the ambient noise level - Pumps Shaft speed: 1450 rpm.

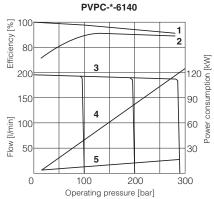


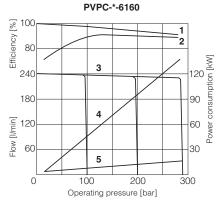


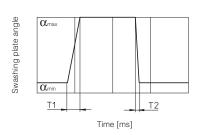





11.2 Operating limits


- 1 = Volumetric efficiency
- 2 = Overall efficiency
- 3 = Flow versus pressure curve
- 4 = Power consumption with full flow
- **5** = Power consumption at null flow





11.3 Response times

Response times and pressure peak due to variation 0% to 100% and 100% to 0% of the pump displacement, obtained with an instantaneously opening and shut-off of the delivery line.

Pump type	T1 (ms)	T2 (ms)		
PVPC-*-3029	140	36		
PVPC-*-4046	140	42		
PVPC-*-5073	160	44		
PVPC-*-5090	160	44		
PVPC-*-6140	170	100		
PVPC-*-6160	180	110		

11.4 Minimum power/torque setting for PVPC-LW (constant power regulator)

For the pump correct operation, the power / torque factory setting hast to be higher than the values reported in the below table In case of lower power/torque setting values, the regulator limits the maximum working pressure to a value lower than the standard setting.

Note: please specify the requested value of torque setting or power and speed in the PVPC-LW pump order, e.g. 70 Nm or 10 kW at 1450 RPM

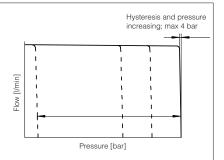
Pump type	Minimum torque (Nm)	Minimum power (Kw) 6,7 10,7		
PVPC-LW-3029	43			
PVPC-LW-4046	68			
PVPC-LW-5073	113	17,8		
PVPC-LW-5090	132	20,7		
PVPC-LW-6140	197	30		
PVPC-LW-6160	220	34		

12 HYDRAULIC AND ELECTROHYDRAULIC CONTROLS for PVPC-3029 to PVPC-5090

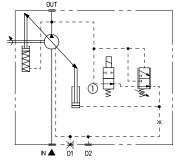
Type of control: C

Manual pressure compensator

The pump displacement is zeroed when the line pressure approaches the setting pressure of the compensator


Compensator setting range:

20 ÷ 280 bar for 3029, 4046, 5073


20 ÷ 250 bar for 5090

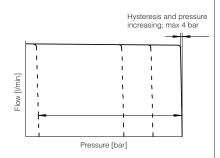
Compensator standard setting: 280 bar for 3029, 4046, 5073

250 bar for 5090

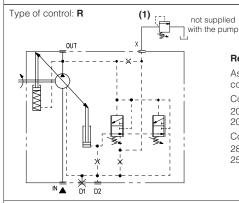
Type of control: CH

Manual pressure compensator with venting

As C plus venting function, when a long unloading time is required and heat generation and noise have to be kept at lowest level.


Venting valve solenoid voltage, see section 4 Venting valve OFF = null displacement Venting valve ON = max displacement

Compensator setting range:

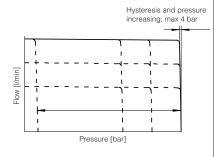

20 ÷ 280 bar for 3029, 4046, 5073

20 ÷ 250 bar for 5090

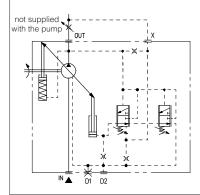
Compensator standard setting: 280 bar for 3029, 4046, 5073 250 bar for 5090

1 solenoid venting valve

Remote pressure compensator


As C, but predisposed with X piloting port for connection of a remote pilot relief valve (1).

