





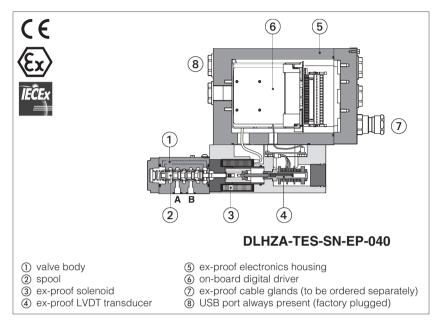
First class facilities

# **GENERAL INDEX**

PROPORTIONAL VALVES Ex-d AXIS & P/Q CONTROLS Ex-d ON-OFF VALVES Ex-d, Ex-ia CYLINDERS & PUMPS Ex-h **ACCESSORIES GENERAL INFORMATION** 






| Ex-d                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Size                                                                                                         | Qmax [l/min]                                                                                                                                   | Table                                                                         | Po                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|
| TECHNICAL INFORMATIO                                                                                                                                                                                                                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                         | 4av [0, 11111]                                                                                                                                 |                                                                               |                                          |
| Basics for electrohydraulic                                                                                                                                                                                                                                                             | s in hazardous environments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                                                                                                                                | X010                                                                          | 54                                       |
| Summary of Atos ex-proof                                                                                                                                                                                                                                                                | components multicertified to ATEX, IECEx, EAC, PES                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                           |                                                                                                                                                | X020                                                                          | 5!                                       |
| Summary of Atos ex-proof                                                                                                                                                                                                                                                                | components certified to cULus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                                                | X030                                                                          | 56                                       |
| Programming tools for dig                                                                                                                                                                                                                                                               | ital electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                                                | GS500                                                                         | 5                                        |
| Fieldbus features                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                                                                | GS510                                                                         | 58                                       |
| Mounting surface for electi                                                                                                                                                                                                                                                             | rohydraulic valves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                                                                                | P005                                                                          | 59                                       |
| Mounting surface and cavi                                                                                                                                                                                                                                                               | ties for cartridge valves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                                                                                                | P006                                                                          | 5                                        |
| SERVOPROPORTIONAL D                                                                                                                                                                                                                                                                     | PIRECTIONALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                                                                                                                                                |                                                                               |                                          |
| zero overlap with LVDT tra                                                                                                                                                                                                                                                              | nsducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                                                |                                                                               |                                          |
| DLHZA-TES, DLKZA-TES                                                                                                                                                                                                                                                                    | direct, sleeve execution, on-board driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06 ÷ 10                                                                                                      | 50 ÷ 100                                                                                                                                       | FX150                                                                         |                                          |
| DLHZA-T, DLKZA-T                                                                                                                                                                                                                                                                        | direct, sleeve execution, off-board driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06 ÷ 10                                                                                                      | 50 ÷ 100                                                                                                                                       | FX140                                                                         |                                          |
| DHZA-TES, DKZA-TES                                                                                                                                                                                                                                                                      | direct, on-board driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06 ÷ 10                                                                                                      | 60 ÷ 150                                                                                                                                       | FX135                                                                         |                                          |
| DPZA-LES                                                                                                                                                                                                                                                                                | piloted, on-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 ÷ 27                                                                                                      | 180 ÷ 800                                                                                                                                      | FX235                                                                         |                                          |
| 11074 1 56                                                                                                                                                                                                                                                                              | 3 way cartridge, piloted,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 . 00                                                                                                      | F00 : F000                                                                                                                                     | EV700                                                                         |                                          |
| LIQZA-LES                                                                                                                                                                                                                                                                               | on-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 ÷ 80                                                                                                      | 500 ÷ 5000                                                                                                                                     | FX380                                                                         | •                                        |
| 11074 1                                                                                                                                                                                                                                                                                 | 3 way cartridge, piloted,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 . 00                                                                                                      | F00 : F000                                                                                                                                     | EV770                                                                         |                                          |
| LIQZA-L                                                                                                                                                                                                                                                                                 | off-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 ÷ 80                                                                                                      | 500 ÷ 5000                                                                                                                                     | FX370                                                                         |                                          |
| HIGH PERFORMANCE DIF                                                                                                                                                                                                                                                                    | RECTIONALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                                                                                                |                                                                               |                                          |
| positive overlap with LVD1                                                                                                                                                                                                                                                              | transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06 ÷ 10                                                                                                      | 60 ÷ 150                                                                                                                                       | FX130                                                                         |                                          |
| positive overlap with LVDT<br>DHZA-TES, DKZA-TES                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06 ÷ 10<br>06 ÷ 10                                                                                           | 60 ÷ 150<br>60 ÷ 150                                                                                                                           | FX130<br>FX120                                                                |                                          |
| positive overlap with LVD1<br>DHZA-TES, DKZA-TES<br>DHZA-T, DKZA-T                                                                                                                                                                                                                      | direct, on-board driver direct, off-board driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                                                |                                                                               |                                          |
| positive overlap with LVDT<br>DHZA-TES, DKZA-TES<br>DHZA-T, DKZA-T<br>DPZA-LES                                                                                                                                                                                                          | transducer direct, on-board driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06 ÷ 10                                                                                                      | 60 ÷ 150                                                                                                                                       | FX120                                                                         |                                          |
| positive overlap with LVDT<br>DHZA-TES, DKZA-TES<br>DHZA-T, DKZA-T<br>DPZA-LES<br>DPZA-T                                                                                                                                                                                                | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer                                                                                                                                                                                                                                                                                                                                                                                     | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32                                                                                | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000                                                                                                            | FX120<br>FX230<br>FX220                                                       |                                          |
| HIGH PERFORMANCE DIF<br>positive overlap with LVDI<br>DHZA-TES, DKZA-TES<br>DHZA-T, DKZA-T<br>DPZA-LES<br>DPZA-T                                                                                                                                                                        | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06 ÷ 10<br>10 ÷ 27                                                                                           | 60 ÷ 150<br>180 ÷ 800                                                                                                                          | FX120<br>FX230                                                                |                                          |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES                                                                                                                                                                                                  | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                                                                                   | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100                                                                    | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000                                                                                            | FX120<br>FX230<br>FX220<br>FX360                                              | 10                                       |
| positive overlap with LVDT<br>DHZA-TES, DKZA-TES<br>DHZA-T, DKZA-T<br>DPZA-LES<br>DPZA-T                                                                                                                                                                                                | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted,                                                                                                                                                                                                                                                                                                                                                       | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32                                                                                | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000                                                                                                            | FX120<br>FX230<br>FX220                                                       | 10                                       |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES                                                                                                                                                                                                  | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted,                                                                                                                                                                                                                                                                                     | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100                                                                    | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000                                                                                            | FX120<br>FX230<br>FX220<br>FX360                                              | 10                                       |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-L                                                                                                                                                                                          | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100                                                                    | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000                                                                                            | FX120<br>FX230<br>FX220<br>FX360                                              | 100                                      |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-L DIRECTIONAL VALVES positive overlap without tr                                                                                                                                           | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100                                                                    | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000                                                                                            | FX120<br>FX230<br>FX220<br>FX360                                              | 10                                       |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES                                                                                                                                                                                                  | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers                                                                                                                                                                                                                                                | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100                                                                    | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000                                                                                            | FX120<br>FX230<br>FX220<br>FX360<br>FX350                                     | 100                                      |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-L DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A                                                                                                         | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver                                                                                                                                                                                                              | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100                                                        | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000                                                                            | FX120<br>FX230<br>FX220<br>FX360<br>FX350                                     | 10                                       |
| DHZA-TES, DKZA-TES DHZA-T, DKZA-T DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A                                                                                                                             | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, off-board driver direct, off-board driver                                                                                                                                                            | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100                                                        | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120                                                    | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100                   | 10                                       |
| DHZA-TES, DKZA-TES DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES  DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A                                                                                                                        | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, off-board driver piloted, on-board driver piloted, off-board driver                                                                                                                                  | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>06 ÷ 10<br>10 ÷ 32                       | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500                                      | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210          | 10                                       |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-LES DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A DPZA-AES DPZA-A HIGH PERFORMANCE PR                                                                   | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, off-board driver piloted, on-board driver piloted, off-board driver                                                                                                                                  | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>06 ÷ 10<br>10 ÷ 32                       | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500                                      | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210          | 10                                       |
| DHZA-TES, DKZA-TES DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-L  DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A DPZA-AES DPZA-A  HIGH PERFORMANCE PR with pressure transducer                                                  | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, on-board driver piloted, on-board driver piloted, off-board driver piloted, off-board driver  ESSURE VALVES                                                                                          | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>06 ÷ 10<br>10 ÷ 32<br>10 ÷ 32            | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500<br>180 ÷ 1500                        | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210<br>FX200 | 10                                       |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-L LIQZA-LES LIQZA-L DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-AES DPZA-AES DPZA-A HIGH PERFORMANCE PR with pressure transducer RZMA-RES, AGMZA-RES                              | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, off-board driver piloted, on-board driver piloted, off-board driver  ESSURE VALVES  relief, direct or piloted, on-board driver   | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>10 ÷ 32<br>10 ÷ 32                       | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500<br>180 ÷ 1500                        | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210<br>FX200 | 10 11 11 11 11 11 11 11 11 11 11 11 11 1 |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-LES DIRECTIONAL VALVES positive overlap without tr DHZA-AES, DKZA-AES DHZA-A, DKZA-A DPZA-AES DPZA-A HIGH PERFORMANCE PR with pressure transducer RZMA-RES, AGMZA-RES RZGA-RES, AGRCZA-RES | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, on-board driver piloted, on-board driver piloted, off-board driver piloted, off-board driver  ESSURE VALVES  relief, direct or piloted, on-board driver reducing, direct or piloted, on-board driver | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>10 ÷ 32<br>10 ÷ 32<br>06 ÷ 32<br>06 ÷ 20 | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500<br>180 ÷ 1500<br>4 ÷ 600<br>12 ÷ 300 | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210<br>FX200 | 10 11 11 11 11 11 11 11 11 11 11 11 11 1 |
| positive overlap with LVDT DHZA-TES, DKZA-TES DHZA-T, DKZA-T DPZA-LES DPZA-T LIQZA-LES LIQZA-L DIRECTIONAL VALVES positive overlap without tr                                                                                                                                           | direct, on-board driver direct, off-board driver piloted, on-board driver, 2 LVDT transducers piloted, off-board driver, 1 LVDT transducer 2 way ISO cartridge, piloted, on-board driver, 2 LVDT transducers 2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  2 way ISO cartridge, piloted, off-board driver, 2 LVDT transducers  ansducer direct, on-board driver direct, off-board driver piloted, on-board driver piloted, off-board driver  ESSURE VALVES  relief, direct or piloted, on-board driver   | 06 ÷ 10<br>10 ÷ 27<br>10 ÷ 32<br>25 ÷ 100<br>25 ÷ 100<br>06 ÷ 10<br>10 ÷ 32<br>10 ÷ 32                       | 60 ÷ 150<br>180 ÷ 800<br>180 ÷ 1000<br>1200 ÷ 16000<br>1200 ÷ 16000<br>60 ÷ 120<br>60 ÷ 120<br>180 ÷ 1500<br>180 ÷ 1500                        | FX120<br>FX230<br>FX220<br>FX360<br>FX350<br>FX110<br>FX100<br>FX210<br>FX200 | 10                                       |

| PRESSURE VALVES                |                                                      | Size             | Qmax [I/min] | Table | Pag       |
|--------------------------------|------------------------------------------------------|------------------|--------------|-------|-----------|
| without transducer             |                                                      |                  |              |       |           |
| RZMA-AES, AGMZA-AES            | relief, direct or piloted, on-board driver           | 06 ÷ 32          | 4 ÷ 600      | FX020 | 197       |
| RZMA-A, AGMZA-A                | relief, direct or piloted, off-board driver          | 06 ÷ 32          | 4 ÷ 600      | EV010 | 200       |
| HZMA-A                         | relief, piloted, off-board driver, modular           | 06               | 40           | FX010 | 209       |
| RZGA-AES, AGRCZA-AES           | reducing, direct or piloted, on-board driver         | 06 ÷ 20          | 12 ÷ 300     | FX050 | 217       |
| RZGA-A, AGRCZA-A               | reducing, direct or piloted, off-board driver        | 06 ÷ 20          | 12 ÷ 300     | FX040 | 227       |
| HZGA-A, KZGA-A                 | reducing, piloted, off-board driver, modular         | 06 ÷ 10          | 40 ÷ 100     | FXU4U | 221       |
| LIMZA-AES                      | relief ISO cartridge, piloted, on-board driver       | 16 ÷ 80          | 200 ÷ 4500   |       |           |
| LIRZA-AES                      | reducing ISO cartridge, piloted, on-board driver     | 16 ÷ 40          | 160 ÷ 800    | FX310 | 235       |
| LICZA-AES                      | compensator ISO cartridge, piloted, on-board driver  | 16 ÷ 50          | 200 ÷ 2000   |       |           |
| LIMZA-A                        | relief ISO cartridge, piloted, off-board driver      | 16 ÷ 80          | 200 ÷ 4500   |       |           |
| LIRZA-A                        | reducing ISO cartridge, piloted, off-board driver    | 16 ÷ 40          | 160 ÷ 800    | FX300 | 247       |
| LICZA-A                        | compensator ISO cartridge, piloted, off-board driver | 16 ÷ 50          | 200 ÷ 2000   |       |           |
| for pilot lines, without trans | sducer                                               |                  |              |       |           |
| DHRZA-AES                      | 3 way reducing, direct, on-board driver              | 06               | 24           | FX080 | 255       |
| DHRZA-A                        | 3 way reducing, direct, off-board driver             | 06               | 24           | FX070 | 263       |
| FLOW VALVES                    |                                                      |                  |              |       |           |
| pressure compensated           |                                                      |                  |              |       |           |
| QVHZA-TES, QVKZA-TES           | direct, on-board driver, LVDT transducer             | 06 ÷ 10          | 45 ÷ 90      | FX430 | 269       |
| QVHZA-T, QVKZA-T               | direct, off-board driver, LVDT transducer            | 06 ÷ 10          | 45 ÷ 90      | FX420 | 279       |
| QVHZA-AES, QVKZA-AES           | direct, on-board driver, without transducer          | 06 ÷ 10          | 45 ÷ 90      | FX410 | 285       |
| QVHZA-A, QVKZA-A               | direct, off-board driver, without transducer         | 06 ÷ 10          | 45 ÷ 90      | FX400 | 295       |
| ELECTRONIC DRIVERS             |                                                      |                  |              |       |           |
| off-board digital, DIN-rail I  | EN 60715                                             |                  |              |       |           |
|                                | for directional and flow valves with LVDT transduc   | ers, fieldbus, F | P/Q control  | GS240 | 30        |
| E-BM-TEB/A, E-BM-LEB/A         | for directional and flow valves with LVDT transduc   | ers              | -            | GS230 | 309       |
| E-BM-AES/A                     | for valves without transducer, fieldbus              |                  |              | GS050 | 315       |
| E-BM-AS/A                      | for valves without transducer                        |                  |              | G030  | 32        |
| ACCESSORIES                    |                                                      |                  |              |       |           |
| E-ATRA-7                       | pressure transducer with amplified analog output     | signal           |              | GX800 | <b>52</b> |
| BA                             | single station subplates, mounting surfaces ISO 4    | 401, 6264 an     | d 5781       | K280  | 523       |
| BA-214, BA-314, BA-244         | multi-station subplates, mounting surface ISO 44     | .01              |              | K290  | 527       |
| BA-214/AL                      | multi-station subplates, mounting surface ISO 44     | 01, aluminiun    | า            | K295  | 53        |
| LIAND LEVEDS                   | for on-off and proportional valves                   |                  |              | E138  | 533       |
| HAND LEVERS                    |                                                      |                  |              |       |           |
| CABLE GLANDS                   | for proportional and on-off valves, standard or arr  | moured cables    | 5            | KX800 | 535       |
|                                | for proportional and on-off valves, standard or arr  | moured cables    | 5            | KX800 | 535       |



# Ex-proof digital servoproportional directional valves sleeve execution

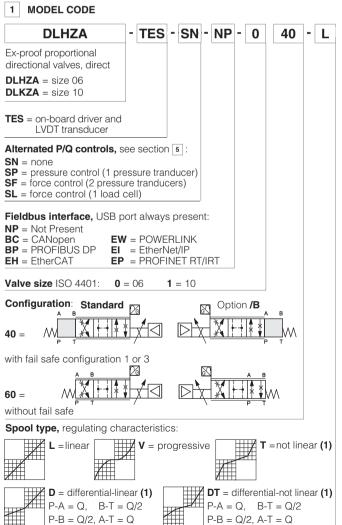
direct, with on-board driver, LVDT transducer and zero spool overlap - ATEX and IECEx

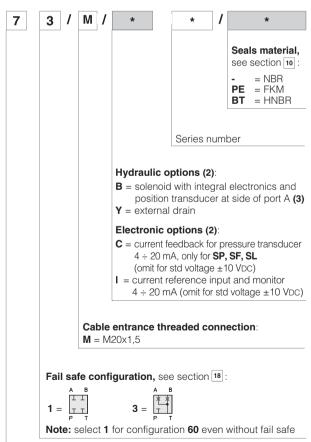


# **DLHZA-TES, DLKZA-TES**

Ex-proof digital servoproportional directional valves, direct, sleeve execution, with LVDT position transducer and zero spool overlap for best performances in any position closed loop control.

