

Digital proportional directional valves high performance

direct, with on-board driver, LVDT transducer and positive spool overlap

DHZE-TID, DKZE-TID

Digital high performances proportional directional valves, direct, with LVDT position transducer and positive spool overlap for directional controls and not compensated flow regulations.

TID on-board digital driver performs the valve's hydraulic regulation according to the reference signal, analog for TID-NP or CANopen for TID-BC.

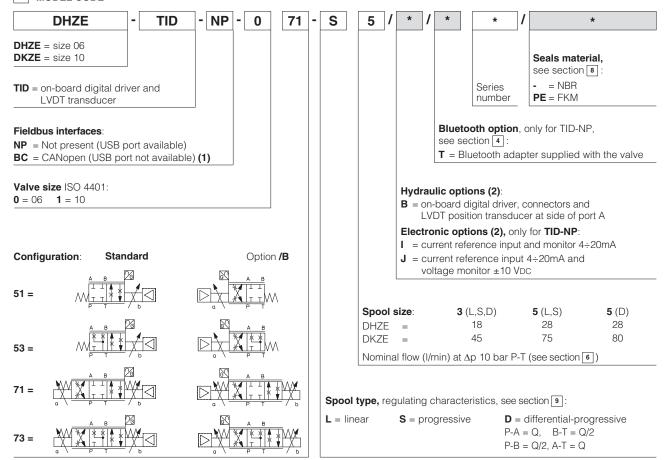
For **TID-NP**, Bluetooth/USB connection is always present for valve settings via mobile App and Atos PC software.

For **TID-BC**, CANopen interface is always present for valve settings via fieldbus and Atos PC software.

The LVDT transducer grants high regulation accuracy and response sensitivity.

With de-energized proportional solenoids, the mechanical central position of the spool is performed by centering springs.

 DHZE:
 DKZE:


 Size: 06 - ISO 4401
 Size: 10 - ISO 4401

 4/3 and 4/2 way
 4/3 and 4/2 way

 Max flow: 80 l/min
 Max flow: 180 l/min

 Max pressure: 350 bar
 Max pressure: 315 bar

1 MODEL CODE

(1) Reference and monitor signals only via CANopen (analog signals not available)

(2) Possible combined options: /BI, /BJ (/T Bluetooth adapter option can be combined with all other options)

2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FS900** and in the user manuals included in the E-SW-SETUP programming software.

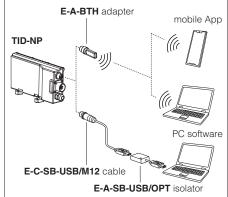
VALVE SETTINGS AND PROGRAMMING TOOLS - see tech. table GS500

3.1 TID-NP

Atos CONNECT mobile App

Free downloadable App for smartphones and tablets which allows quick access to valve main functional parameters and basic diagnostic information via Bluetooth, thus avoiding physical cable connection and significantly reducing commissioning time.

Atos CONNECT supports Atos digital valve drivers equipped with E-A-BTH adapter or with built-in Bluetooth. It does not support valves with p/Q control or axis controls.

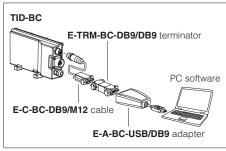

E-SW-SETUP PC software

Free downloadable software for PC allows to set all valve functional parameters and to access complete diagnostic information of digital valve drivers via Bluetooth/USB service port. Atos E-SW-SETUP PC software supports all Atos digital valve drivers and it is available at www.atos.com in MyAtos area.

of E-A-

WARNING: drivers **USB** port is not isolated! For E-C-SB-USB/M12 cable, the use of E-A-SB-USB/OPT isolator adapter is highly recommended for PC protection

Bluetooth or USB connection



3.2 TID-BC

E-SW-SETUP PC software

Free downloadable software for PC allows to set all valve functional parameters and to access complete diagnostic information of digital valve drivers via CANopen connector. Atos E-SW-SETUP PC software supports all Atos digital valve drivers and it is available at www.atos.com in MyAtos area.

CANopen connection

4 BLUETOOTH OPTION - only for TID-NP - see tech. table GS500

T option adds Bluetooth® connectivity to Atos valve drivers thanks to E-A-BTH adapter, which can be left permanently installed on-board, to allow the Bluetooth connection with the valve drivers at any time. E-A-BTH adapter can also be purchased separately and used to connect with any supported Atos digital product.

