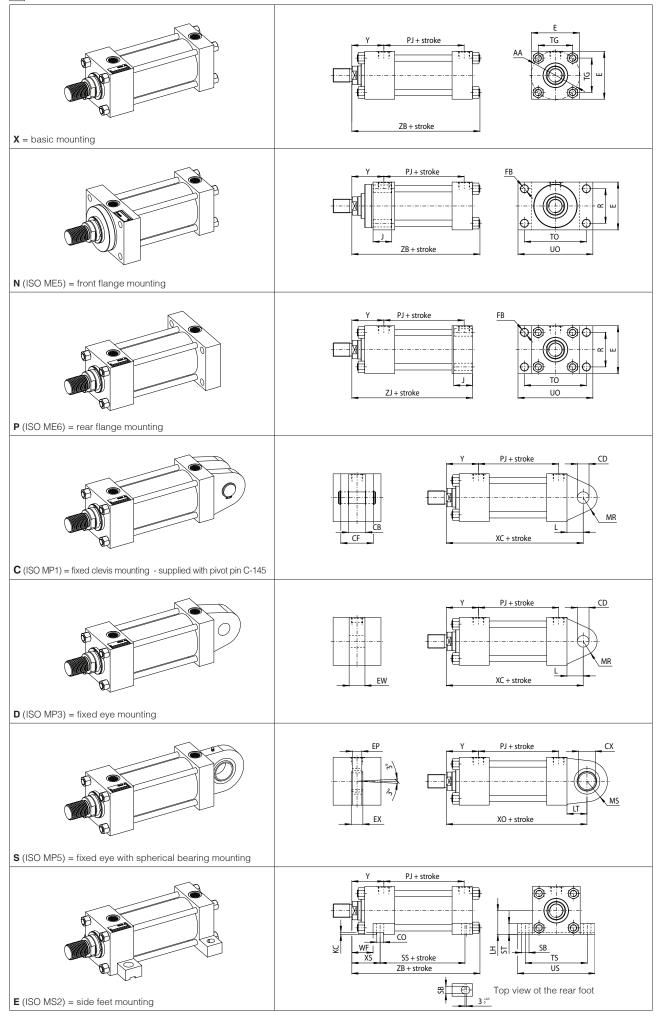
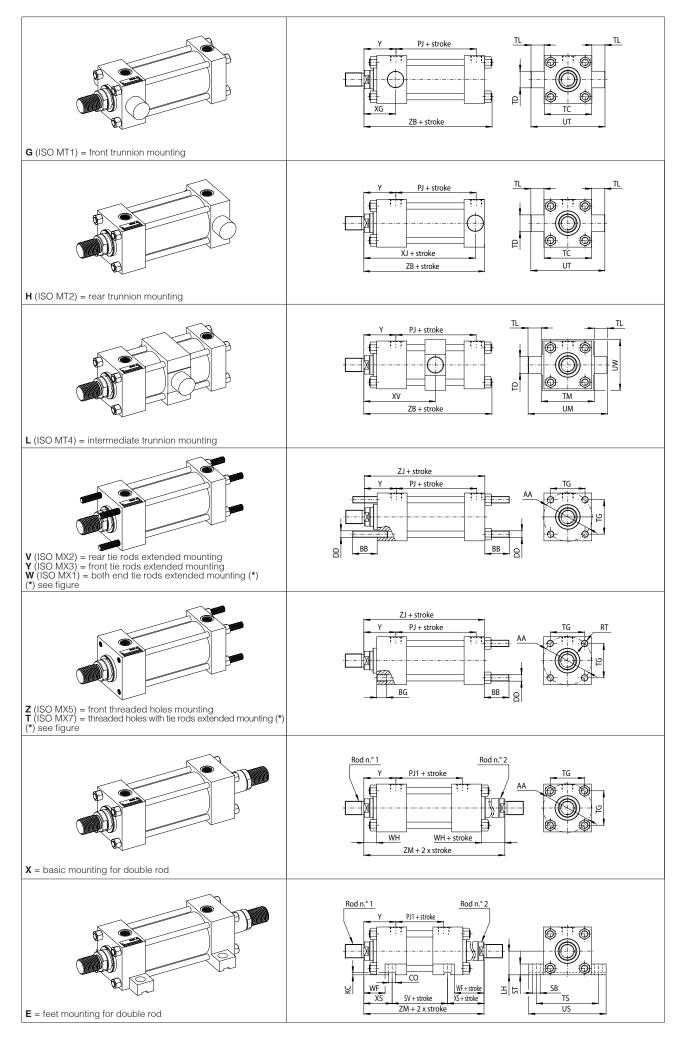

atos 🛆

Hydraulic cylinders type CK - square heads with tie rods

to ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

CK cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.