They are equipped with ex-proof on-board digital driver, LVDT transucer and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.


### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment. The driver and solenoid are also designed to limit the surface temperature within the classified limits.

TEZ execution includes valve driver plus axis card to perform position control (see section 6).

DLHZA: Size: 06 -ISO 4401 Max flow: 50 l/min Max pressure: 350 bar

DLKZA: Size: 10 -ISO 4401 Max flow: 100 l/min Max pressure: 315 bar





(1) Only for configuration 40 (2) For possible combined options, see section 16

FX150 PROPORTIONAL VALVES

8

Nominal flow (I/min) at  $\Delta p$  70bar P-T

**Spool size**: **0**(L) **1**(V) **3**(L) **3**(T) **3**(V) **5**(L,T) **7**(L,T,V,D,DT)

60

20

40

100

### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

### VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support:
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support:
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

### 4 FIELDBUS - see tech. table GS510

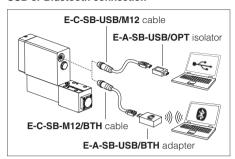
Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 5 ALTERNATED P/Q CONTROLS - see tech. table FX500

S\* options add the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP, 2 pressure transducers for SF or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

### 6 AXIS CONTROLLER - see tech. table FX610


Digital servoproportional with integral electronics **TEZ** include valve's driver plus axis controller, performing position closed loop of any hydraulic actuator equipped with analog, encoder or SSI position transducer. Alternated pressure or force closed loop control can be set by software additionally to the position control.

Atos also supplies complete servoactuators integrating servocylinder, digital servoproportional valve and axis controller, fully assembled and tested. For more information consult Atos Technical Office.

# 7 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                           |                                  |                                                       |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤                                                                                       | ≤0,8 recommended Ra 0,4 - fla    | atness ratio 0,01/100                                 |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P00                                                                                     | )7                               |                                                       |  |  |  |
| Ambient temperature range              | Standard = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$                                                              | <b>PE</b> option = -20°C ÷ +60°C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+60^{\circ}$ C |  |  |  |
| Storage temperature range              | Standard = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$                                                              | <b>PE</b> option = -20°C ÷ +70°C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C |  |  |  |
| Surface protection                     | Zinc coating with black passivation                                                                                    | n - salt spray test (ISO 9227) > | > 200 h                                               |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" |                                  |                                                       |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                               |                                  |                                                       |  |  |  |

### **USB** or Bluetooth connection



# 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                 |                         |      | DLHZA |      |               |      |                                   | DLKZA |         |         |      |      |       |       |                                                                                            |       |       |      |       |      |
|-----------------------------|-------------------------|------|-------|------|---------------|------|-----------------------------------|-------|---------|---------|------|------|-------|-------|--------------------------------------------------------------------------------------------|-------|-------|------|-------|------|
| Pressure limits             | [bar]                   |      |       | 7    | <b>「</b> = 21 |      | s <b>P</b> , <b>A</b> ,<br>0 with |       |         | rain /\ | ′)   |      |       | T =   | ports <b>P</b> , <b>A</b> , <b>B</b> = 315;<br><b>T</b> = 210 (250 with external drain /Y) |       |       |      |       |      |
| Spool type                  |                         | L0   | L1    | V1   | L3            | ٧3   | L5                                | T5    | L7      | T7      | V7   | D7   | DT7   | L3    | Т3                                                                                         | L7    | T7    | V7   | D7    | DT7  |
| Nominal flow [I             | l/min]                  |      |       |      |               |      |                                   |       |         |         |      |      |       |       |                                                                                            |       |       |      |       |      |
|                             | at $\Delta p = 30$ bar  | 2,5  | 4,5   | 8    | 9             | 13   | 18                                | 3     |         | 26      |      | 26-  | ÷13   | 4     | 0                                                                                          |       | 60    |      | 60    | ÷33  |
| Δρ Ρ-Τ                      | at $\Delta p = 70$ bar  | 4    | 7     | 12   | 14            | 20   | 28                                | 3     |         | 40      |      | 40-  | ÷20   | 6     | 0                                                                                          |       | 100   |      | 100   | )÷50 |
|                             | max permissible flow    | 5    | 9     | 16   | 18            | 26   | 32                                | 2     |         | 50      |      | 50-  | ÷28   | 7     | 0                                                                                          |       | 100   |      | 100   | )÷50 |
| Δp max P-T                  | [bar]                   | 120  | 120   | 120  | 120           | 120  | 10                                | 0     |         | 100     |      | 10   | 00    | 9     | 0                                                                                          |       | 70    |      | 7     | 70   |
| Leakage [cm <sup>3</sup> /n | nin] at P = 100 bar (1) | <100 | <200  | <100 | <300          | <150 | <500                              | <200  | <900    | <200    | <200 | <700 | <200  | <1000 | <400                                                                                       | <1500 | <400  | <400 | <1200 | <400 |
| Response time               | [ms] <b>(2)</b>         |      | •     |      |               | •    | ≤ 1                               | 13    |         |         |      | •    | •     |       | •                                                                                          |       | ≤ 20  |      | •     |      |
| Hysteresis                  | [% of max regulation]   |      |       |      | ≤ 0,1         |      |                                   |       | ≤ 0,1   |         |      |      |       |       |                                                                                            |       |       |      |       |      |
| Repeatibility               | [% of max regulation]   |      |       |      |               |      | ± 0                               | ,1    |         |         |      |      |       |       |                                                                                            |       | ± 0,1 |      |       |      |
| Thermal drift               |                         |      |       |      |               |      | zer                               | ro po | int dis | place   | ment | < 1% | at ∆T | = 40  | °C                                                                                         |       |       |      |       |      |

<sup>(1)</sup> referred to spool in neutral position and 50°C oil temperature

# 9 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal<br>Rectified and filtered                      | Nominal : +24 VDC<br>Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                                                                |                                           |                                                                       |  |  |  |
|-------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                   | 5 W                                                                                                                                                                                                                    |                                           |                                                                       |  |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r              | /DC (24 VMAX tollerant)<br>nA                                                                                                                                                                                          | Input impedance<br>Input impedance        |                                                                       |  |  |  |
| Insulation class                    | ' '                                                    | ccuring surface tempera<br>82 must be taken into a                                                                                                                                                                     |                                           | ils, the European standards                                           |  |  |  |
| Monitor outputs                     |                                                        | oltage ±10 VDC @ ma<br>urrent ±20 mA @ ma                                                                                                                                                                              | ax 5 mA<br>x 500 $\Omega$ load resistance |                                                                       |  |  |  |
| Enable input                        | Range: 0 ÷ 5 VDC (OFF                                  | state), 9 ÷ 24 VDC (ON                                                                                                                                                                                                 | state), 5 ÷ 9 VDC (not acc                | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |  |
| Fault output                        |                                                        | VDC (ON state > [power<br>age not allowed (e.g. du                                                                                                                                                                     |                                           | ate < 1 V ) @ max 50 mA;                                              |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 i                                     | mA (E-ATRA-7 see tech                                                                                                                                                                                                  | table GX800)                              |                                                                       |  |  |  |
| Alarms                              | Solenoid not connecte valve spool transduce            |                                                                                                                                                                                                                        | oreak with current refere                 | nce signal, over/under temperature,                                   |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                  | cable gland                                                                                                                                                                                                            |                                           |                                                                       |  |  |  |
| Duty factor                         | Continuous rating (ED                                  | =100%)                                                                                                                                                                                                                 |                                           |                                                                       |  |  |  |
| Tropicalization                     | Tropical coating on el                                 |                                                                                                                                                                                                                        |                                           |                                                                       |  |  |  |
| Additional characteristics          | Short circuit protection of by P.I.D. with rapid soler | Short circuit protection of solenoid's current supply; spool position control (SN) or pressure/force control (SP, SF, SL) by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                           |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive                                 | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                                                                     |                                           |                                                                       |  |  |  |
| Communication interface             | USB Atos ASCII coding                                  | CANopen<br>EN50325-4 + DS408                                                                                                                                                                                           | PROFIBUS DP<br>EN50170-2/IEC61158         | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                     | optical insulated<br>CAN ISO11898                                                                                                                                                                                      | optical insulated<br>RS485                | Fast Ethernet, insulated 100 Base TX                                  |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | I temperature    | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C<br>FKM seals (/PE option) = -20°C ÷ +80°C<br>HNBR seals (/BT option) = -40°C ÷ +60°C, with HFC hydraulic fluids = -40°C ÷ +50°C |                                       |                             |  |  |
|----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|--|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed ra                                                                                                                                                                                  | ange 15 ÷ 380 mm²/s                   |                             |  |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                     | SO4406 class 18/16/13 NAS1638 class 7 |                             |  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                     | 638 class 5                           | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                             | Classification                        | Ref. Standard               |  |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                  | HL, HLP, HLPD, HVLP, HVLPD            | DIN 51524                   |  |  |
| Flame resistant without wa | ater             | FKM                                                                                                                                                                                                             | ISO 12922                             |                             |  |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                       | HFC                                   | 130 12922                   |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

<sup>(2) 0-100%</sup> step signal

<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:

<sup>-</sup>max operating pressure = 210 bar -max fluid temperature = 50°C

### 11 CERTIFICATION DATA

| Valve type                          | DLHZA, DLKZA                                                                  |                                         |                 |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|-----------------|--|--|--|--|
| Certifications                      |                                                                               | Multicertification Group II             |                 |  |  |  |  |
|                                     |                                                                               | ATEX IECEX                              |                 |  |  |  |  |
| Solenoid certified code             |                                                                               | OZA-TES                                 |                 |  |  |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X                                                    | • IECEx: IEC                            | Ex TPS 19.0004X |  |  |  |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G Ex db IIC T6/T5/T4 G EX II 2D Ex tb IIIC T85°C/T10 |                                         |                 |  |  |  |  |
| Temperature class                   | Т6                                                                            | T5                                      | T4              |  |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                                       | ≤ 100 °C                                | ≤ 135 °C        |  |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                  | -40 ÷ +55 °C                            | -40 ÷ +70 °C    |  |  |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 EN 60079-1                                             | 31 IEC 60079-0 IEC 60079-31 IEC 60079-1 |                 |  |  |  |  |
| Cable entrance: threaded connection |                                                                               | M = M20x1,5                             |                 |  |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.
- WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification
- 12 CABLE SPECIFICATION AND TEMPERATURE Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

# 13 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800**Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### 14 HYDRAULIC OPTIONS

- B = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 17.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

# 15 ELECTRONIC OPTIONS

- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.
  It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SP, SF, SL

Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.

# 16 POSSIBLE COMBINED OPTIONS

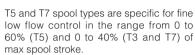
For SN: /BI, /BY, /IY

For SP, SF, SL: /BI, /BY, /IY, /CI, /BCI, CIY, BCIY

# 17 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

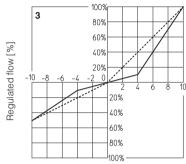
# 17.1 Regulation diagrams

1 = Linear spools L


2 = Differential - linear spool D7

3 = Differential non linear spool DT7

4 = Non linear spool T5 (only for DLHZA)


5 = Non linear spool T3 (only for DLKZA) and T7

6 = Progressive spool V



The non linear characteristics of the spool is compensated by the electronic driver, so the final valve regulation is resulting linear respect the reference signal (dotted line).

DT7 has the same characteristic of T7 but it is specific for applications with cylinders with area ratio 1:2



100%

80%

60%

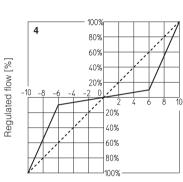
40%

20%

20%

40%

60%


80%

100%

Reference signal [Volt]

Regulated flow [%]





100%

80%

60%

40%

20%

20%

40%

60%

80%

100%

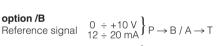
Reference signal [Volt]

2

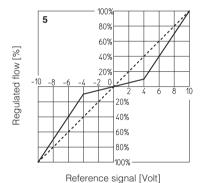
Regulated flow [%]

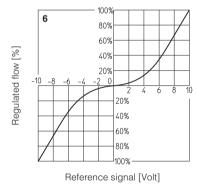
Reference signal [Volt]

### Note

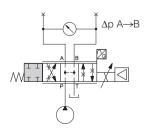

Hydraulic configuration vs. reference signal:

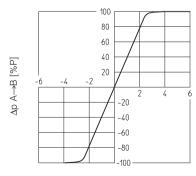
# Standard


option /B


 $\begin{array}{c} 0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array} \} \text{ P} \rightarrow \text{A} / \text{B} \rightarrow \text{T}$ Reference signal

 $\begin{array}{c} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array} \right\} P \rightarrow B / A \rightarrow T$ Reference signal





 $0 \div -10 \text{ V}$  $12 \div 4 \text{ mA}$   $P \rightarrow A / B \rightarrow T$ Reference signal





### 17.2 Pressure gain

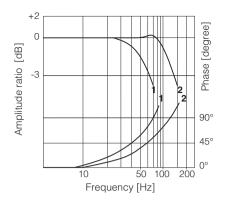


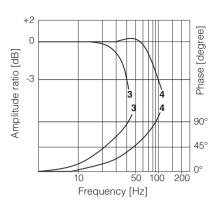


### 17.3 Bode diagrams

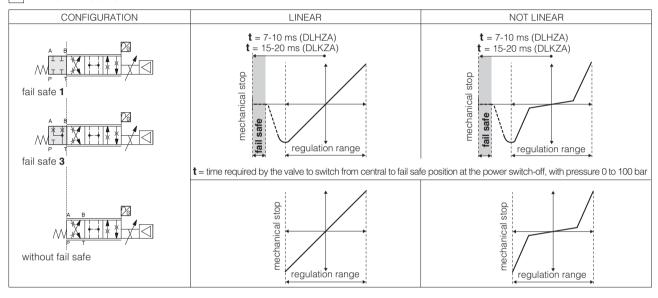
Stated at nominal hydraulic conditions

### DI HZA


 $1 = \pm 100\%$  nominal stroke


 $2 = \pm$  5% nominal stroke

### DLKZA:


 $3 = \pm 100\%$  nominal stroke

 $4 = \pm$  5% nominal stroke





# 18 FAIL SAFE POSITION



| Fail safe connections  |              | $P \rightarrow A$ | $P \rightarrow B$ | $A \rightarrow T$ | $B \rightarrow T$ |
|------------------------|--------------|-------------------|-------------------|-------------------|-------------------|
| Leakage [cm³/min]      | Fail safe 1  | 50                | 70                | 70                | 50                |
| at P = 100 bar (1)     | Fail safe 3  | 50                | 70                | -                 | -                 |
| Flow [I/min] (2) DLHZA | Fail safe 3  | =                 | -                 | 15÷30             | 10÷20             |
| Flow [I/min] (2) DLKZA | i ali sale s | -                 | -                 | 40÷60             | 25÷40             |

(1) Referred to spool in fail safe position and 50°C oil temperature

(2) Referred to spool in fail safe position at  $\Delta p = 35$  bar per edge

### 19 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

### 19.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

 $\bigwedge$  A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 19.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 19.3 Flow reference input signal (Q\_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 19.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SF, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 19.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.

