Pressure switches type SMAP

with fixed switching pressure differential and microswitch with gold plated contacts

(1) Servo-piston
(4) Control knob with
(6) Switch actuator
(2) Spring graduated scale
(7) Control knob setscrew
(3) Microswitch
(5) Body
(8) Electric connector

SMAP are hydro-electric pressure switches with fixed switching pressure differential. The mechanical microswitch with gold plated contacts grants high reliability and long life service.
The microswitch changes its status when the pressure in the hydraulic circuit reaches the switching value set on the adjusting knob.The microswitch returns to the original rest position when the pressure in the hydraulic circuit drops below the nominal fixed switching pressure differential (hysteresis). The electric connector provides both NC or NO contacts.
The pressure in the circuit operates the piston (1) acting against the adjustable spring (2); once the pressure setting is reached, the piston (6) actuates the microswitch (3).
The pressure switching value is selectable by a graduated adjusting knob (4).
Clockwise rotation increases the setting pressure.
Max pressure: 630 bar

1
 MODEL CODE

| SMAP |
| :--- | :--- |
| Fixed differential pressure switch |

(
Pressure range:
$\mathbf{4 0}=5 \div 40$ bar $\mathbf{1 6 0}=10 \div 160 \mathrm{bar}$ $\mathbf{8 0}=7 \div 80$ bar $\mathbf{3 2 0}=30 \div 320 \mathrm{bar}$

Options:
$\mathbf{E}=$ Common electric contact connected to pin 1 (see section 3)

2 MAIN CHARACTERISTICS, SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult our technical office

Assembly position / location	Any position		
Subplate surface finishing	Roughness index Ra $0,4-$ flatness ratio $0,01 / 100$ (ISO 1101)		
	Standard execution $=-30^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$ /PE option $=-20^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$		
Ambient temperature	NBR seals (standard) $=-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$, with HFC hydraulic fluids $=-20^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$ FKM seals (/PE option) $=-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$		
Seals, recommended fluid temperature	$15 \div 100 \mathrm{~mm} / \mathrm{s}-$ max allowed range $2.8 \div 500 \mathrm{~mm}^{2} / \mathrm{s}$		
Recommended viscosity	ISO4406 class $20 / 18 / 15 \mathrm{NAS1638}$ class 9, see also filter section at www.atos.com or KTF catalog		
Max fluid contamination level	Suitable seals type	Classification	Ref. Standard
Hydraulic fluid	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524
Mineral oils	FKM	HFDU, HFDR	ISO 12922
Flame resistant without water	NBR	HFC	
Flame resistant with water			

3 CHARACTERISTICS AND WIRING OF INTERNAL MICROSWITCH

	Supply voltage [V]				STD	Rest position	Pressure operated position		
	125 AC	250 AC	30 DC	250 DC					
Max current resistive load [A]	7	5	5	0,2		$\\|_{\\|}^{\square \square} \quad a^{\frac{2}{\square}}$			
Max current inductive load $(\operatorname{Cos} \varphi=0,4)$ $[A]$	4	2	3	0,02		\because			
Insulating resistance	$\geq 100 \mathrm{M} \Omega$				/E				
Contact resistance	$15 \mathrm{~m} \Omega$								
Electrical life-expectancy	$\geq 1.000 .000$ switchings						$1]$		
Mechanical life-expectancy	$\geq 10.000 .000$ switchings								

The diagrams show, the switching pressure difference (hysteresis) between the switching positions of the pressure switch electric contacts.
! The switching pressure differential may increased depending to the deterioration of the fluid contamination class.

5 DIMENSIONS OF SMAP WITHOUT ADAPTORS [mm]

Fastening bolts:
4 socket head screws M5X90 supplied with the pressure switch