- Bore sizes from 25 to 200 mm
- Adjustable or fixed cushioning
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B800
- CKA available with ATEX certification see tab. BX500
- $\bullet\,\text{CK}$ cylinders are SIL compliance with IEC 61508 (TÜV certified), certification on request


For cylinder's choice and sizing criteria see tab. B015

1 MODEL CODE					
СК Р/10-	50 / 22 / 22 * 0500	- S 3 0	1 - A -	B1E3X1Z3	**
Cylinder series CK to ISO 6020 - 2					Series number (1)
Rod position transducer - = omit if not requested F = magnetosonic M = magnetosonic programmable N = magnetostrictive P = potentiometric V = inductive Dimensions and performances see tab. B310				Oil ports positions B * = front head X * = rear head Cushioning adjustment	ion (2) , see section 13 Its positions, to be entered ushioning are selected on (1, 2, 3 or 4)
Incorporated subplate, see section 15 - = omit if subplate is not requested 10 = size 06 20 = size 10 30 = size 16 40 = size 25			Rod F =1 G =1 H =1 Over	ons (2): end, see section 6 emale thread ight female thread ght male thread rsized oil ports, see s ront oversized oil poi	
Bore size, see section 3 from 25 to 200 mm			Y = 1 Prox R = 1 S = 1	rear oversized oil por imity sensors, see se ront sensor rear sensor treatment, see sectio	t ction 18
Rod diameter, see sections 6 and 9 from 12 to 140 mm			T =i Air b	nickel and chrome pl nduction surface harde leeds, see section ront air bleed	ening and chrome plating
Second rod diameter for double rod, see see from 12 to 140 mm, omit for single rod	ction 10		Draii	rear air bleed ning, see section 17 rod side draining	
Stroke, see section 4 up to 5000 mm			1 = (NBR + I		static and dynamic sealing
Mounting style, see sections 2 and 3 C = fixed clevis D = fixed eye E = feet	REF. ISO MP1 (3) MP3 (3) MS2		4 = (NBR + 6 = (NBR + 7 = (NBR +	PTFE) very low friction PTFE) very low friction	n, single acting - pushing n, single acting - pulling
	MT1 MT2 (3) MT4 (4) ME5 ME6 (3) MP5 (3) MX7	0 = Cushion	ing, see sectior	nm 4 = 100 mm 6 =	= 150 mm 8 = 200 mm
 V = rear tie rods extended W = both end tie rods extended X = basic execution Y = front tie rods extended Z = front threaded holes 	MX2 MX1 - MX3 MX5	0 = none Fast adju 1 = rear of 2 = front 3 = front	ustable Sonly 4 only 5	Slow adjustable = rear only = front only = front and rear	Fast fixed 7 = rear only 8 = front only 9 = front and rear

(1) For spare parts request indicate the series number printed on the nameplate only for series < 30