### 19.6 Pressure or force monitor output signal (F\_MONITOR) - only for SP, SF, SL

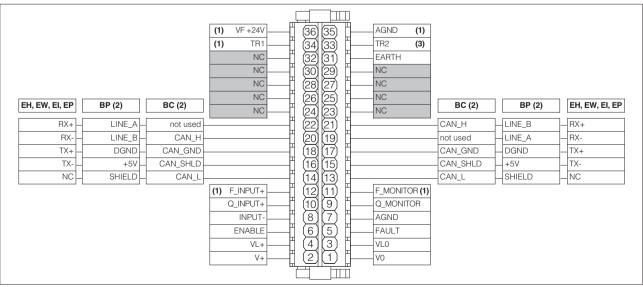
The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 19.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

# 19.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 19.9 Remote pressure/force transducer input signal - only for SP, SF, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 20 TERMINAL BOARD OVERVIEW



(1) connections available only SP, SF, SL

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

(3) connection available only SF

# 21 ELECTRONIC CONNECTIONS

# 21.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                      | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                            | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Voc                                                                                                                                                           | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                       | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                      | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                                                     | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                 | Gnd - analog signal                               |
| A                 | 8   | INPUT-    | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                     | Input - analog signal                             |
|                   | 9   | Q_MONITOR | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                   | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                 | Input - analog signal<br>Software selectable      |
|                   | 11  | F_MONITOR | Pressure/Force monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND (1) Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option | Output - analog signal Software selectable        |
|                   | 12  | F_INPUT+  | INPUT+ Pressure/Force reference input signal: ±10 Vbc / ±20 mA maximum range (1) Defaults are: ±10 Vbc for standard and 4 ÷ 20 mA for /I option                               |                                                   |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                        |                                                   |

(1) Available only for SP, SF, SL

# 21.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view  | B |
|-------------------|-----|---------|--------------------------|--------------|---|
|                   | 1   | +5V_USB | Power supply             |              |   |
|                   | 2   | ID      | Identification           |              |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |              |   |
|                   | 4   | D-      | Data line -              | 4 - (famala) |   |
|                   | 5   | D+      | Data line +              | (female)     |   |

# 21.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>~</b> 4        | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

|  | CABLE<br>ENTRANCE | PIN   | SIGNAL          | TECHNICAL SPECIFICATIONS    |
|--|-------------------|-------|-----------------|-----------------------------|
|  |                   | 13    | CAN_L           | Bus line (low)              |
|  |                   | 15    | CAN_SHLD        | Shield                      |
|  | (?)               | 17    | CAN_GND         | Signal zero data line       |
|  |                   | 19    | not used        | Pass-through connection (1) |
|  | 21                | CAN_H | Bus line (high) |                             |

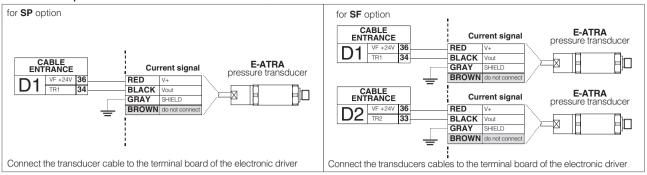
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 21.4 BP fieldbus execution connections

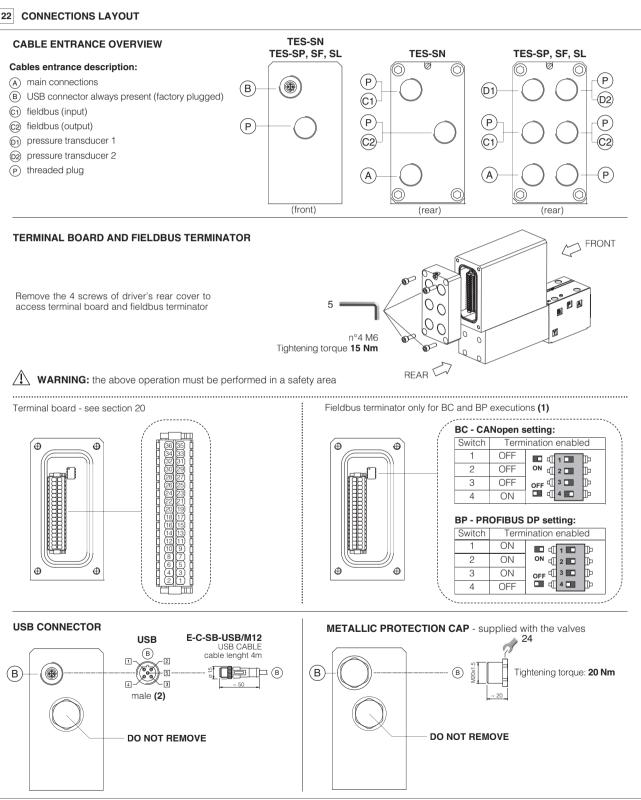
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ; 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 21.5 EH, EW, EI, EP fieldbus execution connections


| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|----------|-----|--------|--------------------------|
|          | 14  | NC     | do not connect           |
|          | 16  | TX-    | Transmitter              |
| ( ; 1    | 18  | TX+    | Transmitter              |
|          | 20  | RX-    | Receiver                 |
| (input)  | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |


### 21.6 Remote pressure transducer connector - only for SP, SF, SL

| CABLE<br>ENTRANCES | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                            | SP, SL - Single<br>Voltage | transducer (1)<br>Current | SF - Double tr<br>Voltage | ansducers (1)<br>Current |
|--------------------|-----|---------|---------------------------------------------------------|--------------------------------------------------|----------------------------|---------------------------|---------------------------|--------------------------|
| D1                 | 33  | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable        | /                          | /                         | Connect                   | Connect                  |
|                    | 34  | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range  | Input - analog signal <b>Software selectable</b> | Connect                    | Connect                   | Connect                   | Connect                  |
| D2                 | 35  | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect                    | /                         | Connect                   | /                        |
|                    | 36  | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect                    | Connect                   | Connect                   | Connect                  |

### E-ATRA remote pressure transducer connection - see tech table GX800



### 22 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# **22.1 Cable glands and threaded plug for TES-SN** - see tech table $\mathbf{KX800}$

| Communication                                            | То | be ordere         | d separat | ely                 | Cable entrance |                                                                              |
|----------------------------------------------------------|----|-------------------|-----------|---------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |           | ed plug<br>entrance | overview       | Notes                                                                        |
| NP                                                       | 1  | А                 | none      | none                | (P)<br>(A)     | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2  | C1                | 1         | C2                  |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none      | none                |                | Cable entrance A, C1, C2 are open for costumers                              |

# 22.2 Cable glands and threaded plug for TES-SP, SL - see tech table KX800

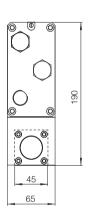
| Communication                                            | То | be ordere          | ed separat | ely                 | Cable entrance                         |                                                                                           |
|----------------------------------------------------------|----|--------------------|------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance  | 1          | ed plug<br>entrance | overview                               | Notes                                                                                     |
| NP                                                       | 2  | D1<br>A            | none       | none                | 60 P<br>60 P                           | Cable entrance A, D1 are open for costumers Cable entrance P are factory plugged          |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | D1<br>C1<br>A      | 1          | C2                  | 000<br>000<br>000<br>000<br>000        | Cable entrance A, C1, C2, D1 are open for costumers Cable entrance P are factory plugged  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | D1<br>C1 - C2<br>A | none       | none                | 00000000000000000000000000000000000000 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

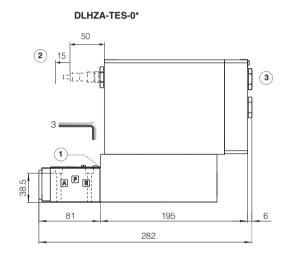
# 22.3 Cable glands and threaded plug for TES-SF - see tech table KX800

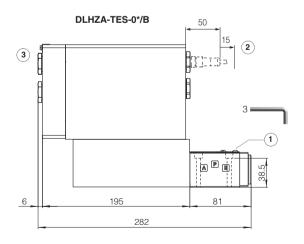
| Communication                                            | То | be ordere               | ed separat      | ely                 | Cable entrance                         |                                                                                              |
|----------------------------------------------------------|----|-------------------------|-----------------|---------------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance       | Thread quantity | ed plug<br>entrance | overview                               | Notes                                                                                        |
| NP                                                       | 3  | D1<br>D2<br>A           | none            | none                | 60 P<br>60 P                           | Cable entrance A, D1, D2 are open for costumers  Cable entrance P are factory plugged        |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1 - D2<br>C1<br>A      | 1               | C2                  | 900<br>900<br>900<br>900<br>900<br>900 | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1 - D2<br>C1 - C2<br>A | none            | none                | 000 000<br>000 000<br>000 000          | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |

# 23 FASTENING BOLTS AND SEALS

|   | DLHZA                                                                                                                       | DLKZA                                                                                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |


# 24 INSTALLATION DIMENSIONS [mm]


# **DLHZA-TES**


ISO 4401: 2005

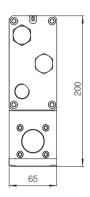
Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)

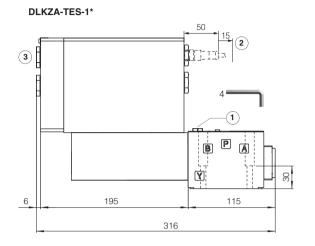
| Mass      | s [kg] |  |
|-----------|--------|--|
| DLHZA-TES | 7,2    |  |

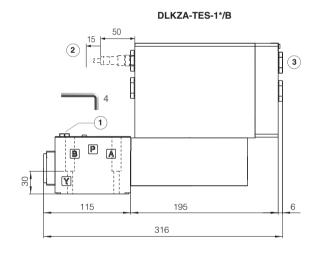







- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# **DLKZA-TES**


ISO 4401: 2000

Mounting surface: 4401-05-04-0-05 (see table P005) (for /Y surface 4401-05-05-0-05 without X port)

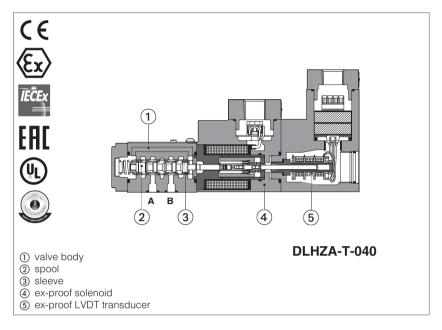
| Mass      | s [kg] |
|-----------|--------|
| DLKZA-TES | 9      |







- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# 25 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS500 | Programming tools                             |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | GS510 | Fieldbus                                      |
| FX500 | Ex-proof digital proportionals with P/Q control                         | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
| FX610 | Ex-proof servoproportionals with on-board axis card                     | KX800 | Cable glands for ex-proof valves              |
| FX900 | Operating and manintenance information for ex-proof proportional valves | P005  | Mounting surfaces for electrohydraulic valves |
|       |                                                                         |       |                                               |



# Ex-proof servoproportional directional valves sleeve execution

direct, with LVDT transducer and zero spool overlap - ATEX, IECEx, EAC, PESO or cULus



### DLHZA-T, DLKZA-T

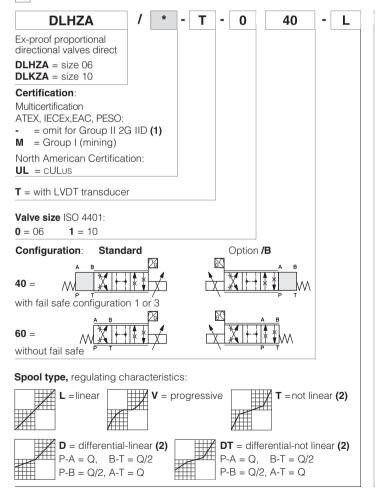
Ex-proof servoproportional directional valves, direct, sleeve execution, with LVDT position transducer and zero spool overlap for best performances in any position closed loop control.

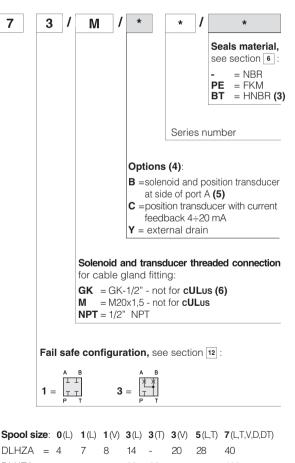
They are equipped with ex-proof proportional solenoids and LVDT transducer certified for safe operations in hazardous environments with potentially explosive atmosphere.

### Certifications:

- Multicertification ATEX, IECEx EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external


The solenoids are also designed to limit the surface temperature within the classified limits.


### DLHZA:

Size: **06** - ISO 4401 Max flow: 50 I/min Max pressure: 350 bar Max pressure: 315 bar

DLKZA: Size: 10 - ISO 4401 Max flow: 100 I/min

### 1 MODEL CODE





- (1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization)
- (2) Only for configuration 40 (3) Not for multicertification M group I (mining)
- (5) In standard configuration the solenoid and position transducer are at side of port B
- (4) Possible combined options: /BC, /BY, /CY, /BCY
- (6) Approved only for the Italian market

Nominal flow (I/min) at Δp 70bar P-T

# 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-TEB-* /A | E-BM-TES-* /A  | Z-BM-TEZ-* /A |
|---------------|---------------|----------------|---------------|
| Туре          | digital       | digital        | digital       |
| Format        |               | DIN-rail panel |               |
| Data sheet    | GS230         | GS240          | GS330         |

# **3 GENERAL CHARACTERISTICS**

| Assembly position                      | Any position                                                                                                                                                                   |  |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                            |  |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C |  |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO9227) > 200h                                                                                                      |  |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                         |                          |      |                             |      |              |        | DLHZA        |        |        |       |                             |       |       |       | LKZ       | Α      |         |        |
|-------------------------------------|--------------------------|------|-----------------------------|------|--------------|--------|--------------|--------|--------|-------|-----------------------------|-------|-------|-------|-----------|--------|---------|--------|
|                                     | F1 3                     |      | ports <b>P, A, B</b> = 350; |      |              |        |              |        |        |       | ports <b>P, A, B</b> = 315; |       |       |       |           |        |         |        |
| Pressure limit                      | s [bar]                  |      |                             |      | <b>T</b> = 2 | 10 (25 | 0 with exter | nal dr | ain /Y | )     |                             | T = 2 | 210 ( | 250 v | vith e    | xterna | al drai | in /Y) |
| Spool type                          |                          | L0   | L1                          | V1   | L3           | ٧3     | L5   T5      | L7     | T7     | V7    | D7 DT7                      | L3    | Т3    | L7    | <b>T7</b> | V7     | D7      | DT7    |
| Max flow [I/m                       | nin]                     |      |                             |      |              |        |              |        |        |       |                             |       |       |       |           |        |         |        |
|                                     | at $\Delta p = 30$ bar   | 2,5  | 4,5                         | 8    | 9            | 13     | 18           |        | 26     |       | 26÷13                       | 40    | )     |       | 60        |        | 60-     | ÷33    |
| ∆p P-T                              | at $\Delta p = 70$ bar   | 4    | 7                           | 12   | 14           | 20     | 28           |        | 40     |       | 40÷20                       | 60    | )     |       | 100       |        | 100     | ÷50    |
|                                     | max permissible flow     | 5    | 9                           | 16   | 18           | 26     | 32           |        | 50     |       | 50÷28                       | 70    | )     |       | 100       |        | 100     | ÷50    |
| ∆p max P-T                          | [bar]                    | 120  | 120                         | 120  | 120          | 120    | 100          |        | 100    |       | 100                         | 90    | )     |       | 70        |        | 7       | 0      |
| Leakage [cm <sup>3</sup> ,          | /min] at P = 100 bar (1) | <100 | <200                        | <100 | <300         | <150   | <500  <200   | <900   | <200   | <200  | <700 <200                   | <1000 | <400  | <1500 | <400      | <400   | <1200   | <400   |
| Response time (2) [ms]              |                          | ≤ 13 |                             |      |              |        |              | ≤ 20   |        |       |                             |       |       |       |           |        |         |        |
| Hysteresis [% of max regulation]    |                          | ≤0,1 |                             |      |              |        |              |        | ≤ 0,1  |       |                             |       |       |       |           |        |         |        |
| Repeatibility [% of max regulation] |                          |      | ± 0,1                       |      |              |        |              |        |        | ± 0,1 |                             |       |       |       |           |        |         |        |
| Thermal drift                       |                          |      |                             |      |              |        | zero point   | displa | aceme  | ent < | 1% at ΔT =                  | 40°C  |       |       |           |        |         |        |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 2

(1) Referred to spool in neutral position and 50°C oil temperature (2) 0-100% step signal

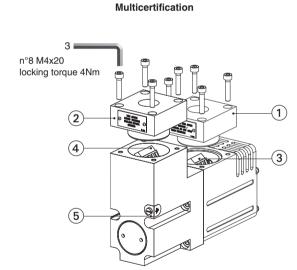
# 5 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35W                                                                                                                                              |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulation class                            | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved                                                                  |
| Duty factor                                 | Continuous rating (ED=100%)                                                                                                                      |
| Voltage code                                | standard                                                                                                                                         |
| Coil resistance R at 20°C 3,2 Ω             |                                                                                                                                                  |
| Max. solenoid current                       | 2,5 A                                                                                                                                            |

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | I temperature    | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C FKM seals (/PE option) = -20°C ÷ +80°C HNBR seals (/BT option) = -40°C ÷ +60°C, with HFC hydraulic fluids = -40°C ÷ +50°C |                            |                             |  |  |  |
|-------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                         |                            |                             |  |  |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                               | 638 class 7                | see also filter section at  |  |  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                               | 638 class 5                | www.atos.com or KTF catalog |  |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                       | Classification             | Ref. Standard               |  |  |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                            | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |  |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                       | HFDU, HFDR                 | - ISO 12922                 |  |  |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                 | HFC                        | 130 12922                   |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


# 7 CERTIFICATION DATA

| Valve type                          | DLHZA, DLKZA                                                                                        |                                                | DLHZA <b>/M</b> , DLKZA <b>/M</b>                    | DLHZA <b>/UL</b> , DLKZA <b>/UL</b>                                            |              |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|--------------|--|
| Certifications                      | Multicertification Group II  ATEX IECEX EAC PESO                                                    |                                                | Multicertification Group I  ATEX IECEx               | North American cULus                                                           |              |  |
| Solenoid certified code             | OZ                                                                                                  | A-T                                            | OZAM-T                                               | OZA                                                                            | -T/EC        |  |
| Type examination certificate (1)    | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131 |                                                | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324 - E366100                                                             |              |  |
| Method of protection                |                                                                                                     |                                                | ATEX     Ex   M2 Ex db   Mb     IECEx     Ex db   Mb | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |              |  |
|                                     | Ex d IIC T4/T3 Gb<br>Ex tb IIIC T85°C/T200°C Db                                                     |                                                | EX dis 1 ms                                          |                                                                                |              |  |
|                                     | • PESO<br>Ex II 2G Ex d II                                                                          | IC T4/T3 Gb                                    |                                                      |                                                                                |              |  |
| Temperature class                   | T4                                                                                                  | Т3                                             | -                                                    | T4                                                                             | Т3           |  |
| Surface temperature                 | ≤ 135 °C                                                                                            | ≤ 200 °C                                       | ≤ 150 °C                                             | ≤ 135 °C                                                                       | ≤ 200 °C     |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                        | -40 ÷ +70 °C                                   | -20 ÷ +60 °C                                         | -40 ÷ +55 °C                                                                   | -40 ÷ +70 °C |  |
| Applicable standards                | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                             |                                                | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | UL 1203 and UL429,<br>CSA 22.2 n°30<br>CSA 22.2 n°139                          |              |  |
| Cable entrance: threaded connection |                                                                                                     | <b>GK</b> = G<br><b>M</b> = M2<br><b>NPT</b> = |                                                      | 1/2" NPT                                                                       |              |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids Group II and cULus are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 8 EX PROOF SOLENOIDS AND LVDT TRANSDUCER WIRING