Compensator setting range:


20 ÷ 280 bar for 3029, 4046, 5073

20 ÷ 250 bar for 5090

Compensator standard setting: 280 bar for 3029, 4046, 5073 250 bar for 5090

Type of control: L

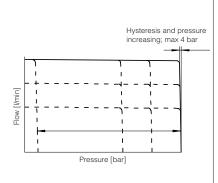
Load sensing

The pump displacement is automatically adjusted to maintain a constant (load independent) pressure drop across an external throttle. Changing the throttle regulation, the pump flow is consequently adjusted.

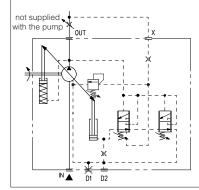
Load sensing control always incorporates an hydraulic compensator to limit the maximum pressure

Compensator setting range:

20 ÷ 280 bar for 3029, 4046, 5073

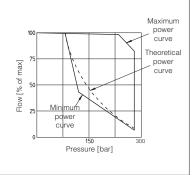

20 ÷ 250 bar for 5090

Compensator standard setting:

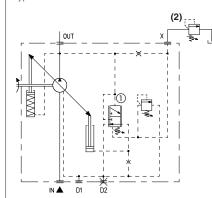

280 bar for 3029, 4046, 5073

250 bar for 5090

Differential pressure setting range: 10 ÷ 40 bar Differential pressure standard setting: 14 bar


Type of control: LW

Constant power


In order to achieve a constant drive torque with varying operating pressure. The swashing angle and therefore the outlet flow is varied so that the product of flow and pressure remains

See section 11.4 for min power/torque setting

13 HYDRAULIC AND ELECTROHYDRAULIC CONTROLS for PVPC-6140 and PVPC-6160

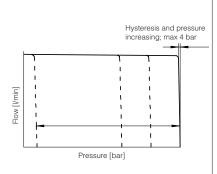
Type of control: C

Manual pressure compensator

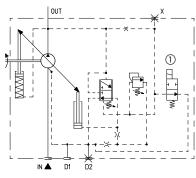
The pump displacement is zeroed when the line pressure approaches the setting pressure of the compensator.

Compensator setting range:

20 ÷ 350 bar for PVPC-C-6140


20 ÷ 315 bar for PVPC-C-6160

Compensator standard setting: 350 bar for PVPC-C-6140 315 bar for PVPC-C-6160


Note: do not modify the setting of differential pressure compensator ①

(2): The pump max pressure can be remotely controlled as -R control type, connecting the X port to a pilot relief valve. The valve is not supplied

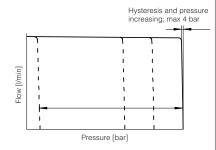
with the pump, it needs to be ordered separately

Type of control: CH

Manual pressure compensator with venting

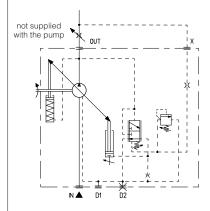
As C plus venting function, when a long unloading time is required and heat generation and noise have to be kept at lowest level.

Venting valve solenoid voltage, see section 4 Venting valve OFF = null displacement Venting valve ON = max displacement


Compensator setting range:

20 ÷ 350 bar for PVPC-C-6140

20 ÷ 315 bar for PVPC-C-6160


Compensator standard setting: 350 bar for PVPC-C-6140

315 bar for PVPC-C-6160

1 solenoid venting valve

Type of control: L

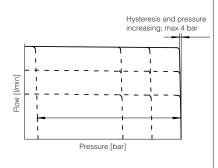
Load sensing

The pump displacement is automatically adjusted to maintain a constant (load independent) pressure drop across an external throttle. Changing the throttle regulation, the pump flow is consequently adjusted.

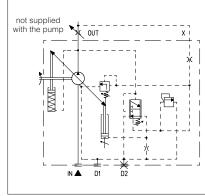
Load sensing control always incorporates an

Load sensing control always incorporates an hydraulic compensator to limit the maximum pressure.