Bluetooth connection to the valve can be protected against unauthorised access by setting a personal password. The adapter leds visually indicates the status of valve driver and Bluetooth connection.

 \bigwedge

WARNING: for the list of countries where the Bluetooth adapter has been approved, see tech. table **GS500** \(\text{T option is not available for the Indian market, so the Bluetooth adapter must be ordered separately.

5 GENERAL CHARACTERISTICS

Assembly position	Any position		
Subplate surface finishing to ISO 4401	Acceptable roughness index: Ra ≤ 0,8, recommended Ra 0,4 – Flatness ratio 0,01/100		
MTTFd valves according to EN ISO 13849	150 years, for further details see technical table P007		
Ambient temperature range	Standard = -20° C $\div +60^{\circ}$ C /PE option = -20° C $\div +60^{\circ}$ C		
Storage temperature range	Standard = -20° C $\div +70^{\circ}$ C /PE option = -20° C $\div +70^{\circ}$ C		
Surface protection	Zinc coating with black passivation (body), tin plating (driver housing)		
Corrosion resistance	Salt spray test (EN ISO 9227) > 200 h		
Vibration resistance	See technical table G004		
Conformity	CE according to EMC directive 2014/30/EU (Immunity: EN 61000-6-2; Emission: EN 61000-6-3) RoHS Directive 2011/65/EU as last update by 2015/863/EU REACH Regulation (EC) n°1907/2006		

6 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

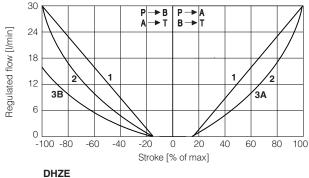
Valve model	DHZE				DKZE								
Pressure limits	[bar]	ports P , A , B = 350; T = 210			ports P , A , B = 315; T = 210								
Spool type and size	(1)	L3, S3)3	L5, S5	0)5	L3, S3	D	3	L5, S5	D	5
Nominal flow Δp P-T	[l/min]		P-A A-T	P-B B-T		P-A A-T	P-B B-T		P-A A-T	P-B B-T		P-A A-T	P-B B-T
(2)	∆p= 10 bar	18	18	9	28	28	14	45	45	25	75	80	57
	Δp= 30 bar	30	30	15	50	50	25	80	80	45	140	140	100
	Δp= 70 bar	45	45	22	75	75	37	120	120	60	170	170	120
N	lax permissible flow	50	50	25	80	80	40	130	130	65	180	180	128
Leakage	[cm³/min]	<30 (at	p = 100) bar);	<135 (at p =	350 ba	ar)	<80 (at	p = 100) bar);	<600 (at p =	315 ba	ır)
Response time (3)	Response time (3) [ms]		≤ 15				≤ :	20					
Hysteresis	≤ 0,2 [% of max regulation]												
Repeatability		± 0,1 [% of max regulation]											
Thermal drift		zero point displacement < 1% at $\Delta T = 40$ °C											

- (1) For spool type \mathbf{D}^* the flow value is referred to $\Delta p/2$ per control edge
- (2) For different Δp , the max flow is in accordance to the diagrams in section 9.2
- (3) 0-100% step signal

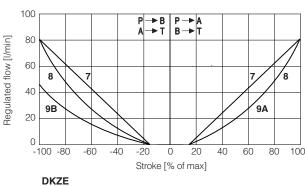
7 ELECTRICAL CHARACTERISTICS

Power supplies		lominal : +24 VDC lectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)		
Max power consumption	50 W			
Max. solenoid current	DHZE = 2,6 A	DKZE = 3 A		
Coil resistance R at 20°C	DHZE = $3,1 \Omega$	DKZE = 3.2Ω		
Analog input signals (1)	Voltage: range ±10 VDC (2 Current: range ±20 mA	24 VMAX tolerant)	Input impedance: Input impedance:	$Ri > 50 \text{ k}\Omega$ $Ri = 500 \Omega$
Monitor outputs (1)		Output range: voltage ±10 VDC @ max 5 mA current ±20 mA @ max 500 Ω load resistance		
Alarms		Solenoid not connected/short circuit, cable break with current reference signal (1), over/under temperature, valve spool transducer malfunctions, alarms history storage function		
Insulation class	H (180°) Due to the occurring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account			
Protection degree to DIN EN60529	IP66 / IP67 with mating connectors			
Duty factor	Continuous rating (ED=1009	%)		
Additional characteristics	Short circuit protection of solenoid's current supply; spool position control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply			
Communication interface	USB - Atos ASCII coding		CANopen - EN50325-4 +	DS408
Communication physical layer	not insulated - USB 2.0 + U	SB OTG	optical insulated - CAN IS	SO11898
Recommended wiring cable	LiYCY shielded cables, see	section 15		