(2) To be entered in alphabetical order (3) Not available for double rod

3 INSTALLATION DIMENSIONS [mm] - see figures in section 2

	Ø Bore	25	32	40	50	63	80	100	125	160	200
σ	standard	12	14	18	22	28	36	45	56	70	90
Rod	intermediate	NA	NA	22	28	36	45	56	70	90	110
Ø	differential	18	22	28	36	45	56	70	90	110	140
	AA	40	47	59	74	91	117	137	178	219	269
	BB +3/0	19	24	35	46	46	59	59	81	92	115
	BG min	8	9	12	18	18	24	24	27	32	40
	CB A13	12	16	20	30	30	40	50	60	70	80
	CD H9	10	12	14	20	20	28	36	45	56	70
	CF max	25	34	42	62	62	83	103	123	143	163
	CO N9	NA	NA	12	12	16	16	16	20	30	40
сх	value	12	16	20	25	30	40	50	60	80	100
	tolerance	0 -0	,008			0 -0,012			0 -0	,015	0 -0,02
l	DD 6g	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
	E (1)	40±1,5	45±1,5	63±1,5	75±1,5	90±1,5	115±1,5	130±2	165±2	205±2	245±2
l	EP max	8	11	13	17	19	23	30	38	47	57
I	EW h14	12	16	20	30	30	40	50	60	70	80
	EX	10 0/-0,12	14 0/-0,12	16 0/-0,12	20 0/-0,12	22 0/-0,12	28 0/-0,12	35 0/-0,12	44 0/-0,15	55 0/-0,15	70 0/-0,
	FB H13	5,5	6,6	11	14	14	18	18	22	26	33
	H (2) max	5	5	NA	NA	NA	NA	NA	NA	NA	NA
	J ref	25	25	38	38	38	45	45	58	58	76
	L min	13	19	19	32	32	39	54	57	63	82
	LH h10	19	22	31	37	44	57	63	82	101	122
	LT min	16	20	25	31	38	48	58	72	92	116
	KC min	NA	NA	4	4,5	4,5	5	6	6	8	8
	M (3)	1000	1200	1500	1800	2300	3000	3500	3500	3500	3500
	MR max	12	17	17	29	29	34	50	53	59	78
I	MS max	20	22,5	29	33	40	50	62	80	100	120
I	PJ (4) ±1,5 (6)	53	56	73	74	80	93	101	117	130	165
	PJ1 ±1,5 (6)	54	58	71	73	81	92	101	117	130	160
	PJ2 (4) ±1,5 (6)	53	57	73	76	80	93	99	121	143	167
	R js13	27	33	41	52	65	83	97	126	155	190
	RT	M5x0,8	M6x1			M12x1,75		M16x2	M22x2,5	M27x3	M30x3,
	SB H13	6,6	9	11	14	18	18	26	26	33	39
	SS ±1,25 (6)										
		72	72	97	91	85	104	101	130	129	171
	ST js13	8,5	12,5	12,5	19	26	26	32	32	38	44
	SV ±1,25 (6)	88	88	105	99	93	110	107	131	130	172
	TC h14	38	44	63	76	89	114	127	165	203	241
	TD f8	12	16	20	25	32	40	50	63	80	100
	TG js13	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
	TL js13	10	12	16	20	25	32	40	50	63	80
	TM h14	48	55	76	89	100	127	140	178	215	279
	TO js13	51	58	87	105	117	149	162	208	253	300
	TS js13	54	63	83	102	124	149	172	210	260	311
	UM ref	68	79	108	129	150	191	220	278	341	439
	UO max	65	70	110	130	145	180	200	250	300	360
	US max	72	84	103	127	161	186	216	254	318	381
	UT ref	58	68	95	116	139	178	207	265	329	401
	UW max	45	50	70	88	98	127	141	168	215	269
	XC ±1,5 (6)	127	147	172	191	200	229	257	289	308	381
	XG ±2 (6)	44	54	57	64	70	76	71	75	75	85
	XJ ±1,5 (6)	101	115	134	140	149	168	187	209	230	276
	XO ±1,5 (6)	130	148	178	190	206	238	261	304	337	415
	XS ±2 (6)	33	45	45	54	65	68	79	79	86	92
V\/	style L minimum stroke	5	5	5	15	20	20	35	35	35	35
XV (5)	min	77	90	100	109	120	129	148	155	161	195
		75+stroke	86+stroke	99+stroke	98+stroke	100+stroke	115+stroke	117+stroke	134+stroke	141+stroke	166+stro
±2 (6)	max				67	71	77	82	86	86	98
		50	60	62							
	Y (4) ±2 (6)							83	84		97
	Y (4) ±2 (6) Y1 (4) ±2 (6)	49,5	59,5	63	65,5	70	75,5	83	84	79,5	97 336
	Y (4) ±2 (6) Y1 (4) ±2 (6) ZB max	49,5 121	59,5 137	63 166	65,5 176	70 185	75,5 212	225	260	79,5 279	336
	Y (4) ±2 (6) Y1 (4) ±2 (6)	49,5	59,5	63	65,5	70	75,5			79,5	

NOTES TO TABLE 3

- (1) E If not otherwise specified in the figures in section 2, this value is the front and rear square heads dimension for all the mounting styles (see figure below)
- (2) H This additional dimension has to be considered only for bores 25 and 32

(3) M - For strokes longer than M, one or more intermediate tie rods supports O are fitted on the cylinder housing to maintain the radial tension on the tie rods, thus keeping them rigidly fixed to the cylinder housing. The support has the same overall dimensions of the square heads as indicated in note (1)

- (4) When oversized oil ports are selected (see section [1] and [3] for dimensions and position) dimensions **PJ** and **Y** are respectively modified into **PJ2** and **Y1**
- (5) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CK - 50 / 22 * 0500 - L301 - D - B1E3X1Z3 **XV = 200**

(6) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is given by the max stroke tolerance in section 4

4 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end.

otant	Juliu	Strone	5 10 10	-04	00		
25	50	80	100	125	160	200	25

25	50	80	100	125	160	200	250
320	400	500	630	800	1000	1250	

Maximum stroke:

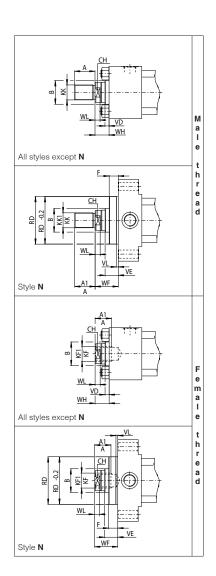
2600 mm for bores up to 40 mm
5000 mm for other bores

- JUDU MITH IOF OTHER

- Stroke tolerances: • 0 +2 mm for strokes up to 1250 mm
- 0 +5 mm for strokes from 1250 to 3150 mm
- 0 +8 mm for strokes over 3150 mm

5 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from overloads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' length has to be added to all stroke dependent dimensions in section [3].



RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer code	2	4	6	8
Length	50	100	150	200

6 ROD END DIMENSIONS [mm]

		Male	thread	Female	thread												
Ø Bore	Ø Rod	кк	KK1 (option H)	KF (option F)	KF1 (option G)	A (KK or KF)	A1 (KK1 or KF1)	B f9	CH	F	RD	VD	VE	VL.	WF	₩Н	WL
		6g	6g	6H	6H	(1)	(1)	19	h14	max	10		max	min	±2	±2	min
25	12	M10x1,25	NA	M8x1	NA	14	NA	24	10	10	38	6	16	3	25	15	5
	18	M14x1,5	M10x1,25	M12x1,25	M8x1	18	14	30	15	10	38	6	16	3	25	15	5
32	14	M12x1,25	NA	M10x1,25	NA	16	NA	26	12	10	42	12	22	3	35	25	5
	22	M16x1,5	M12x1,25	M16x1,5	M10x1,25	22	16	34	19	10	42	9	19	3	35	25	5
40	18	M14x1,5	NA	M12x1,25	NA	18	NA	30	15	10	62	6	16	3	35	25	5
	22	M16x1,5	M14x1,5	M16x1,5	NA	22	18	34	19	10	62	12	22	3	35	25	5
	28	M20x1,5	M14x1,5	M20x1,5	M12x1,25	28	18	42	22	10	62	12	22	3	35	25	7
50	22	M16x1,5	NA	M16x1,5	NA	22	NA	34	19	16	74	9	25	4	41	25	5
	28	M20x1,5	M16x1,5	M20x1,5	NA	28	22	42	22	16	74	9	25	4	41	25	7
	36	M27x2	M16x1,5	M27x2	M16x1,5	36	22	50	30	16	74	9	25	4	41	25	8
63	28	M20x1,5	NA	M20x1,5	NA	28	NA	42	22	16	75	13	29	4	48	32	7
	36	M27x2	M20x1,5	M27x2	NA	36	28	50	30	16	88	13	29	4	48	32	8
	45	M33x2	M20x1,5	M33x2	M20x1,5	45	28	60	39	16	88	13	29	4	48	32	10
80	36	M27x2	NA	M27x2	NA	36	NA	50	30	20	82	9	29	4	51	31	8
	45	M33x2	M27x2	M33x2	NA	45	36	60	39	20	105	9	29	4	51	31	10
	56	M42x2	M27x2	M42x2	M27x2	56	36	72	48	20	105	9	29	4	51	31	10
100	45	M33x2	NA	M33x2	NA	45	NA	60	39	22	92	10	32	5	57	35	10
	56	M42x2	M33x2	M42x2	NA	56	45	72	48	22	125	10	32	5	57	35	10
	70	M48x2	M33x2	M48x2	M33x2	63	45	88	62	22	125	10	32	5	57	35	10
125	56	M42x2	NA	M42x2	NA	56	NA	72	48	22	105	10	32	5	57	35	10
	70	M48x2	M42x2	M48x2	NA	63	56	88	62	22	150	7	29	5	57	35	10
	90	M64x3	M42x2	M64x3	M42x2	85	56	108	80	22	150	7	29	5	57	35	15
160	70	M48x2	NA	M48x2	NA	63	NA	88	62	25	125	7	32	5	57	32	10
	90	M64x3	M48x2	M64x3	NA	85	63	108	80	25	170	7	32	5	57	32	15
	110	M80x3	M48x2	M80x3	M48x2	95	63	133	100	25	170	7	32	5	57	32	15
200	90	M64x3	NA	M64x3	NA	85	NA	108	80	25	150	7	32	5	57	32	15
	110	M80x3	M64x3	M80x3	NA	95	85	133	100	25	210	7	32	5	57	32	15
	140	M100x3	M64x3	M100x3	M64x3	112	85	163	128	25	210	7	32	5	57	32	15

Notes: (1) Dimensions A and A1 are according to ISO 4395 short type. Tolerances: max for male thread; min for female thread

7 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "cold drawn and stressed steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra \leq 0,25 μ m.

8 TIE RODS FEATURES

The cylinder's tie rods are made in "normalized automatic steel"; end-threads are rolled to improve the fatigue working life. They are screwed to the heads or mounted by means of nuts with a prefixed tightening torque MT, see the table at side.

9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tole-rances f7; roughness Ra \leq 0,25 µm. Corrosion resistance of 200 h in neutral spray to ISO 9227 NSS

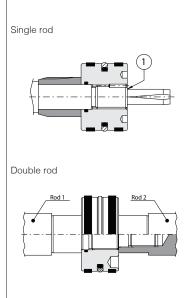
a David	Material	Rs min	Chr	ome
ø Rod	Material	[N/mm²]	min thickness [mm]	hardness [HV]
12÷90	hardened and tempered alloy-steel	700	0.020	850-1150
110÷140	alloy steel	450	0,020	000/1100

Rod diameters from 12 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher pro-file accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table 6. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing. **Contact our technical office** in case of heavy duty applications.