Compensator setting range:

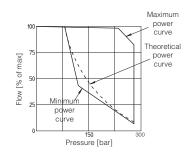

20 ÷ 350 bar for PVPC-C-6140

20 ÷ 315 bar for PVPC-C-6160

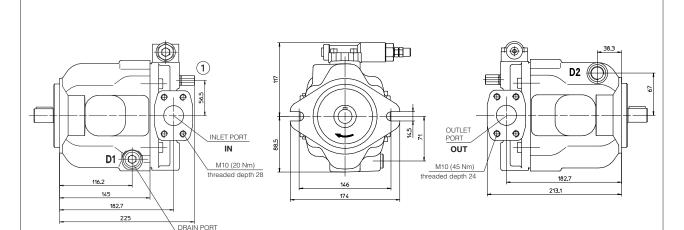

Compensator standard setting:

350 bar for PVPC-C-6140 315 bar for PVPC-C-6160

Differential pressure setting range: 10 ÷ 40 bar Differential pressure standard setting: 14 bar

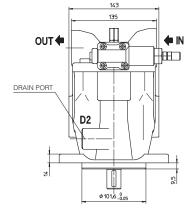

Type of control: LW

Constant power

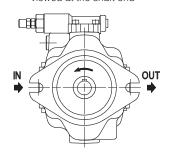

In order to achieve a constant drive torque with varying operating pressure. The swashing angle and therefore the outlet flow is varied so that the product of flow and pressure remains constant.

See section 11.4 for min power/torque setting

(20 Nm)

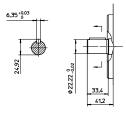


PORTS DIMENSION


= Flange SAE 3000 1 1/4" OUT = Flange SAE 6000 3/4"

D1, D2 = 1/2" BSPP

① = Screw for max displacement limiter Not available for version PVPCXB

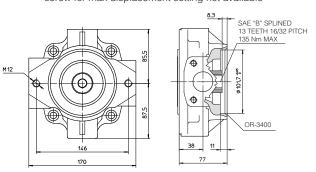

version S counterclockwise rotation viewed at the shaft end

Pumps with counterclockwise rotation (S) have the IN and OUT inverted and consequently the position of the compensators

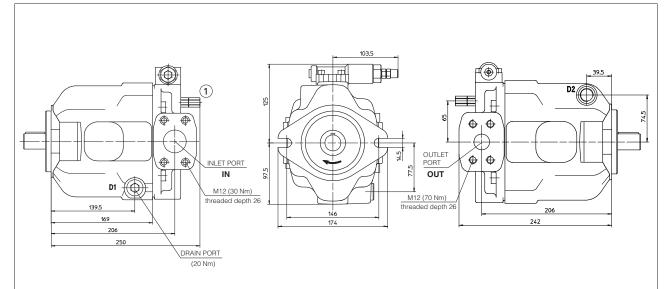
Mass [kg] PVPC-*-3029 18

SHAFT TYPE "1"

SHAFT TYPE "5"

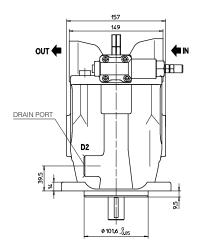


CODE XA - INTERMEDIATE FLANGE SAE "A" FOR PFE-31


SAE "A" SPLINED 9 TEETH 16/32 PITCH 100 Nm MAX M 10 Ф OR-2325 38 7 77

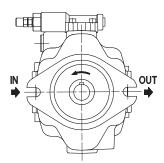
CODE XB - INTERMEDIATE FLANGE SAE "B" FOR PFE-41 or PVPC-3029

screw for max displacement setting not available



PORTS DIMENSION

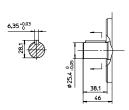
= Flange SAE 3000 1 1/2" OUT = Flange SAE 6000 1"


D1, D2 = 1/2" BSPP

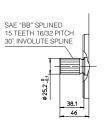
① = Screw for max displacement limiter

version S

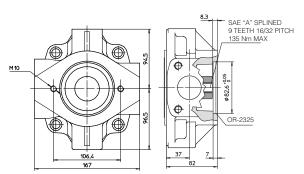
counterclockwise rotation viewed at the shaft end