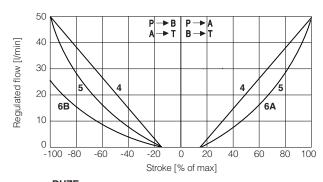
(1) Available only for TID-NP

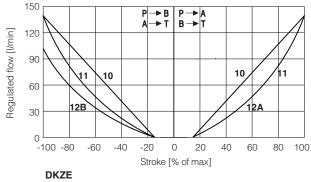

Note: a maximum time of 500 ms (depending on communication type) has to be considered between the driver energizing with the 24 V_{DC} power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

8 SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult Atos Technical Office


Seals, recommended fluid temperature		NBR seals (standard) = -20°C \div +60°C, with HFC hydraulic fluids = -20°C \div +50°C FKM seals (/PE option) = -20°C \div +80°C			
Recommended viscosity		20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s			
Max fluid	normal operation	ISO4406 class 18/16/13 NAS1638 class 7		see also filter section at	
contamination level	longer life	ISO4406 class 16/14/11 NAS1	www.atos.com or KTF catalog		
Hydraulic fluid		Suitable seals type	Classification	Ref. Standard	
Mineral oils		NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524	
Flame resistant without water		FKM	HFDU, HFDR	ISO 12922	
Flame resistant with water		NBR HFC		130 12922	

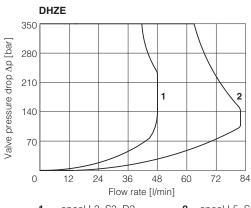
9 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)


Regulation diagrams - values measure at Δp 30 bar P-T

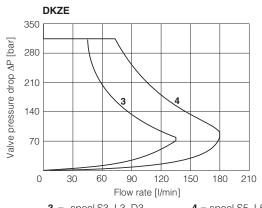

 $\mathbf{3A} = D3 (P \rightarrow A, A \rightarrow T)$ $\mathbf{3B} = D3 (P \rightarrow B, B \rightarrow T)$ **2** = S3 **1** = L3

9A = D3 (P \rightarrow A, A \rightarrow T) **9B** = D3 (P \rightarrow B, B \rightarrow T) **8** = S3 **7** = L3

DHZE 6A = D5 (P \rightarrow A, A \rightarrow T) **6B** = D5 (P \rightarrow B, B \rightarrow T) **4** = L5 **5** = S5



12A = D5 (P \rightarrow A, A \rightarrow T) **12B** = D5 (P \rightarrow B, B \rightarrow T) **10** = L5 **11** = S5


Note: Hydraulic configuration vs. reference signal for configuration 71 and 73 (standard and option /B)

Reference signal $\begin{array}{cc} 0 \ \div \ +10 \ V \\ 12 \ \div \ 20 \ mA \end{array} \right\} \ P \longrightarrow A \ / \ B \longrightarrow T$ Reference signal $\begin{array}{c} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array}$ $\begin{array}{c} P \rightarrow B / A \rightarrow T \end{array}$

9.2 Operating limits

1 = spool L3, S3, D3 2 = spool L5, S5, D5

3 = spool S3, L3, D3 4 = spool S5, L5, D5

10 HYDRAULIC OPTIONS

B = Configurations 51, 53: solenoid, on-board digital driver connectors and LVDT transducer at side of port A. Configurations 71, 73: on-board digital driver connections and LVDT transducer at side of port A. For hydraulic configuration vs reference signal, see 9.1

11 ELECTRONIC OPTIONS - only for TID-NP

- I = This option provides 4 ÷ 20 mA current reference and monitor signals, instead of the standard ±10 VDC. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- J = This option provides 4 ÷ 20 mA current reference and ±10 VDc voltage monitor signals. The valve functioning is disabled in case of reference signal cable breakage.

12 POSSIBLE COMBINED OPTIONS

/BI, /BJ

Note: /T Bluetooth adapter option can be combined with all other options

13 POWER SUPPLY AND SIGNALS SPECIFICATIONS

13.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 μ F/40 V capacitance to single phase rectifiers or a 4700 μ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to the power supply: 2,5 A time lag fuse.