Rod corrosion resistance and hardness can be improved selecting the options K and T (option K affects the strength of standard rod, see **tab. B015** for the calculation of the expected rod fatigue life): **K** = Nickel and chrome-plating (for rods from 22 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

500 h in acetic acid salt spray to ISO 9227 AASS
1000 h in neutral spray to ISO 9227 NSS

T = Induction surface hardening and chrome plating • 56-60 HRC (613-697 HV) hardness


10 DOUBLE ROD

Double rod cylinders ensure the same pushing and pulling areas, thus the same speeds and forces. Rod2 (see figure at side) is screwed into the male thread of Rod1, consequently the Rod2 is weaker than the other and it is strongly recommended to use this one only to compensate the areas; the stronger rod is identified by the number '1' stamped on its end. For double rod cylinders, rod end dimensions indicated in section 6 are valid for both the rods.

TIE RODS TIGHTENING TORQUES

Ø Bore	25	32	40	50	63
MT [Nm]	5	9	20	70	70
Wrench	8	10	13	19	19
Ø Bore	80	100	125	160	200
MT [Nm]	160	160	460	820	1160
Wrench	24	24	32	41	46

ROD-PISTON COUPLING

11 OIL PORTS AND ROD SPEEDS

The fluid speed in pipings connected to the cylinder oil ports should not exceed 6 m/s in order to minimize the turbolence flow, the pressure drop and water hammer. The table below shows the max recommended rod speed relative to 6 m/s flow velocity.

In high dynamic systems the rod can reach even higher speeds (after a careful check of dampable masses, see tab. B015): in these cases it is recommended to use piping's diameters larger than the cylinder oil ports and to introduce proper reductions just near the cylinder oil ports.

		Stan	dard oil ports			Oversized o	il ports D , Y op	otions
Ø Bore	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]
25	21	G 1/4	7,5	0,54	25	G 3/8	9	0,77
32	21	G 1/4	7,5	0,33	25	G 3/8	9	0,47
40	25	G 3/8	9	0,30	29	G 1/2	14	0,73
50	29	G 1/2	14	0,47	36	G 3/4	16	0,61
63	29	G 1/2	14	0,30	36	G 3/4	16	0,39
80	36	G 3/4	16	0,18	42	G 1	20	0,37
100	36	G 3/4	16	0,15	42	G 1	20	0,24
125	42	G 1	20	0,15	52	G 1 1/4	30	0,34
160	42	G 1	20	0,09	52 (1)	G 1 1/4 (1)	30	0,21
200	52	G 1 1/4	30	0,13	58	G 1 1/2	40	0,24

12 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; e it is necessaty to reduce undesirable noise and mechanical shocks; e vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). Two types of cushioning are available depending to the rod speed by to the rod speed V:

Slow version for $V \le 0.5 \cdot V_{max}$ Fast version

for $V > 0.5 \cdot V_{max}$

See the table below for Vmax values and tab. B015 for the max damping energy

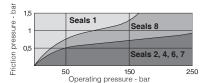
When fast or slow adjustable versions are selected, the cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect).

In case of high masses and/or very high operating speeds it is recommended to back them off to opti-mize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore	•	2	5	3	2	4	0	5	0	6	3	8	0	1(00	125		125 160		200	
Ø Rod	l	12	18	14	22	18	22 28	22	28 36	28	36 45	36	45 56	45	56 70	56	70 90	70	90 110	90 140	
Cushioning	Lf front	21	17	23	17	26	25	28	27	28	27	27	29	35	27	28	25	34	34	49	34
length [mm]	Lf rear	1	3	1	5	2	27	2	8	3	0	3	2	3	2	з	2	4	1	5	6
Vmax [m/s]			1		1		1		1	0	,8	0	,8	0	,6	0	,6	0	,5	0	,5

13 POSITION COMBINATION FOR OIL PORTS AND CUSHIONING ADJUSTMENTS

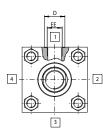
FRONT HEAD: \mathbf{B}^* = oil port position; \mathbf{E}^* = cushioning adjustment position REAR HEAD: \mathbf{X}^* = oil port position; \mathbf{Z}^* = cushioning adjustment position The table below shows all the available configurations for the oil port and cushioning adjustment positions. Bolt characters identify the standard positions. Each configuration for the front head can be variously combined with any one of the rear head. Cushioning adjustment positions \mathbf{E}^* , \mathbf{Z}^* have to be entered early if adjustable cushioning are selected. Example of model code: CK-50/22 *0100-S301 - A - **B2E3X124**