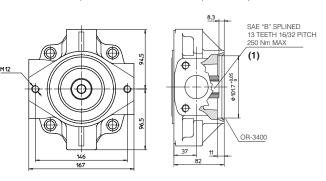


Pumps with counterclockwise rotation $\dot{(\textbf{S})}$ have the IN and OUT inverted and consequently the position of the compensators

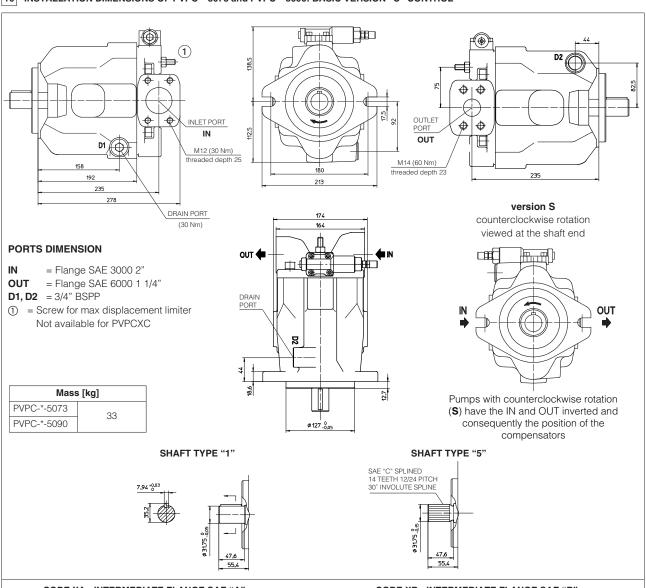


Mass [kg]

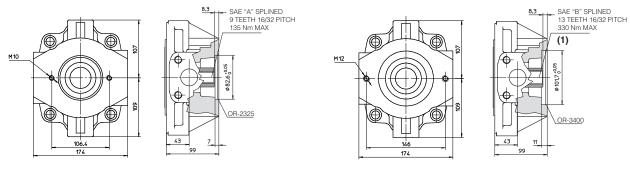

SHAFT TYPE "1"


SHAFT TYPE "5"

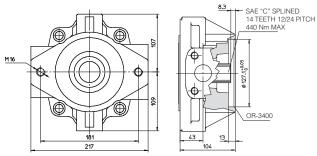
CODE XA - INTERMEDIATE FLANGE SAE "A" FOR PFE-31



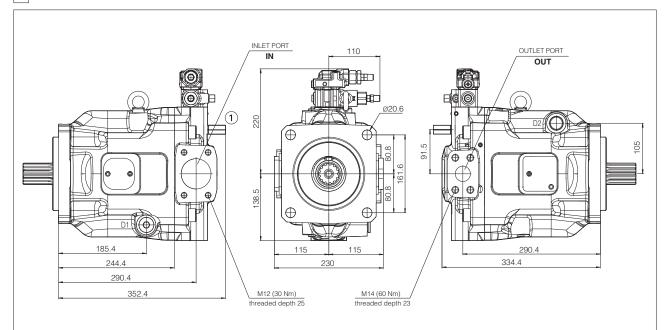
CODE XB - INTERMEDIATE FLANGE SAE "B" FOR PFE-41, PVPC-3029 or PVPC-4046 (see note 1)


(1) For coupling with PVPC-4046 rear pump, the coupling code G-PVPC-40/46 (SAE BB splined, 15 teeth) must be ordered separately Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted

16 INSTALLATION DIMENSIONS OF PVPC-*-5073 and PVPC-*-5090: BASIC VERSION "C" CONTROL

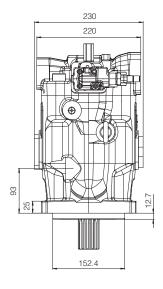

CODE XA - INTERMEDIATE FLANGE SAE "A" FOR PFE-31

CODE XB - INTERMEDIATE FLANGE SAE "B" FOR PFE-41, PVPC-3029 or PVPC-4046 (see note 1)