- ① solenoid cover with threaded connection for cable gland fitting
- 2) transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring
- (5) screw terminal for additional equipotential grounding

# Solenoid wiring

1 = Coil 2 = GND 3 = Coil

PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

### Position transducer wiring

1 = Output signal

2 = Supply -15 V

3 = Supply +15 V

= GND

PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

# cULus certification n°8 M4x20 locking torque 4Nm (2)

- ① solenoid cover with threaded connection for cable gland fitting
- 2) transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring

### Solenoid wiring



Pay attention to respect the polarity

PCB 3 poles terminal board sugge-1 = Coil + sted cable section up to 1,5 mm² (max AWG16), see section 9 note 1 2 = GND 3 = Coil -

alternative GND screw terminal connected to solenoid housing

# Position transducer wiring



- 1 = Output signal
- 2 = Supply 15 V
- 3 = Supply + 15 V4 = GND

PCB 4 poles terminal board suggested cable section up to 1,5 mm² (max AWG16), see section 9 note 1

### 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

### Multicertification

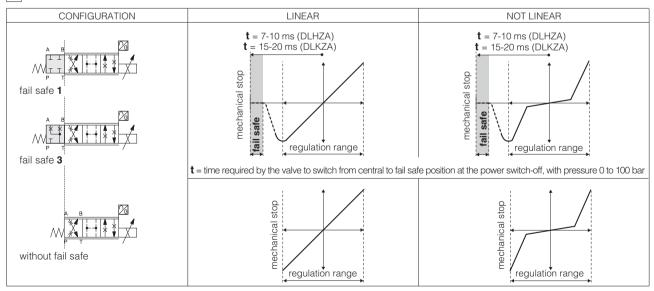
| Max ambient temperature [°C] | Temperature class |         | Max surface te | mperature [°C] | Min. cable temperature [°C] |         |  |
|------------------------------|-------------------|---------|----------------|----------------|-----------------------------|---------|--|
| max ambient temperature [ C] | Goup I            | Goup II | Goup I         | Goup II        | Goup I                      | Goup II |  |
| 40 °C                        | -                 | T4      | 150 °C         | 135 °C         | -                           | 90 °C   |  |
| 60 °C                        | -                 | -       | 150 °C         | -              | 110 °C                      | -       |  |
| 70 °C                        | N.A.              | T3      | N.A.           | 200 °C         | N.A.                        | 120 °C  |  |

### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |  |  |
|------------------------------|-------------------|------------------------------|------------------------|--|--|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |  |  |
| 70 °C                        | Т3                | 200 °C                       | 100 °C                 |  |  |

### 10 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 


Note: a Loctite sealant type 545, should be used on the cable gland entry threads

# 11 OPTIONS

- **B** = Solenoid and position transducer at side of port A of the main stage
- C = Position transducer with current feedback 4+20 mA, suggested in case of long distance between the electronic driver and the proportional valve
- Y = External drain, to be selected if the pressure at T port is higher than the max allowed limits

# 11.1 Possible combined options: /BC, /BY, /CY, /BCY

# 12 FAIL SAFE POSITION

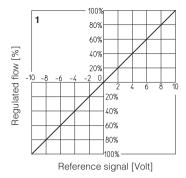


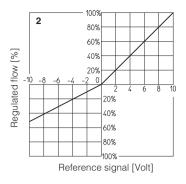
| Fail safe connections         |              | $P \rightarrow A$ | $\textbf{P} \rightarrow \textbf{B}$ | $\textbf{A} \rightarrow \textbf{T}$ | $B \to T$ |
|-------------------------------|--------------|-------------------|-------------------------------------|-------------------------------------|-----------|
| Leakage [cm³/min]             | Fail safe 1  | 50                | 70                                  | 70                                  | 50        |
| at P = 100 bar (1)            | Fail safe 3  | 50                | 70                                  | -                                   | -         |
| Flow [I/min] (2) DLHZA        | Fail safe 3  | -                 | =                                   | 15÷30                               | 10÷20     |
| Flow [I/min] <b>(2)</b> DLKZA | i ali sale s | -                 | -                                   | 40÷60                               | 25÷40     |

# 13 DIAGRAMS - based on mineral oil ISO VG 46 at 50 °C

### 13.1 Regulation diagrams

1 = Linear spools L

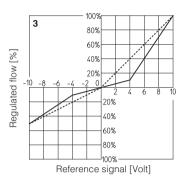

2 = Differential - linear spool D7

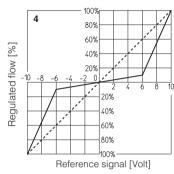

3 = Differential non linear spool DT7

**4** = Non linear spool, T5 (only for DLHZA)

**5** = Non linear spool, T3 (only for DLKZA) and T7

6 = Progressive spool V




T3, T5 and T7 spool types are specific for fine low flow control in the range from 0 to 60% (T5) and 0 to 40% (T3 and T7) of max spool stroke.

The non linear characteristics of the spool is compensated by the electronic driver, so the final valve regulation is resulting linear respect the reference signal (dotted line).

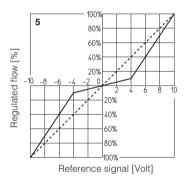
DT7 has the same characteristic of T7 but it is specific for applications with cylinders with area ratio 1:2

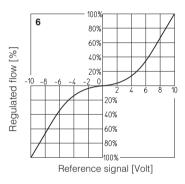




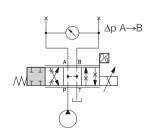
### Note:

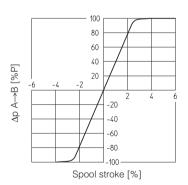
Hydraulic configuration vs. reference signal: Standard:


 $\begin{array}{c}
0 \div +10 \text{ V} \\
12 \div 20 \text{ mA}
\end{array}\} P \rightarrow A / B \rightarrow T$ Reference signal


 $0 \div -10 \text{ V}$  $12 \div 4 \text{ mA}$   $P \rightarrow B / A \rightarrow T$ Reference signal

option /B:


 $\begin{array}{c}
0 \div +10 \text{ V} \\
12 \div 20 \text{ mA}
\end{array}\} P \rightarrow B / A \rightarrow T$ Reference signal


Reference signal  $\begin{array}{c} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array} \} P \rightarrow A / B \rightarrow T$ 



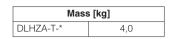


### 13.2 Pressure gain



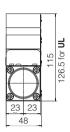


### 14 FASTENING BOLTS AND SEALS

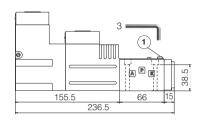

| DLHZA                                                                           | DLKZA                                                                            |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm |
| Seals:                                                                          | Seals:                                                                           |
| 4 OR 108;<br>Diameter of ports A, B, P, T: Ø 7,5 mm (max)                       | 5 OR 2050;<br>Diameter of ports A, B, P, T: Ø 11,2 mm (max)                      |
| 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option)                   | 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option)                       |

# **DLHZA**

**ISO 4401: 2005** (see table P005)


Mounting surface: 4401-03-02-0-05

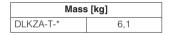
(for /Y surface: 4401-03-03-0-05 without port X)

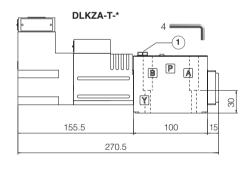


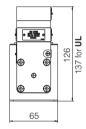


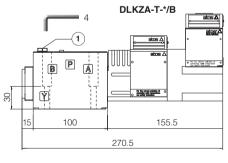






DLHZA-T-\*/B





# **DLKZA**


ISO 4401: 2005 (see table P005)
Mounting surface: 4401-05-04-0-05

(for /Y surface: 4401-05-05-0-05 without port X)









(1) = Air bleed off

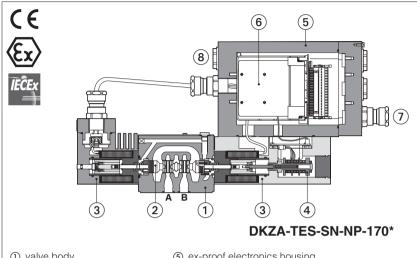
# 16 RELATED DOCUMENTATION

**X010** Basics for electrohydraulics in hazardous environments

X020 Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

**X030** Summary of Atos ex-proof components certified to cULus

**FX900** Operating and manintenance information for ex-proof proportional valves


KX800 Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves



# Ex-proof digital servoproportional directional valves

direct, with on-board driver, LVDT transducer and zero spool overlap - ATEX and IECEx



- valve body
- (2) spool
- 3 ex-proof solenoid
- ex-proof LVDT transducer
- (5) ex-proof electronics housing
- 6 on-board digital driver
- (7) ex-proof cable glands (to be ordered separately)

70

(8) USB port always present (factory plugged)

### **DHZA-TES, DKZA-TES**

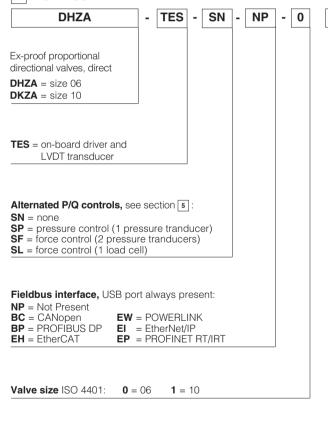
Ex-proof digital servoproportional directional valves, direct, with LVDT position transducer and zero spool overlap for position closed loop controls. The double solenoid construction involves larger flows and spool safety rest

They are equipped with ex-proof on-board digital driver, LVDT transducer and solenoids certified for safe operations in hazardous environments with potentially explosive atmo-

# Multicertification ATEX and IECEx

for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment. The driver and solenoid are also designed to limit the surface temperature within the classified limits.


TEZ execution includes valve driver plus axis card to perform position control (see section 6).

DHZA

Size: **06** -ISO 4401 Max flow: 60 l/min Max pressure: 350 bar DK7A Size: **10** -ISO 4401

Max flow: 150 l/min Max pressure: 315 bar

# 1 MODEL CODE



5 Seals material, see section 10 = NBR = FKM **RT** = HNBR Series number Hydraulic options (1): B = solenoid with integral digital electronics at side of port A (2) Y = external drain Electronic options (1):

- C = current feedback for pressure transducer 4 ÷ 20 mA, only for SP, SF, SL (omit for std voltage ±10 VDC)
- I = current reference input and monitor 4 ÷ 20 mA (omit for std voltage ±10 VDC)

# Cable entrance threaded connection:

M = M20x1,5

Spool size: 3 (L) 5 (L.D) 18 DHZA = 28 45 75 Nominal flow (I/min) at  $\Delta p$  10 bar P-T

Spool type, regulating characteristics:



**D** = differential-progressive

P-A = Q, B-T = Q/2P-B = Q/2, A-T = Q

(1) For possible combined options, see section 16

Configuration: Standard

70 -

(2) In standard configuration the solenoid with on-board digital driver and position transducer are at side port B

Option /B

FX135 PROPORTIONAL VALVES

### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table FX900 and in the user manuals included in the E-SW-\* programming software.

# **VALVE SETTINGS AND PROGRAMMING TOOLS**

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) BP (PROFIBUS DP) E-SW-FIELDBUS support: BC (CANopen) EH (EtherCAT) EW (POWERLINK) EI (EtherNet/IP) **EP (PROFINET)** 

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ) WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use

E-SW-\*/PQ

of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved



### 4 FIELDBUS - see tech. table GS510

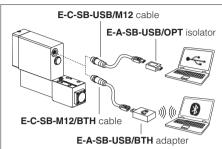
Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 5 ALTERNATED P/Q CONTROLS - see tech. table FX500

S\* options add the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP, 2 pressure transducers for SF or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

### 6 AXIS CONTROLLER - see tech. table FX620


Digital servoproportional with integral electronics TEZ include valve's driver plus axis controller, performing position closed loop of any hydraulic actuator equipped with analog, encoder or SSI position transducer. Alternated pressure or force closed loop control can be set by software additionally to the position control.

Atos also supplies complete servoactuators integrating servocylinder, digital servoproportional valve and axis controller, fully assembled and tested. For more information consult Atos Technical Office.

# **GENERAL CHARACTERISTICS**

| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                      |  |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C           |  |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |  |  |

### **USB** or Bluetooth connection



### 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                 |                        | DHZA                                                                                                      |                |                      | DKZA                                                                                      |     |     |  |
|-------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|----------------|----------------------|-------------------------------------------------------------------------------------------|-----|-----|--|
| Pressure limit                                              | ts [bar]               | ports <b>P</b> , <b>A</b> , <b>B</b> = 350;<br><b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 10 |                |                      | ports <b>P, A, B</b> = 315;<br><b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 10 |     |     |  |
| Spool type                                                  |                        | L3                                                                                                        | L5             | D5                   | L3                                                                                        | L5  | D5  |  |
| Nominal flow                                                |                        |                                                                                                           |                |                      |                                                                                           |     |     |  |
| [l/min]                                                     | at $\Delta p = 10$ bar | 18                                                                                                        | 28             | 28                   | 45                                                                                        | 75  | 75  |  |
| Δρ Ρ-Τ                                                      | at $\Delta p = 30$ bar | 30                                                                                                        | 50             | 50                   | 80                                                                                        | 130 | 130 |  |
| •                                                           | permissible flow       | 40                                                                                                        | 60             | 60                   | 90                                                                                        | 150 | 150 |  |
| Δp max P-T                                                  | [bar]                  | 70                                                                                                        | 50             | 50                   | 40                                                                                        | 40  | 40  |  |
| Response tim                                                | ne [ms] (1)            | ≤ 18                                                                                                      |                |                      | ≤ 25                                                                                      |     |     |  |
| Leakage [cm³] <500 (at P = 100 bar); <1500 (at P = 350 bar) |                        |                                                                                                           | <800 (at P = 1 | 00 bar); <2500 (at   | t P = 315 bar)                                                                            |     |     |  |
| Hysteresis                                                  |                        |                                                                                                           |                | ≤0,2 [% of m         | nax regulation]                                                                           |     |     |  |
| Repeatability                                               | ,                      |                                                                                                           | -              | ± 0,1 [% of m        | nax regulation]                                                                           |     |     |  |
| Thermal drift                                               | ·                      |                                                                                                           | Z              | ero point displaceme | ent < 1% at $\Delta T = 40^{\circ}$                                                       | C   | ·-  |  |

<sup>(1) 0-100%</sup> step signal

# 9 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal<br>Rectified and filtered                                                                                                                                                                                    | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP) |                                    |                                                                       |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                                                                 | 35 W                                                                                 |                                    |                                                                       |  |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r                                                                                                                                                                            | /DC (24 VMAX tollerant)<br>nA                                                        | Input impedance<br>Input impedance |                                                                       |  |  |  |
| Insulation class                    |                                                                                                                                                                                                                      | ccuring surface tempera<br>82 must be taken into a                                   |                                    | ils, the European standards                                           |  |  |  |
| Monitor outputs                     |                                                                                                                                                                                                                      | Dutput range: voltage ±10 VDC @ max 5 mA current ±20 mA @ max 500 Ω load resistance  |                                    |                                                                       |  |  |  |
| Enable input                        | Range: 0 ÷ 5 VDC (OFF                                                                                                                                                                                                | state), 9 ÷ 24 VDC (ON                                                               | state), 5 ÷ 9 VDC (not acc         | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |  |
| Fault output                        |                                                                                                                                                                                                                      | VDC (ON state > [poweage not allowed (e.g. du                                        |                                    | ate < 1 V ) @ max 50 mA;                                              |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 r                                                                                                                                                                                                   | mA (E-ATRA-7 see tech                                                                | table <b>GX800</b> )               |                                                                       |  |  |  |
| Alarms                              | Solenoid not connecte valve spool transduce                                                                                                                                                                          |                                                                                      | oreak with current refere          | ence signal, over/under temperature,                                  |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                                                                                | cable gland                                                                          |                                    |                                                                       |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                                                                                | =100%)                                                                               |                                    |                                                                       |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                                                                               | ectronics PCB                                                                        |                                    |                                                                       |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; spool position control (SN) or pressure/force control (SP, SF, SL) by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                      |                                    |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive                                                                                                                                                                                               | e 2014/30/UE (Immunity                                                               | : EN 61000-6-2; Emissio            | n: EN 61000-6-3)                                                      |  |  |  |
| Communication interface             | USB Atos ASCII coding                                                                                                                                                                                                | CANopen<br>EN50325-4 + DS408                                                         | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                                                                   | optical insulated<br>CAN ISO11898                                                    | optical insulated<br>RS485         | Fast Ethernet, insulated<br>100 Base TX                               |  |  |  |

**Note:** a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# [10] SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C  FKM seals (/PE option) = -20°C ÷ +80°C  HNBR seals (/BT option) = -40°C ÷ +60°C, with HFC hydraulic fluids = -40°C ÷ +50°C |                            |                             |  |
|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                            |                            |                             |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                 | 638 class 7                | see also filter section at  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1638 class 5                                                                                                                                                                      |                            | www.atos.com or KTF catalog |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                         | Classification             | Ref. Standard               |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                              | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without wa | ter              | FKM                                                                                                                                                                                                         | HFDU, HFDR                 | ISO 12922                   |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                   | HFC                        | 100 12922                   |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