13.2 Flow reference input signal (Q_INPUT+) - only for TID-NP

The driver controls in closed loop the valve spool position proportionally to the external reference input signal. Standard (voltage reference input): default is ± 10 VDC and can be reconfigured via software, within a maximum range of ± 10 VDC. Options /I and /J (current reference input): default is $4 \div 20$ mA and can be reconfigured via software, within a maximum range of ± 20 mA.

13.3 Flow monitor output signal (Q_MONITOR) - only for TID-NP

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver.

Standard and option /J (voltage monitor output): default is ± 10 VDC and can be reconfigured via software, within a maximum range of ± 10 VDC. Option /I (current monitor output): default is $4 \div 20$ mA and can be reconfigured via software, within a maximum range of ± 20 mA.

Note:

monitor output signal must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, ISO 4413).

14 ELECTRONIC CONNECTIONS

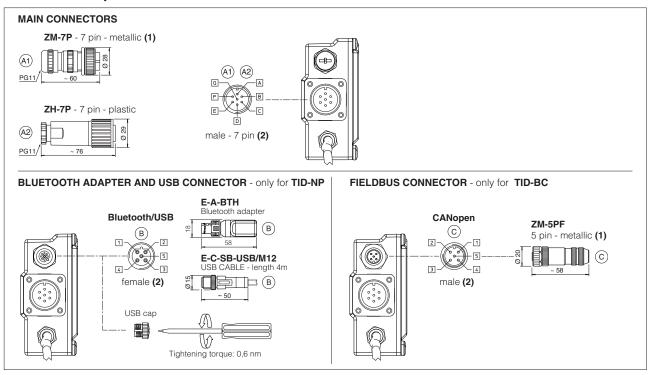
14.1 Main connector signals - 7 pin (A1) (A2)

PIN	TID-NP	TID-BC	TECHNICAL SPECIFICATIONS	NOTES
Α	V+		Power supply 24 Vpc	Input - power supply
В	V0		Power supply 0 Vpc	Gnd - power supply
С	AGND	(1)	Analog ground	Gnd - analog signal
D	Q_INPUT+	(1)	Flow reference input signal: ±10 Vpc for standard, 4 ÷ 20 mA for /I and /J options	Input - analog signal
Е	INPUT-	(1)	Negative reference input signal for Q_INPUT+	Input - analog signal
F	Q_MONITOR	(1)	Flow monitor output signal: ±10 Vpc for standard and /J option, 4 ÷ 20 mA for /I option, referred to AGND	Output - analog signal
G	EARTH		Internally connected to driver housing	

⁽¹⁾ Do not connect for TID-BC

14.2 USB connector - M12 5 pin (B) - only for TID-NP

PIN	SIGNAL	TECHNICAL SPECIFICATION (1)
1	+5V_USB	Power supply
2	ID	Identification
3	GND_USB	Signal zero data line
4	D-	Data line -
5	D+	Data line +


(1) Shield connection on connector housing is recommended

14.3 CANopen connector - M12 - 5 pin (C) - only for TID-BC

PIN	SIGNAL	TECHNICAL SPECIFICATION (1)
1	CAN_SHLD	Shield
2	not used	-
3	CAN_GND	Signal zero data line
4	CAN_H	Bus line (high)
5	CAN_L	Bus line (low)

(1) Shield connection on connector housing is recommended

14.4 Connections layout

(1) use of metallic connectors is strongly recommended in order to fulfill EMC requirements

(2) pin layout always referred to driver's view

15 CONNECTORS CHARACTERISTICS - to be ordered separately

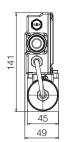
15.1 Main connectors - 7 pin

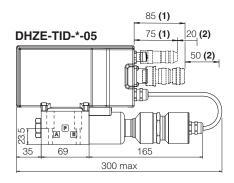
CONNECTOR TYPE	POWER SUPPLY AND SIGNALS	POWER SUPPLY AND SIGNALS	
CODE	(A1) ZM-7P	(A2) ZH-7P	
Туре	7pin female straight circular	7pin female straight circular	
Standard	According to MIL-C-5015	According to MIL-C-5015	
Material	Metallic	Plastic reinforced with fiber glass	
Cable gland	PG11	PG11	
Recommended cable	LiYCY 7 x 0,75 mm ² max 20 m (logic and power supply) or LiYCY 7 x 1 mm ² max 40 m (logic and power supply)	LiYCY 7 x 0,75 mm ² max 20 m (logic and power supply) or LiYCY 7 x 1 mm ² max 40 m (logic and power supply)	
Conductor size	up to 1 mm ² - available for 7 wires	up to 1 mm ² - available for 7 wires	
Connection type	to solder	to solder	
Protection (EN 60529)	ection (EN 60529) IP 67 IP 67		