CODE XC - INTERMEDIATE FLANGE SAE "C" FOR PFE-51, PVPC-5073 or PVPC-5090

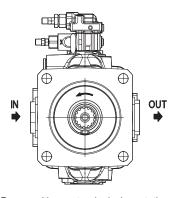
screw for max displacement setting not available

(1) For coupling with PVPC-4046 rear pump, the coupling code G-PVPC-73/46 (SAE BB splined, 15 teeth) must be ordered separately Drawing show pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted

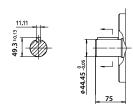

PORTS DIMENSION

= Flange SAE 3000 2 1/2" **OUT** = Flange SAE 6000 1 1/4"

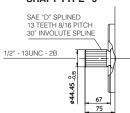
D1, D2 = 1 1/16"-12UNF


① = Screw for max displacement limiter

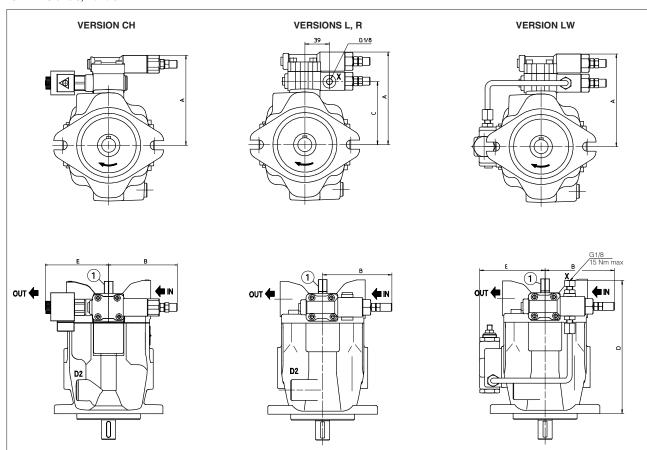
Mass [kg]					
PVPC-*-6140	69				
PVPC-*-6160	09				


version S

counterclockwise rotation viewed at the shaft end



Pumps with counterclockwise rotation (S) have the IN and OUT inverted and consequently the position of the compensators


SHAFT TYPE "1"

SHAFT TYPE "5"

18.1 PVPC size 3, 4 and 5

① = Regulation screw for max displacement. Adjustable range 50% to 100% of max displacement). In case of double pump the regulation screw is not always available, please contact our technical office.

Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted and also the consequently position of the control groups

Pump type	Version	Α	В	С	D	E	Mass (kg)
PVPC-*-3029	СН	144	111	-	-	102	22
	L-R	144	111	100	-	-	19,2
	LW	144	111	-	211	104	20
PVPC-*-4046	СН	153	111	-	-	102	28
	L-R	153	111	109	-	-	25,2
	LW	153	111	-	235	111	26
PVPC-*-5073 PVPC-*-5090	СН	166	111	-	-	102	36,9
	L-R	166	111	122	-	-	34,2
	LW	166	111	-	258	120	35

18.2 PVPC size 6

VERSION CH VERSION L VERSION LW 36.3 156.5 OUT 🛑 Mass [kg] Mass [kg] Mass [kg] PVPC-*-6140 PVPC-*-6140 PVPC-*-6140 70.2 PVPC-*-6160 PVPC-*-6160 PVPC-*-6160

- ① = Regulation screw for max displacement. Adjustable range 50% to 100% of max displacement). In case of double pump the regulation screw is not always available, please contact our technical office.
- ② = Loadsensing port G1/8" (tightening torqe 15 Nm).

Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted and also the consequently position of the control groups

19 RELATED DOCUMENTATION

A900 Operating and maintenance information for pumps

K800 Electric and electronic connectors