(1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

### 11 CERTIFICATION DATA

| Valve type                       |                       | DHZA, DKZA                                                                                                                                                   |                 |              |                             |          |          |
|----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------------------|----------|----------|
| Certifications                   |                       |                                                                                                                                                              |                 |              | ation Group II              |          |          |
|                                  |                       |                                                                                                                                                              |                 | ATEX         | IECEx                       |          |          |
| Solenoid certified co            | ode                   |                                                                                                                                                              |                 | OZA          | -TES                        |          |          |
| Type examination certificate (1) |                       | ATEX: TUV I                                                                                                                                                  | T 18 ATEX 068 X | (            | • IECEx: IECEx TPS 19.0004X |          |          |
| Method of protection             |                       | • ATEX 2014/34/EU Ex II 2G Ex db IIC T6/T5/T4 Gb Ex II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX Ex db IIC T6/T5/T4 Gb Ex tb IIIC T85°C/T100°C/T135°C Db |                 |              | 5°C Db                      |          |          |
| Tamanayatuwa alaaa               | Single solenoid valve | Т6                                                                                                                                                           | -               | Т            | 5                           | T4       | -        |
| Temperature class                | Double solenoid valve | -                                                                                                                                                            | T4              | -            |                             | -        | Т3       |
| Surface temperature              |                       | ≤ 85 °C                                                                                                                                                      | ≤ 135 °C        | ≤ 10         | 0 °C                        | ≤ 135 °C | ≤ 200 °C |
| Ambient temperature (2)          |                       | -40 ÷ +40 °C                                                                                                                                                 |                 | -40 ÷ +55 °C |                             | -70 °C   |          |
| Applicable Standards             |                       | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1                                                                                                   |                 |              | 1                           |          |          |
| Cable entrance: three            | eaded connection      | <b>M</b> = M20x1,5                                                                                                                                           |                 |              |                             |          |          |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

### 13 CABLE GLANDS

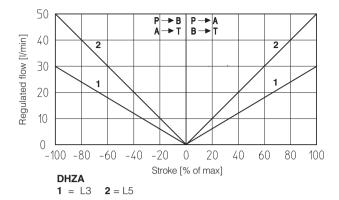
Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

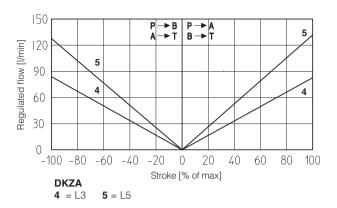
# 14 HYDRAULIC OPTIONS

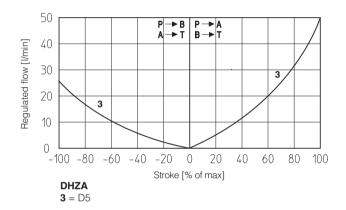
- **B** = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 17.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

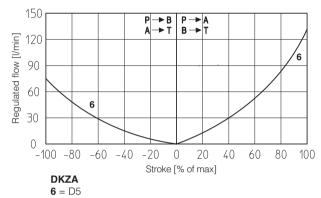
# 15 ELECTRONIC OPTIONS

- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SP, SF, SL Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDc or ±20 mA.


### 16 POSSIBLE COMBINED OPTIONS


For SN: /BI, /BY, /IY


For SP, SF, SL: /BI, /BY, /IY, /CI, /BCI, CIY, BCIY


### 17

### 17.1 Regulation diagrams (values measure at Δp 30 bar P-T)



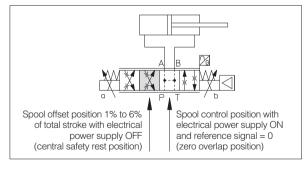






### Note

Hydraulic configuration vs. reference signal for configurations 71 and 73 (standard and option /B)


 $\text{Reference signal } \begin{array}{l} 0 \ \div \ +10 \ \text{V} \\ 12 \ \div \ 20 \ \text{mA} \end{array} \Big\} P \rightarrow \text{A / B} \rightarrow \text{T} \qquad \text{Reference signal } \begin{array}{l} 0 \ \div \ -10 \ \text{V} \\ 12 \ \div \ 4 \ \text{mA} \end{array} \Big\} P \rightarrow \text{B / A} \rightarrow \text{T}$ 

### 17.2 Spool safety rest position

In absence of electric power supply (+24 VDC), the valve spool is moved by the springs force to the **safety rest position** characterized by a small offset of about 1% to 6% of the total stroke in P-B / A-T configuration.

This is specifically designed to avoid that in case of accidental interruption of the electrical power supply to the valve, the actuator moves towards an undefined direction (due to the tolerances of the zero overlap spool), with potential risk of damages or personnel injury.

Thanks to the **safety rest position** the actuator movement is suddenly stopped and it is recovered at very low speed towards the direction corresponding to the P-B/ A-T connection.



### 18 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

### 18.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 18.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 18.3 Flow reference input signal (Q\_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  Vpc for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  Vpc or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ Vpc.

### 18.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SF, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 18.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.

# 19.6 Pressure or force monitor output signal (F\_MONITOR) - only for SP, SF, SL

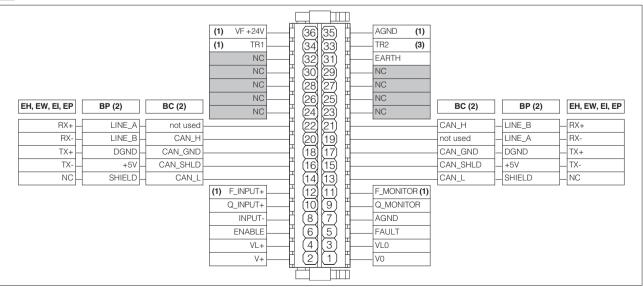
The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 18.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 18.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 18.9 Remote pressure/force transducer input signal - only for SP, SF, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 19 TERMINAL BOARD OVERVIEW



(1) connections available only SP, SF, SL

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

(3) connection available only SF

# 20 ELECTRONIC CONNECTIONS

# 20.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                      | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                            | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Vdc                                                                                                                                                           | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                       | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                      | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                                                     | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                 | Gnd - analog signal                               |
| <b>A</b>          | 8   | INPUT-    | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                     | Input - analog signal                             |
|                   | 9   | Q_MONITOR | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option                                   | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                 | Input - analog signal<br>Software selectable      |
|                   | 11  | F_MONITOR | Pressure/Force monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND (1) Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option | Output - analog signal Software selectable        |
|                   | 12  | F_INPUT+  | Pressure/Force reference input signal: ±10 Vpc / ±20 mA maximum range (1) Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option                                      | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                        |                                                   |

(1) Available only for SP, SF, SL

# 20.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN    | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |  |  |
|-------------------|--------|---------|--------------------------|-------------|---|--|--|
|                   | 1      | +5V_USB | Power supply             | 1 2         |   |  |  |
| В                 | 2      | ID      | Identification           | 5           |   |  |  |
|                   | 3      | GND_USB | Signal zero data line    |             |   |  |  |
|                   | 4<br>5 | D-      | Data line -              | 4 -/ 3      |   |  |  |
|                   |        | D+      | Data line +              | (female)    |   |  |  |

# 20.3 BC fieldbus execution connections

| E | CABLE<br>ENTRANCE | PIN      | SIGNAL                      | TECHNICAL SPECIFICATIONS |
|---|-------------------|----------|-----------------------------|--------------------------|
|   | 14                | CAN_L    | Bus line (low)              |                          |
|   | <b>~</b> 4        | 16       | CAN_SHLD                    | Shield                   |
|   | (;1]              | 18       | CAN_GND                     | Signal zero data line    |
|   | 20                | CAN_H    | Bus line (high)             |                          |
|   | 22                | not used | Pass-through connection (1) |                          |

|                                       | CABLE<br>ENTRANCE | PIN      | SIGNAL                      | TECHNICAL SPECIFICATIONS |
|---------------------------------------|-------------------|----------|-----------------------------|--------------------------|
|                                       |                   | 13       | CAN_L                       | Bus line (low)           |
|                                       | 00                | 15       | CAN_SHLD                    | Shield                   |
|                                       | C2                | 17       | CAN_GND                     | Signal zero data line    |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 19                | not used | Pass-through connection (1) |                          |
| L                                     |                   | 21       | CAN_H                       | Bus line (high)          |

(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

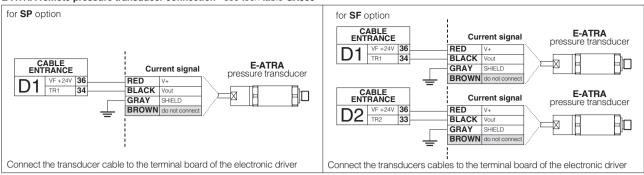
# 20.4 BP fieldbus execution connections

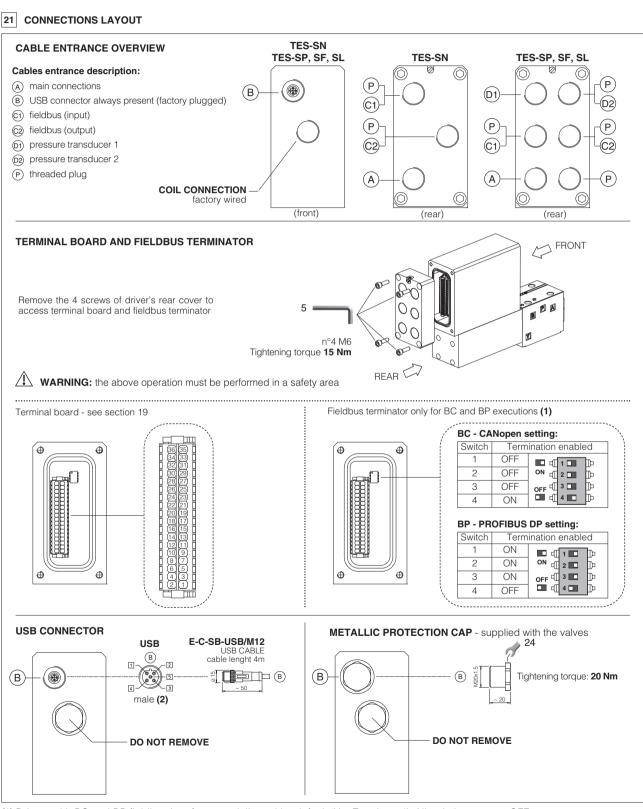
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 20.5 EH, EW, EI, EP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| •                 | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |  |
|-------------------|-----|--------|--------------------------|--|
|                   | 13  | NC     | do not connect           |  |
|                   | 15  | TX-    | Transmitter              |  |
| ( ; 2             | 17  | TX+    | Transmitter              |  |
| <u> </u>          | 19  | RX-    | Receiver                 |  |
| (output)          | 21  | RX+    | Receiver                 |  |


# 20.6 Remote pressure transducer connector - only for SP, SF, SL

| CABLE<br>ENTRANCES |    |         | TECHNICAL SPECIFICATIONS NOTES                          |                                                  | SP, SL - Single<br>Voltage | transducer (1)<br>Current | SF - Double transducers (1) Voltage   Current |         |  |
|--------------------|----|---------|---------------------------------------------------------|--------------------------------------------------|----------------------------|---------------------------|-----------------------------------------------|---------|--|
| D1                 | 33 | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable        | /                          | /                         | Connect                                       | Connect |  |
| וטו                | 34 | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range  | Input - analog signal <b>Software selectable</b> | Connect                    | Connect                   | Connect                                       | Connect |  |
| D2                 | 35 | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect                    | /                         | Connect                                       | /       |  |
|                    | 36 | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect                    | Connect                   | Connect                                       | Connect |  |

FX135 PROPORTIONAL VALVES

### E-ATRA remote pressure transducer connection - see tech table GX800





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 21.1 Cable glands and threaded plug for TES-SN - see tech table KX800

| Communication                                            | To be ordered separately |                   |                                   | ely  | Cable entrance |                                                                              |  |
|----------------------------------------------------------|--------------------------|-------------------|-----------------------------------|------|----------------|------------------------------------------------------------------------------|--|
| interfaces                                               | Cable                    | gland<br>entrance | Threaded plug quantity   entrance |      | overview       | Notes                                                                        |  |
| NP                                                       | 1                        | А                 | none                              | none | ©<br>©<br>(A)  | Cable entrance A is open for costumers  Cable entrance P are factory plugged |  |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2                        | C1                | 1                                 | C2   |                | Cable entrance A, C1, C2 are open for costumers                              |  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3                        | C1<br>C2<br>A     | none                              | none |                | Cable entrance A, C1, C2 are open for costumers                              |  |

# 21.2 Cable glands and threaded plug for TES-SP, SL - see tech table KX800 $\,$

| Communication                                            | To be ordered separately |                    |      | ely                 | Cable entrance                           |                                                                                           |
|----------------------------------------------------------|--------------------------|--------------------|------|---------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| interfaces                                               |                          | gland<br>entrance  |      | ed plug<br>entrance | overview                                 | Notes                                                                                     |
| NP                                                       | 2                        | D1<br>A            | none | none                | 61 P<br>6 P<br>6 P                       | Cable entrance A, D1 are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3                        | D1<br>C1<br>A      | 1    | C2                  | 90 90 90 90 90 90 90 90 90 90 90 90 90 9 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4                        | D1<br>C1 - C2<br>A | none | none                | 00 00 00 00 00 00 00 00 00 00 00 00 00   | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

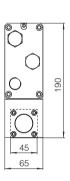
# 21.3 Cable glands and threaded plug for TES-SF - see tech table $\ensuremath{\text{KX800}}$

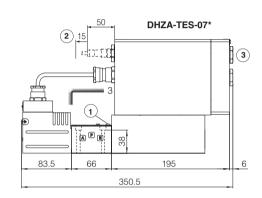
| Communication                                            | То | be ordere               | ed separat                        | ely  | Cable entrance                     |                                                                                              |          |       |
|----------------------------------------------------------|----|-------------------------|-----------------------------------|------|------------------------------------|----------------------------------------------------------------------------------------------|----------|-------|
| interfaces                                               |    | gland<br>entrance       | Threaded plug quantity   entrance |      | Threaded plug ce quantity entrance |                                                                                              | overview | Notes |
| NP                                                       | 3  | D1<br>D2<br>A           | none                              | none | 50 P<br>P 62<br>A P                | Cable entrance A, D1, D2 are open for costumers  Cable entrance P are factory plugged        |          |       |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1 - D2<br>C1<br>A      | 1                                 | C2   | 900<br>900<br>900<br>AP AP         | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |          |       |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1 - D2<br>C1 - C2<br>A | C2 none none                      |      | 000 000<br>000 000<br>000 000      | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |          |       |

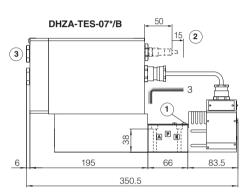
FX135 PROPORTIONAL VALVES

# 22 FASTENING BOLTS AND SEALS

|   | DHZA                                                                                                                        | DKZA                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |


# 23 INSTALLATION DIMENSIONS [mm]


# **DHZA-TES**

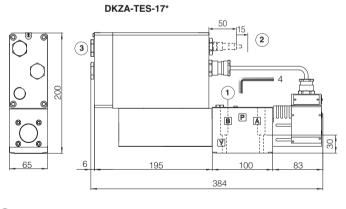

ISO 4401: 2005

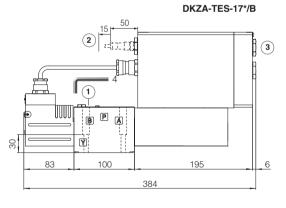
Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)

| Mass        | [kg] |
|-------------|------|
| DHZA-TES-07 | 8,9  |









# **DKZA-TES**

ISO 4401: 2005

**Mounting surface: 4401-05-04-0-05** (see table P005) **(for /Y surface: 4401-05-05-0-05 without port X)** 

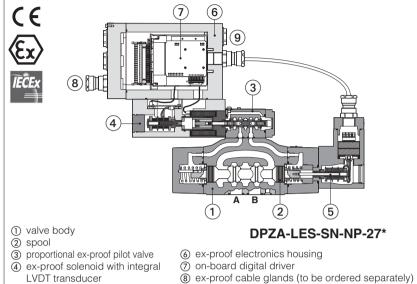
| Mass        | s [kg] |
|-------------|--------|
| DKZA-TES-17 | 10,7   |





- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

# 24 RELATED DOCUMENTATION


| XX<br>FX<br>FX | 010<br>020<br>(500<br>(620 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Ex-proof digital proportionals with P/Q control Ex-proof servoproportionals with on-board axis c | GS500<br>GS510<br>GX800<br>KX800 | Programming tools Fieldbus Ex-proof pressure transducer type E-ATRA-7 Cable glands for ex-proof valves Mauring surfaces for electropydraulic valves |  |
|----------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FX             | (900                       | Operating and manintenance information for ex-proof proportional valves                                                                                                                                                         | P005                             | Mounting surfaces for electrohydraulic valves                                                                                                       |  |



(5) ex-proof LVDT transducer

# Ex-proof digital servoproportional directional valves

piloted, with on-board driver, two LVDT transducers and zero spool overlap - ATEX and IECEx



ex-proof cable glands (to be ordered separately)

70

L

USB port always present (factory plugged)

### **DPZA-LES**

Ex-proof digital servoproportional directional valves, piloted with two LVDT position transducers (pilot valve and main stage) and zero spool overlap for position closed loop

They are equipped with ex-proof on-board digital driver, LVDT transducer and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and transducers, prevents the propagation of accidental internal sparks or fire to the external environment. The driver and solenoid are also designed to limit the surface temperature within the classified limits.