1		Mounting style			С, D	, S, L				1	E	C	9	ŀ	ł		N, P		Т,	v, w	, X, Y	, Z
	FRONT	Oil port side B	1	1	2	1	2	4	3	1	1	1	1	1	2	1	1	2•	1	1	2	3
	HEAD	Cushioning adjustment side E	3	2	3	4	4	3	1	2	4	3	3	3	4	3	2•	3	3	4	3	1
O	REAR	Oil port side X		1	2	1	2	4	3	1	1	1	2		1	1	1	2•	1	1	2	3
(a) 3	HEAD	Cushioning adjustment side Z	3	2	3	4	4	3	1	2	4	3	4	:	3	3	2•	3	3	4	3	1

• Not available for bores 25 and 32. Dimensions PJ, PJ2, Y and Y1 change compared to the values in section 3, contact our technical office (a) Front view rod side (rod n°1 for double rods)

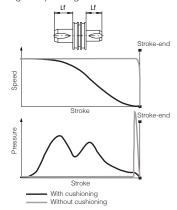
Contact our technical office for combinations not included in the table.

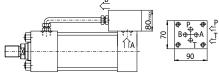
14 SEALING SYSTEM FEATURES


The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015**. When single acting seals are selected (types **6** and **7**), the not pressurized cylinder's chamber must be connected to the tank. Special sealing system for low temperatures, high frequencies (up to 20 Hz), long working life and heavy duty are available, see **tab. TB020**. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section 20. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition. See section 20 for fluid requirements.

Sealing	Material	Features	Max	Fluid temperature	Fluids compatibility	ISO Standar	ds for seals
system	Material	reatures	speed [m/s]	range	Finds compatibility	Piston	Rod
1	NBR + POLYURETHANE	high static and dynamic sealing	0.5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 5597/1
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%) , HFD-U, HFD-R	ISO 7425/1	ISO 7425/2
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
6 - 7	NBR + PTFE	very low friction single acting - pushing/pulling	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
8	PTFE + NBR + POLYURETHANE	low friction	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2

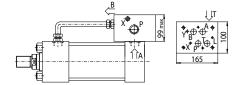
Oil ports features are threaded according to ISO 1179-1 (GAS standards) with counterbore dimension D type N (narrów). Oil ports with SAE 3000 flanges are available


on request, contact our technical office.


Note to table:

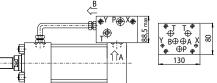
(1) For mounting styles C, D, E, N, P, S the dimension **PJ2** reported in section ③ is modified, contact our technical office.

Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the opera-ting one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke.

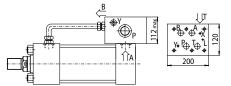

CK cylinders with oil ports positions 1 can be supplied with ISO (size 06, 10, 16 and 25) incorporated subplates for mounting of valves directly on the cylinder <<u>₿</u>

10 = subplate with mounting surface 4401-03-02-0-05 (size 06) Oil ports P and T = G 3/8

For bores from 40 to 200 and strokes longer than 100 mm


For shorter strokes, the cylinder must be provided with suitable spacer

 ${\bf 30}$ = subplate with mounting surface 4401-07-07-0-05 (size 16) Oil ports P and T = G 1; L, X and Y = G 1/4


For bores from 80 to 200 and strokes longer than 150 mm

For shorter strokes, the cylinder must be provided with suitable spacer

 ${20}$ = subplate with mounting surface 4401-05-05-0-05 (size 10) Oil ports P and T = G 3/4; X and Y = G 1/4

For bores from 40 to 200 and strokes longer than 150 mm For shorter strokes, the cylinder must be provided with suitable spacer

40 = subplate with mounting surface 4401-08-08-0-05 (size 25) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 125 to 200 and strokes longer than 150 mm

For shorter strokes, the cylinder must be provided with suitable spacer

Note: for the choice of suitable spacer see section 5. The addition of spacer length and working stroke must be at least equal or upper than the minimum stroke indicated above, see the following example: Subplate **20**; working stroke = **70** mm; min. stroke = **150** mm \rightarrow select spacer **4** (lenght = **100**mm)

16 AIR BLEEDS

17 DRAINING

Draining port is G1/8.

CODE: L = rod side draining

18 PROXIMITY SENSORS

CODES: R = front sensor; S = rear sensor

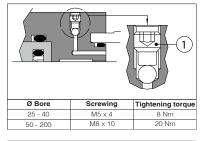
the executions with standard cushioning

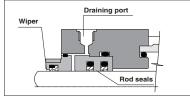
CODES: A = front air bleed; W = rear air bleed

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely. Air bleeds are usually posi-tioned on the opposite side of the oil port except for front heads of mounting styles **N**, **G** (on side 3), rear heads of mounting styles C, D, S, H, P (on side 3) and for heads of mounting style E (on side 2), see section 3. For cylinders with adjustable cushioning the air bleeds are positioned on the same side of the cushioning adjustment screw. For Servocylinders, cylinders with incorporated subplates or proximity sensors, air bleeds are supplied as standard and they must not be entered in the model code. For cylin-ders with proximity sensors, air bleeds A, W or AW are supplied respectively depending on the selected sensors R, S or RS. For a proper use of the air-bleed (see figure on side) unlock the grub screw (1) with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.