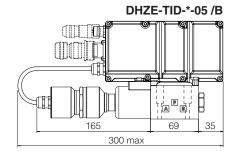
15.2 Fieldbus communication connector - only for TID-BC

CONNECTOR TYPE	CANopen
CODE	© ZM-5PF
Туре	5 pin female straight circular
Standard	M12 coding A – IEC 61076-2-101
Material	Metallic
Cable gland	Pressure nut - cable diameter 6÷8 mm
Cable	CANbus Standard (DR 303-1)
Connection type	screw terminal
Protection (EN 60529)	IP67

16 FASTENING BOLTS AND SEALS


	DHZE	DKZE
	Fastening bolts: 4 socket head screws M5x30 class 12.9 Tightening torque = 8 Nm	Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm
0	Seals: 4 OR 108 Diameter of ports A, B, P, T: Ø 7,5 mm (max)	Seals: 5 OR 2050 Diameter of ports A, B, P, T: Ø 11,2 mm (max)

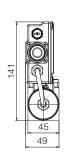

DHZE-TID-*-05

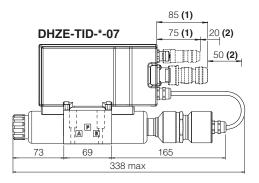

ISO 4401: 2000

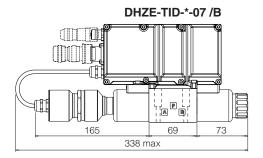
Mounting surface: 4401-03-02-0-05

(see table P005)

DHZE-*-05	Mass [kg]
all versions	2,5


- (1) The indicated dimension refers to the longer connectors or Bluetooth adapter For dimensions of connectors and Bluetooth adapter, see section 14.4
- (2) Space required for connection cable and for connector removal

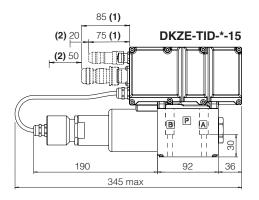

DHZE-TID-*-07

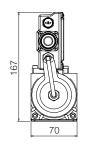

ISO 4401: 2000

Mounting surface: 4401-03-02-0-05

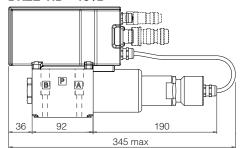
(see table P005)

DHZE-*-07	Mass [kg]
all versions	3


- (1) The indicated dimension refers to the longer connectors or Bluetooth adapter For dimensions of connectors and Bluetooth adapter, see section 14.4
- (2) Space required for connection cable and for connector removal


DKZE-TID-*-15

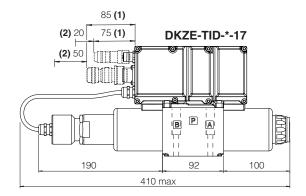
ISO 4401: 2000

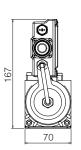

Mounting surface: 4401-05-04-0-05

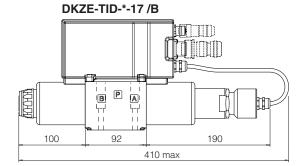
(see table P005)

DKZE-TID-*-15 /B

DKZE-*-15	Mass [kg]
all versions	5,5


- (1) The indicated dimension refers to the longer connectors or Bluetooth adapter For dimensions of connectors and Bluetooth adapter, see section 14.4
- (2) Space required for connection cable and for connector removal


DKZE-TID-*-17


ISO 4401: 2000

Mounting surface: 4401-03-02-0-05

(see table P005)

DHZE-*-17	Mass [kg]		
all versions	7,1		

- (1) The indicated dimension refers to the longer connectors or Bluetooth adapter For dimensions of connectors and Bluetooth adapter, see section 14.4
- (2) Space required for connection cable and for connector removal

18 RELATED DOCUMENTATION

FS001	Basics for digital electrohydraulics	K800	Electric and electronic connectors
FS900	Operating and maintenance information for proportional valves	P005	Mounting surfaces for electrohydraulic valves
GS500	Programming tools	QB310	Quickstart for TID-NP valves commissioning
GS510	Fieldbus	QF310	Quickstart for TID-BC valves commissioning
		E-MAN-	RI-TID TID user manual