LEZ execution includes valve driver plus axis card to perform position control (see section 6).

Size: 10 ÷ 27 -ISO4401 Max flow: 180 ÷ 800 I/min Max pressure: 350 bar

# MODEL CODE - LES **DPZA** - SN NP 2 Ex-proof proportional directional valve, piloted **LES** = on-board driver and two LVDT transducers Alternated P/Q controls, see section 5: SN = none SP = pressure control (1 pressure tranducer) SF = force control (2 pressure tranducers) SL = force control (1 load cell) Fieldbus interface, USB port always present: **NP** = Not Present **BC** = CANopen **EW** = POWERLINK BP = PROFIBUS DP EI = EtherNet/IP **EP** = PROFINET RT/IRT EH = EtherCAT Valve size ISO 4401: **1** = 10 **2** = 16 **4** = 25

| Configuration | on: Standard                            | Option /B                               |  |  |
|---------------|-----------------------------------------|-----------------------------------------|--|--|
| 60 =          | M B M M M M M M M M M M M M M M M M M M | A B P T                                 |  |  |
| 70 =          | A B P T b                               | A B A B A B A B A B A B A B A B A B A B |  |  |

| M / | *                      | *                | 1    | *                                                                     |  |  |  |  |  |  |  |  |
|-----|------------------------|------------------|------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|     |                        | Series<br>number | _    | Seals material,<br>see section 8:<br>- = NBR<br>PE = FKM<br>BT = HNBR |  |  |  |  |  |  |  |  |
|     | Hydraulic options (1): |                  |      |                                                                       |  |  |  |  |  |  |  |  |
|     | B =                    | solenoid at      | side | <b>B</b> = solenoid at side of port A (2)                             |  |  |  |  |  |  |  |  |

= internal drain

= external pilot pressure

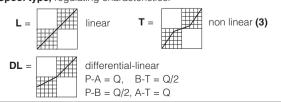
= pressure reducing valve for piloting (standard for size 10)

### Electronic options (1):

C = current feedback for pressure transducer 4÷20 mA, only for SP, SF, SL

(omit for std voltage ±10 VDC)

= current reference input and monitor  $4 \div 20 \text{mA}$  (omit for std voltage  $\pm 10 \text{VDC}$ )


### Cable entrance threaded connection:

M = M20x1,5

5 /

| Spool size  | е    | <b>3</b> (L)       | <b>5</b> (L,DL) | <b>5</b> (T) |
|-------------|------|--------------------|-----------------|--------------|
| DPZA-1      | =    | -                  | 100             | -            |
| DPZA-2      | =    | 130                | 200             | 150          |
| DPZA-4      | =    | -                  | 340             | -            |
| DPZA-4M     | =    | -                  | 390             | -            |
| Nominal fle | ow ( | I/min) at $\Delta$ | p 10bar P-T     |              |

Spool type, regulating characteristics:



- (1) For possible combined options, see section 16
- (2) In standard configuration the solenoid with on-board digital driver and position transducer are at side A of main stage (side B of pilot valve)

(3) only for configuration 70

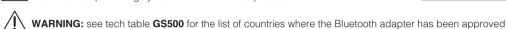
### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

# 3 VALVE SETTINGS AND PROGRAMMING TOOLS

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.


The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

**E-SW-\*/PQ** support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



of isolator adapter is highly recommended for PC protection

WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use

4 FIELDBUS - see tech. table GS510

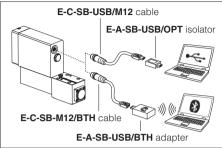
Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 5 ALTERNATED P/Q CONTROLS - see tech. table FX500

S\* options add the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP, 2 pressure transducers for SF or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

# 6 AXIS CONTROLLER - see tech. table FX630


Digital servoproportional with integral electronics **LEZ** include valve's driver plus axis controller, performing position closed loop of any hydraulic actuator equipped with analog, encoder or SSI position transducer. Alternated pressure or force closed loop control can be set by software additionally to the position control.

Atos also supplies complete servoactuators integrating servocylinder, digital servoproportional valve and axis controller, fully assembled and tested. For more information consult Atos Technical Office.

# 7 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                             |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                       |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" RoHs Directive 2011/65/EU as last update by 2015/65/EU            |
|                                        | REACH Regulation (EC) n°1907/2006                                                                                                                                                        |

### USB or Bluetooth connection



### 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model          |                             | DPZA-*-1                    |                | DPZA-*-2                 |               | DPZA-*-4                    | DPZA-*-4M |
|----------------------|-----------------------------|-----------------------------|----------------|--------------------------|---------------|-----------------------------|-----------|
| Pressure limits      | [bar]                       |                             | ports P, A, B, | <b>X</b> = 350; <b>T</b> | = 250 (10 for | option /D); <b>Y</b> = 10   | D;        |
| Spool type           |                             | L5, DL5                     | L3             | L5, DL5                  | T5            | L5,                         | DL5       |
| Nominal flow [I/min] |                             |                             |                |                          |               |                             |           |
|                      | $\Delta p = 10 \text{ bar}$ | 100                         | 130            | 200                      | 150           | 340                         | 390       |
| Δρ Ρ-Τ               | $\Delta p = 30 \text{ bar}$ | 160                         | 220            | 350                      | 260           | 590                         | 670       |
|                      | Max permissible flow        | 180                         | 320            | 440                      | 360           | 680                         | 800       |
| Δp max P-T           | [bar]                       | 50                          | 60             | 60                       | 60            | 60                          | 60        |
| Piloting pressure    | [bar]                       | min. =                      | 25; max =      | 350 (option /0           | advisable fo  | or pilot pressure > 2       | 200 bar)  |
| Piloting volume      | [cm <sup>3</sup> ]          | 1,4                         |                | 3,7                      |               | 9,0                         | 11,3      |
| Piloting flow (1)    | [l/min]                     | 1,7                         |                | 3,7                      |               | 6,8                         | 8         |
| Leakage              | Pilot [cm³/min]             | 100/300                     |                | 150/450                  |               | 200/600                     | 200/600   |
| (2)                  | Main stage [l/min]          | 0,4/1,2                     |                | 0,6/2,5                  |               | 1,0/4,0                     | 1,0/4,0   |
| Response time (1)    | [ms]                        | ≤ 30                        | ≤ 30           |                          | ≤ 35          | ≤ 40                        |           |
| Hysteresis           |                             | ≤0,1 [% of max regulation]  |                |                          |               |                             |           |
| Repeatability        |                             | ± 0,1 [% of max regulation] |                |                          |               |                             |           |
| Thermal drift        |                             |                             | zero           | point displace           | ement < 1% a  | at $\Delta T = 40^{\circ}C$ |           |

<sup>(1) 0 ÷ 100 %</sup> step signal and pilot pressure 100 bar

### 9 ELECTRICAL CHARACTERISTICS

|                                     | Nominal                                                                                                                                                                                                           | : +24 VDC                                                                                                                                                    |                                            |                                                                       |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Power supplies                      |                                                                                                                                                                                                                   | Rectified and filtered: VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                            |                                            |                                                                       |  |  |  |
| Max power consumption               | 35 W                                                                                                                                                                                                              |                                                                                                                                                              |                                            |                                                                       |  |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r                                                                                                                                                                         | /DC (24 VMAX tollerant)<br>nA                                                                                                                                | Input impedance<br>Input impedance         |                                                                       |  |  |  |
| Insulation class                    |                                                                                                                                                                                                                   | ccuring surface tempera<br>82 must be taken into a                                                                                                           |                                            | ils, the European standards                                           |  |  |  |
| Monitor outputs                     |                                                                                                                                                                                                                   | oltage ±10 VDC @ m<br>urrent ±20 mA @ ma                                                                                                                     | ax 5 mA<br>ax 500 $\Omega$ load resistance |                                                                       |  |  |  |
| Enable input                        | Range: 0 ÷ 5 VDC (OFF                                                                                                                                                                                             | state), 9 ÷ 24 VDC (ON                                                                                                                                       | state), 5 ÷ 9 VDC (not acc                 | cepted); Input impedance: Ri > 10 k $\Omega$                          |  |  |  |
| Fault output                        |                                                                                                                                                                                                                   | Output range: 0 ÷ 24 VDC (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                            |                                                                       |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 r                                                                                                                                                                                                | mA (E-ATRA-7 see tech                                                                                                                                        | table <b>GX800</b> )                       |                                                                       |  |  |  |
| Alarms                              |                                                                                                                                                                                                                   | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, valve spool transducer malfunctions                 |                                            |                                                                       |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant of                                                                                                                                                                                          | cable gland                                                                                                                                                  |                                            |                                                                       |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                                                                             | Continuous rating (ED=100%)                                                                                                                                  |                                            |                                                                       |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                                                                            | ectronics PCB                                                                                                                                                |                                            |                                                                       |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; spool position control (SN) or pressure/force control (SP, SF, SL) P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                                                                                              |                                            |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                                                                |                                                                                                                                                              |                                            |                                                                       |  |  |  |
| Communication interface             | USB Atos ASCII coding                                                                                                                                                                                             | CANopen<br>EN50325-4 + DS408                                                                                                                                 | PROFIBUS DP<br>EN50170-2/IEC61158          | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                                                                | optical insulated<br>CAN ISO11898                                                                                                                            | optical insulated<br>RS485                 | Fast Ethernet, insulated<br>100 Base TX                               |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

### 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | I temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |                             |  |
|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity         |                  | 20 ÷100 mm²/s - max allowed ra                                                                                                                                                                                                                                                       | ange 15 ÷ 380 mm²/s        |                             |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1638 class 7                                                                                                                                                                                                                                               |                            | see also filter section at  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | 638 class 5                | www.atos.com or KTF catalog |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard               |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922                   |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 100 12922                   |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

39

<sup>(2)</sup> at P = 100/350 bar

<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:

<sup>-</sup>max operating pressure = 210 bar -max fluid temperature = 50°C

### 11 CERTIFICATION DATA

| Valve type                          | DPZA                                                                           |                                         |                 |  |  |
|-------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------|--|--|
| Certifications                      |                                                                                | Multicertification Group II  ATEX IECEx |                 |  |  |
| Solenoid certified code             |                                                                                | OZA-LES                                 |                 |  |  |
| Type examination certificate (1)    | • ATEX: TUV IT 18 ATEX 068 X                                                   | • IECEx: IEC                            | Ex TPS 19.0004X |  |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G Ex db IIC T6/T5/T4 G EX II 2D Ex tb IIIC T85°C/T100 |                                         |                 |  |  |
| Temperature class                   | T6                                                                             | T5                                      | T4              |  |  |
| Surface temperature                 | ≤ 85 °C                                                                        | ≤ 100 °C                                | ≤ 135 °C        |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                   | -40 ÷ +55 °C                            | -40 ÷ +70 °C    |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31<br>EN 60079-1                                           | IEC 60079-0<br>IEC 60079-1              |                 |  |  |
| Cable entrance: threaded connection |                                                                                | <b>M</b> = M20x1,5                      |                 |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

### 13 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

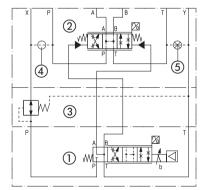
### 14 HYDRAULIC OPTIONS

- B = Solenoid, integral electronics and position transducer at side of port B of the main stage.
- D and E = Pilot and drain configuration can be modified as shown in section [21].
  The valve's standard configuration provides internal pilot and external drain.
  For different pilot / drain configuration select:

Option /D Internal drain.

Option /E External pilot (through port X).

**G** = Pressure reducing valve installed between pilot valve and main body with fixed setting:


DPZA-2 = 28 bar

DPZA-1, -4 and -4M = 40 bar

It is advisable for valves with internal pilot in case of system pressure higher than 150 bar.

Pressure reducing valve is standard for DPZA-1, for other sizes add /G option.

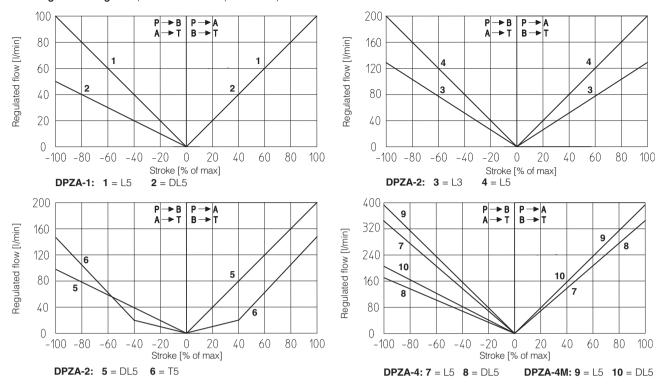
FUNCTIONAL SCHEME - example of configuration 70



- (1) Pilot valve
- ② Main stage
- 3 Pressure reducing valve
- 4) Plug to be added for external pilot trough port X
- (5) Plug to be removed for internal drain through port T

### 15 ELECTRONIC OPTIONS

- = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.
  It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SP, SF, SL

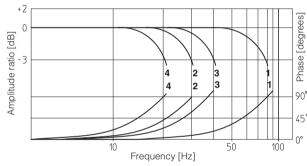

Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.

### 16 POSSIBLE COMBINED OPTIONS

**Hydraulic options**: all combination possible **Electronics options**: /Cl (only for **SP**, **SF**, **SL**)

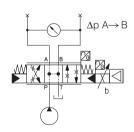
### 17 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

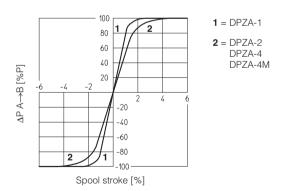
### 17.1 Regulation diagrams (values measure at ∆p 10 bar P-T)




Note: Hydraulic configuration vs. reference signal for configurations 60 and 70 (standard and option /B)

Reference signal 
$$\begin{array}{ccc} 0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array}\} \text{ P} \rightarrow \text{A} / \text{B} \rightarrow \text{T} \qquad \text{Reference signal} \begin{array}{cccc} 0 \div -10 \text{ V} \\ 4 \div 12 \text{ mA} \end{array}\} \text{P} \rightarrow \text{B} / \text{A} \rightarrow \text{T}$$


### 17.2 Bode diagrams


Stated at nominal hydraulic conditions.

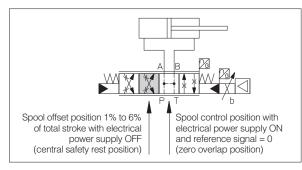


1 = 
$$\frac{DPZA-1}{DPZA-2}$$
 \( \pm 5\) \( \pm 2 =  $\frac{DPZA-1}{DPZA-2}$  \( \pm 100\)%
3 =  $\frac{DPZA-4}{DPZA-4M}$  \( \pm 5\) \( \pm 4 =  $\frac{DPZA-4}{DPZA-4M}$  \( \pm 100\)%

### 17.3 Pressure gain






### 17.4 Safety rest position - configuration 70

In absence of electric power supply (+24 VDC), the valve main spool is moved by the springs force to the **central safety rest position** characterized by a small offset of about 1% to 6% of the total stroke in P-B / A-T configuration.

This is specifically designed to avoid that in case of accidental interruption of the electrical power supply to the valve, the actuator moves towards an undefined direction (due to the tolerances of the zero overlap spool), with potential risk of damages or personnel injury.

Thanks to the **central safety rest position** the actuator movement is suddenly stopped and it is recovered at very low speed towards the direction corresponding to the P-B/ A-T connection.

The main spool moves to the closed loop control position (zero overlap) when the pilot pressure is activated, the valve is fed with power supply +24 VDC and reference input = 0V (or 12 mA for option /I) is applied to the driver.



41

### 18 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

### 18.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

 $\bigwedge$  A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 18.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 18.3 Flow reference input signal (Q\_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 18.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SF, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 18.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.