The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for

servocylinders. The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side) and it can be supplied only with sealing system: **1**, **2**, **4**, **7** and **8**. It is recommended to connect the draining port to the tank without backpressure.

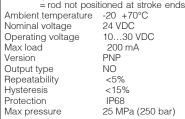

Proximity sensors functioning is based on the variation of the magnetic field, generated by the sen-sor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off)


of the sensors. The distance from the mechanical stroke-end of the cylinder, at which occurs the switching of the sensor's electrical contact, can be adjusted between 1 and 3 mm. For their regula-tion, it is necessary to position the rod where it is desired to obtain the contact switching and rotate

the sensor until its LED switch-on (commutation occurred). The sensors tightening torque must be lower than 40 N/m to avoid damages. The sensors must always be coupled with fast adjustable cushioning, see section 12, to avoid pressure peaks on stroke-end. They are positioned on side 4

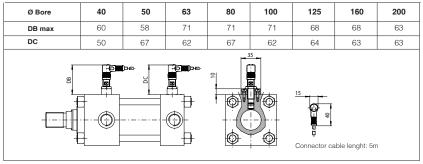
and they can be coupled with the standard oil ports and cushioning adjustments positions in bolt

characters, see section [3]. The coupling of the proximity sensors with the stroke-end cushioning imposes particular executions with limitation of the damping masses and/or speeds compared to



SENSORS TECHNICAL DATA

The proximity sensors are inductive type, they supply a "NO" (Normally Open) output signal which status corresponds to the rod position:


 $\label{eq:rescaled} \begin{array}{l} \textbf{R}, \textbf{S} = close \ contact = 24 \ Volt \ at \ output \ contacts = rod \ positioned \ at \ stroke \ ends \\ \textbf{R}, \textbf{S} = open \ contact = 0 \ Volt \ at \ output \ contacts \end{array}$

Limitations

R. **S** options not available for cylinders with bores smaller then 40 mm. R option not available for G and N mounting styles; S option not available for P and H mounting styles.

SIL 19 compliance with IEC 61508: 2010 IEC61508

CK meets the requirements of

SC3 (systematic capability)

max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied) max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)

20 FLUID REQUIREMENTS

Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

21 CYLINDERS MASSES [kg] (tolerance ± 5%)

		Х,	R STYLES , Z e rod		R STYLES , Z le rod				ac	AI cording t	DDITION/			ns			
Ø Bore [mm]	Ø Rod [mm]	Stroke 100 mm	Each added 100 mm	Stroke 100 mm	Each added 100 mm	Style C	Style D	Style E	Style G	Style L	Style N	Style P	Style S	Style VY	Style W	Each cushio- ning	Each 50 mm spacer
25	12	1,65	0,47	1,95	0,56	0,08	0,068	0,22	-0,02	0.19	0,18	0,18	0,08	0.01	0,02	0,03	0,38
25	18	1,80	0,58	2,40	0,78	0,08	0,000	0,22	-0,02	0,19	0,10	0,10	0,00	0,01	0,02	0,03	0,36
32	14	2,23	0,49	2,69	0,61	0,17	0,15	0,24	0,02	0,29	0,18	0,18	0,14	0,02	0,04	0,04	0,50
	22	2,51	0,67	3,21	0,97												
	18	4,90	0,79	6,78	0,99												
40	22	5,15	0,89	7,19	1,19	0,27	0,22	0,256	0,08	0,78	0,76	0,76	0,57	0,06	0,12	0,07	0,79
	28	5,40	1,07	7,60	1,55												
	22	6,40	1,18	7,85	1,48												
50	28	6,59	1,37	8,23	1,85	0,84	0,74	0,52	0,28	1,46	1,10	1,10	0,31	0,16	0,32	0,13	1,15
	36	7,20	1,68	9,45	2,48	1											
	28	8,70	1,62	11,08	2,10												
63	36	9,13	1,93	11,94	2,73	0,52	0,41	1,54	0,26	2,17	1,34	1,34	0,46	0,16	0,32	0,25	1,68
	45	9,80	2,39	13,64	3,64	1											
	36	17,00	2,96	20,45	3,76												
80	45	17,76	3,46	21,97	4,71	1,25	0,79	1,23	1,63	3,67	2,39	2,39	0,86	0,34	0,68	0,40	2,85
	56	18,10	4,09	23,90	6,02	1											
	45	23,80	3,90	29,85	5,15												
100	56	24,70	4,60	32,01	6,53	3,05	2,31	1,63	1,00	5,46	2,94	2,94	1,77	0,34	0,68	0,60	4,15
	70	26,00	5,68	35,20	8,70	1											
	56	43,60	6,15	53,60	8,08												
125	70	45,24	7,25	58,55	10,27	3,95	2,87	4,60	1,50	8,60	5,65	5,65	4,65	0,90	1,80	1,15	6,61
	90	49,62	9,21	72,88	14,20	1											
	70	74,55	8,75	85,96	11,77		1										
160	90	79,31	10,72	96,08	15,71	8,33	7,63	7,56	4,66	16,58	7,97	7,97	8,21	1,50	3,00	1,85	10,75
	110	83,90	13,18	106,20	20,64	1											
	90	123,60	12,50	136,52	17,49												
200	110	130,39	14,52	142,65	21,98	10,00	13,82	14,6	9,86	37,00	16,78	16,82	14,80	2,50	5,00	2,50	15,86
	140	137,19	19,14	148,78	31,22	1											