### 18.6 Pressure or force monitor output signal (F\_MONITOR) - only for SP, SF, SL

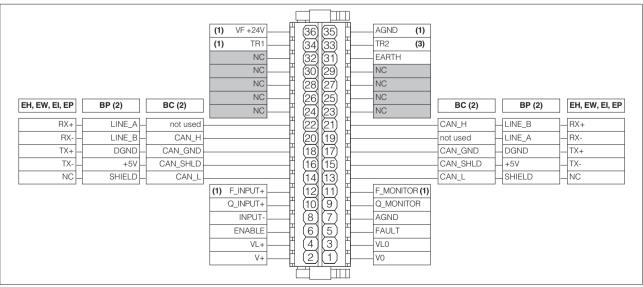
The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 18.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 Vpc on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 18.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 18.9 Remote pressure/force transducer input signal - only for SP, SF, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 19 TERMINAL BOARD OVERVIEW



(1) connections available only SP, SF, SL

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

(3) connection available only SF

### 20 ELECTRONIC CONNECTIONS

### 20.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL                                                                                                                                                                 | TECHNICAL SPECIFICATIONS                                                                                                                    | NOTES                                             |
|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0                                                                                                                                                                     | Power supply 0 Vpc                                                                                                                          | Gnd - power supply                                |
|                   | 2   | V+                                                                                                                                                                     | Power supply 24 Vdc                                                                                                                         | Input - power supply                              |
|                   | 3   | VL0                                                                                                                                                                    | Power supply 0 Vpc for driver's logic and communication                                                                                     | Gnd - power supply                                |
|                   | 4   | VL+                                                                                                                                                                    | Power supply 24 Vbc for driver's logic and communication                                                                                    | Input - power supply                              |
|                   | 5   | FAULT                                                                                                                                                                  | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                   | Output - on/off signal                            |
|                   | 6   | ENABLE                                                                                                                                                                 | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                              | Input - on/off signal                             |
|                   | 7   | AGND                                                                                                                                                                   | Analog ground                                                                                                                               | Gnd - analog signal                               |
| A                 | 8   | INPUT-                                                                                                                                                                 | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                   | Input - analog signal                             |
| , ,               | 9   | Q_MONITOR                                                                                                                                                              | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+                                                                                                                                                               | Q_INPUT+ Flow reference input signal: ±10 Vpc / ±20 mA maximum range Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option         |                                                   |
|                   | 11  | 11 F_MONITOR Pressure/Force monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND (1) Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option |                                                                                                                                             | Output - analog signal Software selectable        |
|                   | 12  | Pressure/Force reference input signal: ±10 Vpc / ±20 mA maximum range (1) Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                               |                                                                                                                                             | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH                                                                                                                                                                  | Internally connected to driver housing                                                                                                      |                                                   |

(1) Available only for SP, SF, SL

### 20.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view  | B |
|-------------------|-----|---------|--------------------------|--------------|---|
|                   | 1   | +5V_USB | Power supply             |              |   |
|                   | 2   | ID      | Identification           |              |   |
| B                 | 3   | GND_USB | Signal zero data line    |              |   |
|                   | 4   | D-      | Data line -              | 4 - (famala) |   |
|                   | 5   | D+      | Data line +              | (female)     |   |

### 20.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
| C1                | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
|                   | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
| C2                | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
|                   | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

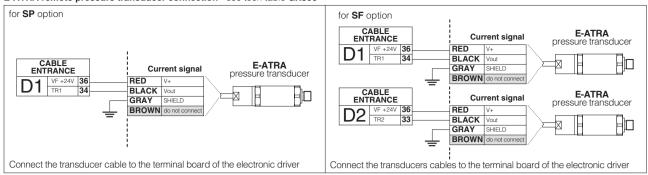
### 20.4 BP fieldbus execution connections

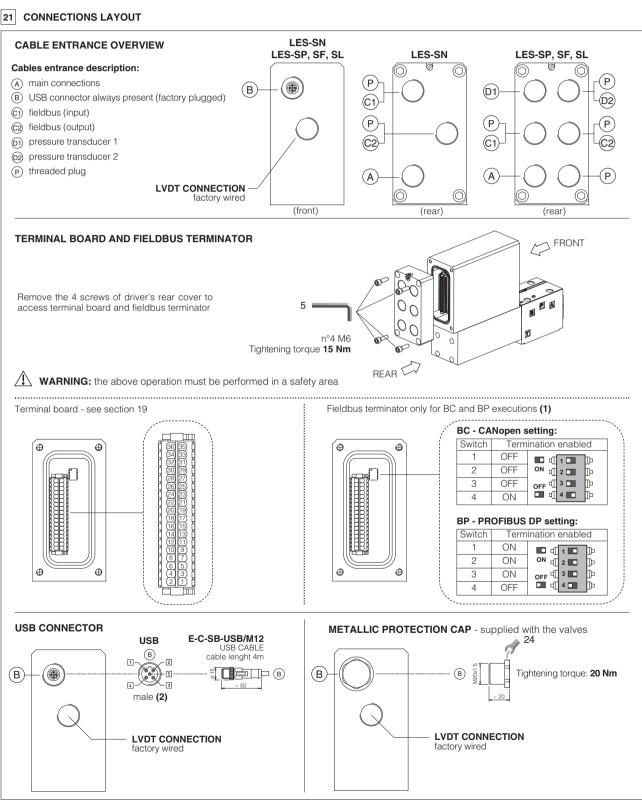
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ; 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

### 20.5 EH, EW, EI, EP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ) 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |


### 20.6 Remote pressure transducer connector - only for SP, SF, SL

| CABLE     | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                            | SP, SL - Single transducer (1) SF - Double transducer |         |         |         |
|-----------|-----|---------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|---------|---------|---------|
| ENTRANCES |     |         |                                                         | NOTES                                            | Voltage                                               | Current | Voltage | Current |
| D1        | 33  | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal <b>Software selectable</b> | /                                                     | /       | Connect | Connect |
|           | 34  | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range  | Input - analog signal <b>Software selectable</b> | Connect                                               | Connect | Connect | Connect |
| D2        | 35  | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect                                               | /       | Connect | /       |
|           | 36  | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect                                               | Connect | Connect | Connect |

FX235 PROPORTIONAL VALVES 43

### E-ATRA remote pressure transducer connection - see tech table GX800





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

### 21.1 Cable glands and threaded plug for LES-SN - see tech table KX800

| Communication                                            | То    | be ordere         | ed separat | ely                  | Cable entrance |                                                                              |
|----------------------------------------------------------|-------|-------------------|------------|----------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                               | Cable | gland<br>entrance |            | ed plug<br> entrance | overview       | Notes                                                                        |
| NP                                                       | 1     | А                 | none       | none                 | (P)<br>(A)     | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2     | C1                | 1          | C2                   |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3     | C1<br>C2<br>A     | none       | none                 |                | Cable entrance A, C1, C2 are open for costumers                              |

### 21.2 Cable glands and threaded plug for LES-SP, SL - see tech table KX800

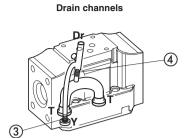
| Communication                                            | То | be ordere          | rdered separately |                      | Cable entrance                          |                                                                                           |  |  |
|----------------------------------------------------------|----|--------------------|-------------------|----------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| interfaces                                               | l  | gland<br>entrance  |                   | ed plug<br> entrance | overview                                | Notes                                                                                     |  |  |
| NP                                                       | 2  | D1<br>A            | none              | none                 | 50 P<br>P P<br>A P                      | Cable entrance A, D1 are open for costumers  Cable entrance P are factory plugged         |  |  |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | D1<br>C1<br>A      | 1                 | C2                   | 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |  |  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | D1<br>C1 - C2<br>A | none              | none                 | 00 00 00 00 00 00 00 00 00 00 00 00 00  | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |  |  |

### 21.3 Cable glands and threaded plug for LES-SF - see tech table KX800

| Communication                                            | То | be ordere               | ed separat | ely                 | Cable entrance                   |                                                                                              |
|----------------------------------------------------------|----|-------------------------|------------|---------------------|----------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance       |            | ed plug<br>entrance | overview                         | Notes                                                                                        |
| NP                                                       | 3  | D1<br>D2<br>A           | none       | none                | 60 P<br>60 P                     | Cable entrance A, D1, D2 are open for costumers Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1 - D2<br>C1<br>A      | 1          | C2                  | 900<br>900<br>900<br>AP AP       | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1 - D2<br>C1 - C2<br>A | none       | none                | 00 00<br>00 00<br>00 00<br>00 00 | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |

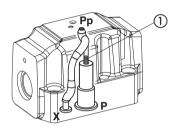
FX235 PROPORTIONAL VALVES

45

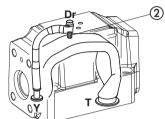

### 22 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

1

Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below.


To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain

# DPZA-1 Pilot channels



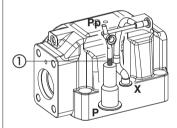

Internal piloting: blinded plug SP-X300F ① in X; External piloting: blinded plug SP-X300F ② in Pp; Internal drain: blinded plug SP-X300F ③ in Y; External drain: blinded plug SP-X300F ④ in Dr.

### DPZA-2 Pilot channels

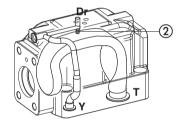


## Drain channels




 Internal piloting:
 Without blinded plug SP-X300F ①;

 External piloting:
 Add blinded plug SP-X300F ①;


 Internal drain:
 Without blinded plug SP-X300F ②;

 External drain:
 Add blinded plug SP-X300F ②.

### DPZA-4 Pilot channels



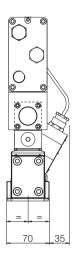
### Drain channels

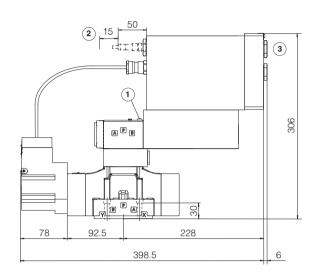


Internal piloting: Without blinded plug SP-X500F ①; External piloting: Add blinded plug SP-X500F ①; Internal drain: Without blinded plug SP-X300F ②; External drain: Add blinded plug SP-X300F ②.

### 23 FASTENING BOLTS AND SEALS

| Туре | Size           | Fastening bolts                                                     | Seals                                                              |
|------|----------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
|      | <b>1</b> = 10  | 4 socket head screws M6x40 class 12.9                               | 5 OR 2050;<br>Diameter of ports A, B, P, T: Ø 11 mm (max)          |
|      | 1 = 10         | Tightening torque = 15 Nm                                           | 2 OR 108 Diameter of ports X, Y: $\emptyset = 5 \text{ mm (max)}$  |
|      | <b>2</b> = 16  | 4 socket head screws M10x50 class 12.9<br>Tightening torque = 70 Nm | 4 OR 130;<br>Diameter of ports A, B, P, T: Ø 20 mm (max)           |
| DPZA |                | 2 socket head screws M6x45 class 12.9<br>Tightening torque = 15 Nm  | 2 OR 2043 Diameter of ports X, Y: $\emptyset = 7 \text{ mm (max)}$ |
| DFZA | <b>4</b> = 25  | 6 socket head screws M12x60 class 12.9                              | 4 OR 4112;<br>Diameter of ports A, B, P, T: Ø 24 mm (max)          |
|      | 4 = 25         | Tightening torque = 125 Nm                                          | 2 OR 3056 Diameter of ports X, Y: Ø = 7 mm (max)                   |
|      | <b>4M</b> = 27 | 6 socket head screws M12x60 class 12.9                              | 4 OR 3137;<br>Diameter of ports A, B, P, T: Ø 32 mm (max)          |
|      | 4IVI = 27      | Tightening torque = 125 Nm                                          | 2 OR 3056 Diameter of ports X, Y: $\emptyset = 7 \text{ mm (max)}$ |


### **DPZA-LES-\*-1**


ISO 4401: 2005

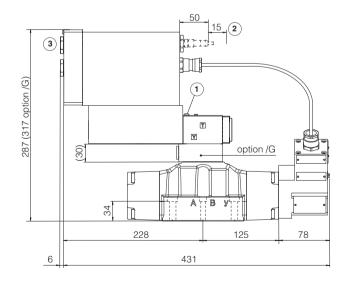
Mounting surface: 4401-05-05-0-05

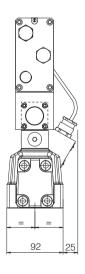
(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-17* | 13,7 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |






### **DPZA-LES-\*-2**


ISO 4401: 2005

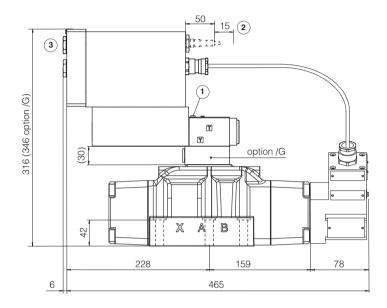
Mounting surface: 4401-07-07-0-05

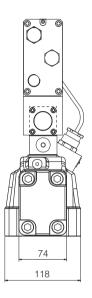
(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-27* | 17,9 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |






- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# DPZA-LES-\*-4 **DPZA-LES-\*-4M**

ISO 4401: 2005 Mounting surface: 4401-08-08-0-05

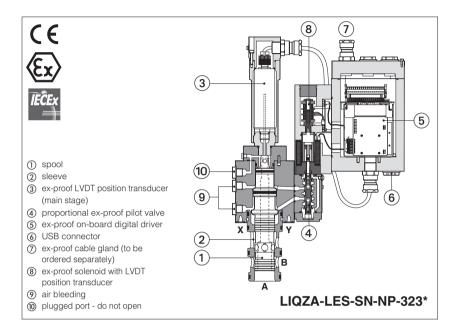
(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-4*  | 23,1 |  |  |  |  |
| DPZA-*-4M* | 23,1 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |





- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


### 25 RELATED DOCUMENTATION

| X<br>F:<br>F: | 010<br>020<br>X500<br>X630 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Ex-proof digital proportionals with P/Q control Ex-proof servoproportionals with on-board axis card | GS500<br>GS510<br>GX800<br>KX800 | Programming tools Fieldbus Ex-proof pressure transducer type E-ATRA-7 Cable glands for ex-proof valves |
|---------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
|               | X900                       | Operating and manintenance information for ex-proof proportional valves                                                                                                                                                            | P005                             | Mounting surfaces for electrohydraulic valves                                                          |



# Ex-proof digital servoproportional 3-way cartridges

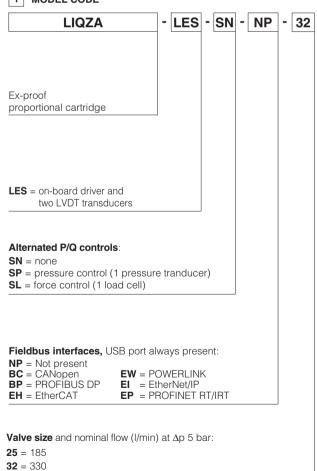
piloted, with on-board driver and two LVDT transducers - ATEX and IECEx

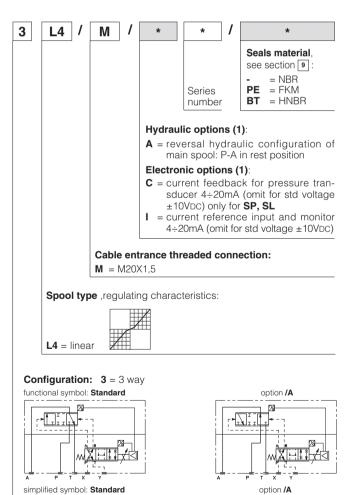


### **LIQZA-LES**

Ex-proof digital servoproportional 3-way cartridges, with two LVDT position transducers (pilot valve and main stage) for best accuracy in directional controls and in not compensated flow regulations.

They are equipped with ex-proof on-board digital driver, LVDT transducers and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.


### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

Size:  $25 \div 80$  - not ISO cavity Max flow:  $500 \div 5000$  l/min Max pressure: 420 bar

### 1 MODEL CODE





(1) For possible combined options, see section 15

**40** = 420

**50** = 780 **63** = 1250 **80** = 2100

### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

**USB** or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

F-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

### 3 VALVE SETTINGS AND PROGRAMMING TOOLS



WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support:
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support:
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

**E-SW-\*/PQ** support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



**WARNING:** drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection



WARNING: Bluetooth adapter is available only for European, USA and Canadian markets!

∆ Bluetooth adapter is certified according RED (Europe), FCC (USA) and ISED (Canada) directives

### 4 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These execution allow to operate the valves through fieldbus or analog signals available on the main connector.

### 5 ALTERNATED P/Q CONTROLS - see tech. table FX500

**S**\* options add the closed loop control of pressure (**SP**) or force (**SL**) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

### 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                       |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spay test (EN ISO 9227) > 200 h                                                                                                               |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |

### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

|                       |                                      | 25                                                        | 32    | 40                   | 50      | 63     | 80   |
|-----------------------|--------------------------------------|-----------------------------------------------------------|-------|----------------------|---------|--------|------|
| Max regulated flow    | [l/min]                              |                                                           |       |                      |         |        |      |
| Δp P-A or A-T         | at $\Delta p = 5$ bar                | 185                                                       | 330   | 420                  | 780     | 1250   | 2100 |
| '                     | at $\Delta p = 10$ bar               | 260                                                       | 470   | 590                  | 1100    | 1750   | 3000 |
| Max permissible flow  | N                                    | 500                                                       | 850   | 1050                 | 2000    | 3100   | 5000 |
| Max pressure [bar]    | ]                                    |                                                           | Ports | P, A, T = <b>420</b> | X = 350 | Y ≤ 10 |      |
| Nominal flow of pilot | valve at $\Delta p = 70$ bar [I/min] | 4                                                         | 8     | 28                   | 40      | 100    | 100  |
| Leakage of pilot val  | ve at P = 100 bar [I/min]            | 0,2                                                       | 0,2   | 0,5                  | 0,7     | 0,7    | 0,7  |
| Piloting pressure     | [bar]                                | min: 40% of system pressure max 350 recommended 140 ÷ 160 |       |                      |         |        |      |
| Piloting volume       | [cm³]                                | 2,16                                                      | 7,2   | 8,9                  | 17,7    | 33,8   | 42,7 |
| Piloting flow (1)     | [l/min]                              | 6,5                                                       | 20    | 25                   | 43      | 68     | 76   |
| Response time (2)     | [ms]                                 | ≤ 25                                                      | ≤ 27  | ≤ 27                 | ≤ 30    | ≤ 35   | ≤ 40 |
| Hysteresis            | [% of the max regulation]            | ≤ 0,1                                                     |       |                      |         |        |      |
| Repeatability         | [% of the max regulation]            | ± 0,1                                                     |       |                      |         |        |      |
| Thermal drift         |                                      | zero point displacement < 1% at ΔT = 40°C                 |       |                      |         |        |      |

(1) 0÷100% step signal

(2) With pilot pressure = 140 bar



### WARNING

The loss of the pilot pressure causes the undefined position of the main spool.