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

22 CYLINDER SECTION

	2 3 5 2 3 5 4 6 5 Variant for rods Ø 12÷28 mm (sealing system 2,4,6,7 and 8) 2.1			5 6 7 8 9	$-1 \sim 7$		Variant Ø 25÷	
POS.	DESCRIPTION	MATERIAL	POS.	DESCRIPTION	MATERIAL	POS.	DESCRIPTION	MATERIAL
POS. 1	DESCRIPTION	MATERIAL Chrome plated steel	POS. 9	DESCRIPTION O-ring	MATERIAL NBR / FKM	POS. 19	DESCRIPTION Cushioning adjustment screw	MATERIAL
1	Rod	Chrome plated steel	9	O-ring	NBR / FKM	19	Cushioning adjustment screw	Steel
1	Rod Wiper	Chrome plated steel NBR / FKM and PTFE	9 10	O-ring Front cushioning piston	NBR / FKM Steel	19 20	Cushioning adjustment screw Seeger	Steel Steel
1 2 2.1	Rod Wiper Wiper (G1)	Chrome plated steel NBR / FKM and PTFE Polyurethane	9 10 11	O-ring Front cushioning piston Screw stop pin	NBR / FKM Steel Steel	19 20 21	Cushioning adjustment screw Seeger O-ring	Steel Steel NBR / FKM
1 2 2.1 3	Rod Wiper Wiper (G1) O-ring	Chrome plated steel NBR / FKM and PTFE Polyurethane NBR / FKM	9 10 11 12	O-ring Front cushioning piston Screw stop pin Cylinder housing	NBR / FKM Steel Steel Steel	19 20 21 22	Cushioning adjustment screw Seeger O-ring Piston guide ring	Steel Steel NBR / FKM PTFE or phenolic resin
1 2 2.1 3 4	Rod Wiper Wiper (G1) O-ring Front head	Chrome plated steel NBR / FKM and PTFE Polyurethane NBR / FKM Steel / cast iron	9 10 11 12 13	O-ring Front cushioning piston Screw stop pin Cylinder housing Piston	NBR / FKM Steel Steel Steel Steel	19 20 21 22 23	Cushioning adjustment screw Seeger O-ring Piston guide ring Piston seal	Steel Steel NBR / FKM PTFE or phenolic resin NBR / FKM and PTFE
1 2 2.1 3 4 5	Rod Wiper Wiper (G1) O-ring Front head Rod seal	Chrome plated steel NBR / FKM and PTFE Polyurethane NBR / FKM Steel / cast iron NBR / FKM and PTFE	9 10 11 12 13 14	O-ring Front cushioning piston Screw stop pin Cylinder housing Piston Nut	NBR / FKM Steel Steel Steel Steel Steel Steel	19 20 21 22 23 23.1	Cushioning adjustment screw Seeger O-ring Piston guide ring Piston seal Piston seal (G1)	Steel Steel NBR / FKM PTFE or phenolic resin NBR / FKM and PTFE NBR and Polyurethane
1 2 2.1 3 4 5 5.1	Rod Wiper Wiper (G1) O-ring Front head Rod seal Rod seal (type G1)	Chrome plated steel NBR / FKM and PTFE Polyurethane NBR / FKM Steel / cast iron NBR / FKM and PTFE Polyurethane	9 10 11 12 13 14 15	O-ring Front cushioning piston Screw stop pin Cylinder housing Piston Nut Tie rod	NBR / FKM Steel Steel Steel Steel Steel Steel Steel	19 20 21 22 23 23.1 24	Cushioning adjustment screw Seeger O-ring Piston guide ring Piston seal Piston seal (G1) Rear cushioning piston	Steel Steel NBR / FKM PTFE or phenolic resin NBR / FKM and PTFE NBR and Polyurethane Steel