The sudden interruption of the power supply during the valve operation causes the immediate main spool opening  $A \to T$  or  $P \to A$  (for option /A). This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

### 8 ELECTRICAL CHARACTERISTICS

| Power supplies                                           | Nominal : +24 VDC<br>Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                                                          |                                                    |                                           |                                                                       |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption                                    | 35 W                                                                                                                                                                                                             |                                                    |                                           |                                                                       |  |  |  |
| Analog input signals                                     | Voltage: range ±10 \ Current: range ±20 n                                                                                                                                                                        | /DC (24 VMAX tollerant)<br>nA                      | Input impedance<br>Input impedance        |                                                                       |  |  |  |
| Insulation class                                         |                                                                                                                                                                                                                  | ccuring surface tempera<br>82 must be taken into a |                                           | ils, the European standards                                           |  |  |  |
| Monitor outputs                                          |                                                                                                                                                                                                                  | oltage ±10 VDC @ ma<br>urrent ±20 mA @ ma          | ax 5 mA<br>x 500 $\Omega$ load resistance |                                                                       |  |  |  |
| Enable input                                             | Range: 0 ÷ 5 VDC (OFF                                                                                                                                                                                            | state), 9 ÷ 24 VDC (ON s                           | state), 5 ÷ 9 VDC (not acc                | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |  |
| Fault output                                             | Output range: 0 ÷ 24 VDC (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads)                                                     |                                                    |                                           |                                                                       |  |  |  |
| Pressure/force transducer power supply (only for SP, SL) | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                                                                                                                                                      |                                                    |                                           |                                                                       |  |  |  |
| Alarms                                                   | Solenoid not connecte valve spool transduce                                                                                                                                                                      | ed/short circuit, cable b<br>r malfunctions        | reak with current refere                  | nce signal, over/under temperature,                                   |  |  |  |
| Protection degree to DIN EN60529                         | IP66/67 with relevant                                                                                                                                                                                            | cable gland                                        |                                           |                                                                       |  |  |  |
| Duty factor                                              | Continuous rating (ED                                                                                                                                                                                            | =100%)                                             |                                           |                                                                       |  |  |  |
| Tropicalization                                          | Tropical coating on electronics PCB                                                                                                                                                                              |                                                    |                                           |                                                                       |  |  |  |
| Additional characteristics                               | Short circuit protection of solenoid current supply; spool position control (SN) or pressure/force control (SP, SL) by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                    |                                           |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC)                      | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                                                               |                                                    |                                           |                                                                       |  |  |  |
| Communication interface                                  | USB Atos ASCII coding                                                                                                                                                                                            | CANopen<br>EN50325-4 + DS408                       | PROFIBUS DP<br>EN50170-2/IEC61158         | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer                             | not insulated<br>USB 2.0 + USB OTG                                                                                                                                                                               | optical insulated<br>CAN ISO11898                  | optical insulated<br>RS485                | Fast Ethernet, insulated 100 Base TX                                  |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

### 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature |             | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |                             |  |
|--------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity                |             | 20 ÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                     |                            |                             |  |
| Max fluid normal operation           |             | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | 638 class 7                | see also filter section at  |  |
| contamination level                  | longer life | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | 638 class 5                | www.atos.com or KTF catalog |  |
| Hydraulic fluid                      |             | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard               |  |
| Mineral oils                         |             | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without water        |             | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922                   |  |
| Flame resistant with water           | (1)         | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 130 12922                   |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

### (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

### 10 CERTIFICATION DATA

| Components type                     | Pilot va                                                  | LVDT main stage<br>transducer     |                  |                            |
|-------------------------------------|-----------------------------------------------------------|-----------------------------------|------------------|----------------------------|
| Certifications                      |                                                           | Multicertific                     | ation ATEX IECEx |                            |
| Components Certified code           |                                                           | OZA-LES                           |                  | ETHA-15                    |
|                                     | •                                                         | ATEX: TUV IT 18 ATEX 06           | 88 X             | ATEX: TUV IT 16 ATEX 053 X |
| Type examination certificate (1)    | •                                                         | IECEx: IECEx TPS 16.0003X         |                  |                            |
| Method of protection                | • ATEX<br>Ex II 2G Ex c<br>Ex II 2D Ex tb                 | 6/T5/T4 Gb<br>°C/T100°C/T135°C Db |                  |                            |
| Temperature class                   | Т6                                                        | T5                                | T4               | Т6                         |
| Surface temperature                 | ≤85 °C                                                    | ≤ 100 °C                          | ≤ 135 °C         | ≤ 85 °C                    |
| Ambient temperature (2)             | -40 ÷ +40 °C                                              |                                   |                  | -40 ÷ +70 °C               |
| Applicable Standards                | EN 60079-0 EN 60079-31 IEC 60079-0 EN 60079-1 IEC 60079-1 |                                   |                  | IEC 60079-31               |
| Cable entrance: threaded connection |                                                           | M = M20x1,5                       |                  | factory wired              |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver solenoid and LVDT transducers are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

51

### 11 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

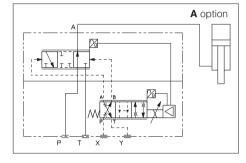
### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

### 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table KX800


Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### 13 HYDRAULIC OPTIONS

**A** = The standard valve version provides the hydraulic configuration A-T of main spool in absence of electric power supply to the valve.

The option /A provides the reverse configuration P-A of main spool in absence of electric power supply to the valve.

This execution is particularly requested in vertical presses for safety reasons, because in case of electric power breakdown the P-A configuration of the main spool prevents the uncontrolled and dangerous downstroke of the press ram.



### 14 ELECTRONICS OPTIONS

I = This option provides 4 ÷ 20 mA current reference and monitor signals, instead of the standard 0 ÷ 10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

### C = Only for SP, SL

This option is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.

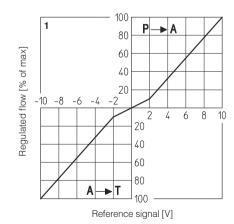
### 15 POSSIBLE COMBINED OPTIONS

For SN: /Al

For SP, SL: /AC, AI, /CI, /ACI

### 16 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

## 16.1 Regulation diagrams, see note


1 = LIQZA (all sizes)

Hydraulic configuration vs. reference signal:

standard option /A

Reference signal  $\begin{array}{c} 0 \div + 10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array}\} P \rightarrow A \qquad A \rightarrow T$ 

Reference signal  $0 \div -10 \text{ V}$   $4 \div 12 \text{ mA}$   $A \rightarrow T$   $P \rightarrow A$ 



### 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics. EN-982).

### 17.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

 $\stackrel{\frown}{\mathbb{L}}$  A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 17.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 17.3 Flow reference input signal (Q INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDc for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDc or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDc.

### 17.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

### 18.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 17.6 Pressure or force monitor output signal (F MONITOR) - only for SP, SL

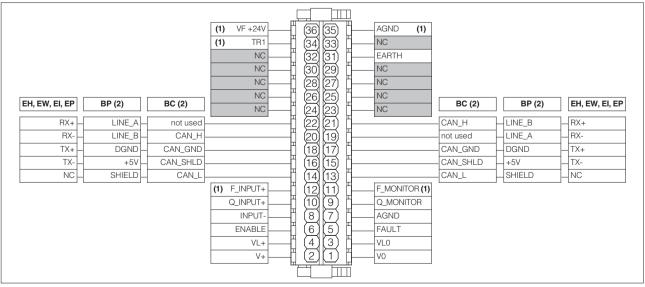
The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 17.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 Vpc on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 17.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 17.9 Remote pressure/force transducer input signal - only for SP, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 18 TERMINAL BOARD OVERVIEW



(1) Connections available only SP, SL

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

### 19 ELECTRONIC CONNECTIONS

### 19.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                      | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                            | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Vdc                                                                                                                                                           | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                       | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                      | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                                                     | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                 | Gnd - analog signal                               |
| Α                 | 8   | INPUT-    | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                     | Input - analog signal                             |
| , ,               | 9   | Q_MONITOR | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                   | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                 | Input - analog signal<br>Software selectable      |
|                   | 11  | F_MONITOR | Pressure/Force monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND (1) Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option | Output - analog signa<br>Software selectable      |
|                   | 12  | F_INPUT+  | Pressure/Force reference input signal: ±10 Vbc / ±20 mA maximum range (1) Defaults are: ±10 Vbc for standard and 4 ÷ 20 mA for /I option                                      | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                        |                                                   |

(1) Available only for SP, SL

### 19.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view  | B |
|-------------------|-----|---------|--------------------------|--------------|---|
|                   | 1   | +5V_USB | Power supply             |              |   |
|                   | 2   | ID      | Identification           | 5            |   |
| $\mid B \mid$     | 3   | GND_USB | Signal zero data line    |              |   |
|                   | 4   | D-      | Data line -              | 4 - (famala) |   |
|                   | 5   | D+      | Data line +              | (female)     |   |

### 19.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
| C1                | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
|                   | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|--|-------------------|-----|----------|-----------------------------|
|  |                   | 13  | CAN_L    | Bus line (low)              |
|  |                   | 15  | CAN_SHLD | Shield                      |
|  | C2                | 17  | CAN_GND  | Signal zero data line       |
|  |                   | 19  | not used | Pass-through connection (1) |
|  |                   | 21  | CAN_H    | Bus line (high)             |

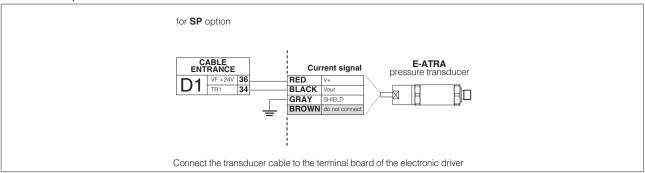
(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

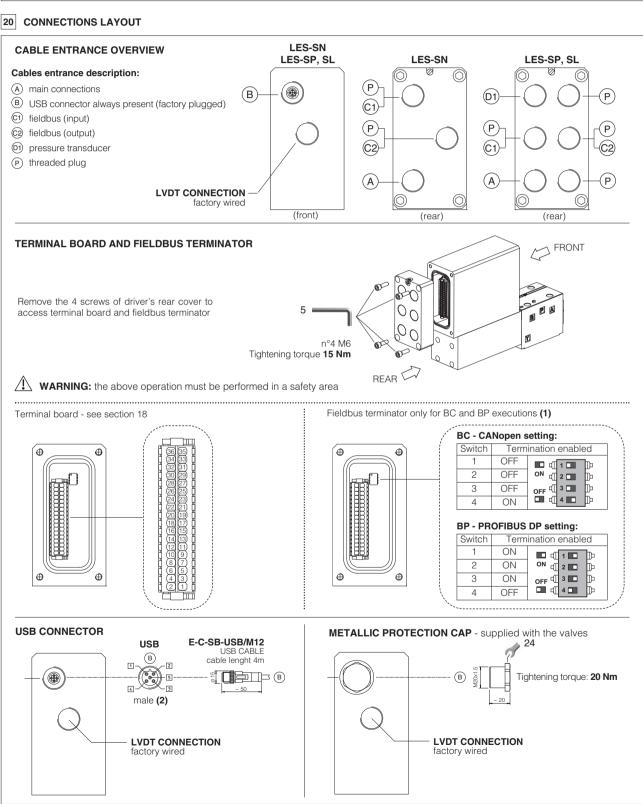
### 19.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
| C1                | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
|                   | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

### 19.5 EH, EW, EI, EP fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ; 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (;2               | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

### 19.6 Remote pressure transducer connector - only for SP, SL

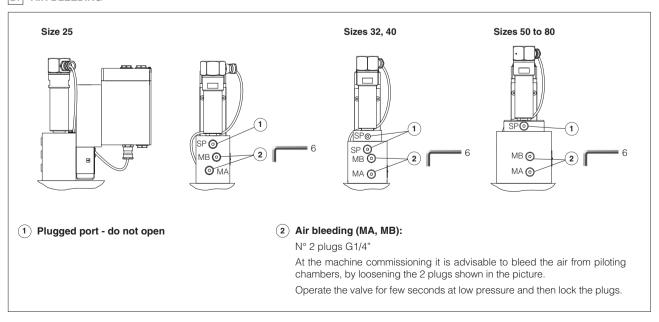
| ion nome process of management of my for or , or |     |         |                                                        |                                              |                            |                           |                                             |         |  |
|--------------------------------------------------|-----|---------|--------------------------------------------------------|----------------------------------------------|----------------------------|---------------------------|---------------------------------------------|---------|--|
| CABLE<br>ENTRANCES                               | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS NOTES                         |                                              | SP, SL - Single<br>Voltage | transducer (1)<br>Current | SF - Double transducers (1) Voltage Current |         |  |
| <b>D</b> 4                                       | 34  | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal<br>Software selectable | Connect                    | Connect                   | Connect                                     | Connect |  |
| D1                                               | 35  | AGND    | Common gnd for transducer power and signals            | Common gnd                                   | Connect                    | /                         | Connect                                     | /       |  |
|                                                  | 36  | VF +24V | Power supply +24Vpc                                    | Output - power supply                        | Connect                    | Connect                   | Connect                                     | Connect |  |

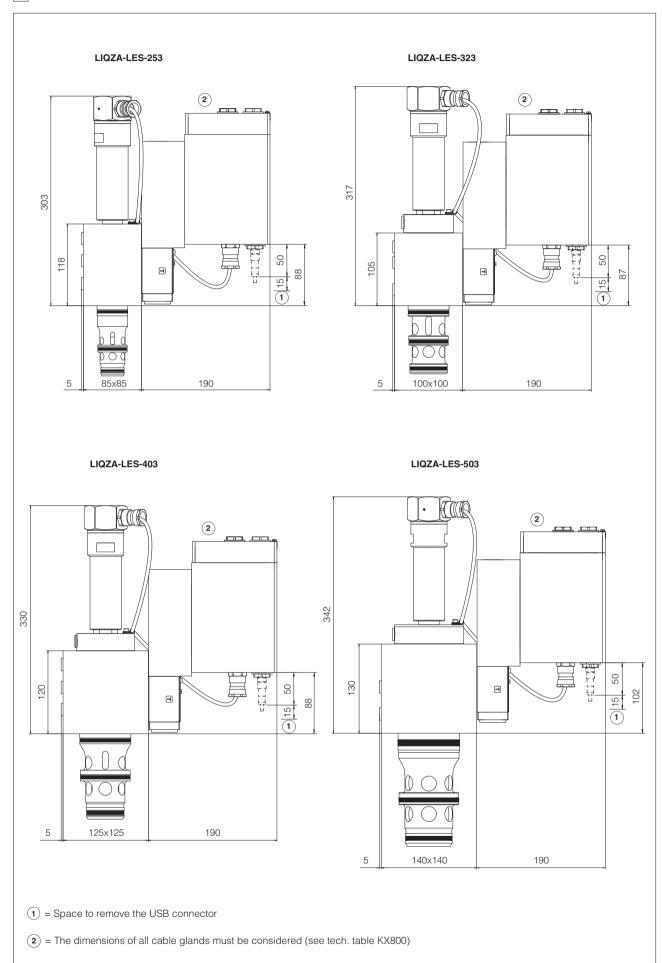
### E-ATRA remote pressure transducer connection - see tech table GX800

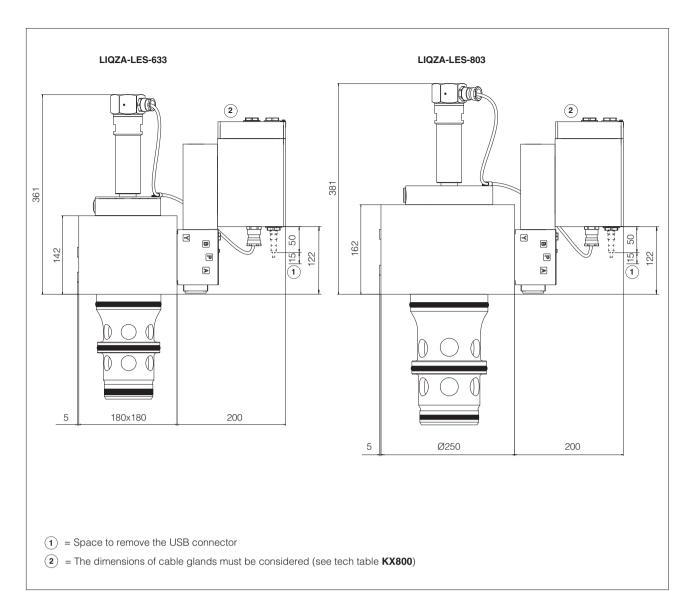




- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view


### 20.1 Cable glands and threaded plug for LES-SN - see tech table KX800


| Communication                                            | То          | be ordere     | ed separat                      | tely | Cable entrance |                                                                              |
|----------------------------------------------------------|-------------|---------------|---------------------------------|------|----------------|------------------------------------------------------------------------------|
| interfaces                                               | Cable gland |               | Threaded plug quantity entrance |      | overview       | Notes                                                                        |
| NP                                                       | 1           | А             | none                            | none | (P)<br>(A)     | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2           | C1            | 1                               | C2   |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3           | C1<br>C2<br>A | none                            | none |                | Cable entrance A, C1, C2 are open for costumers                              |


### 20.2 Cable glands and threaded plug for LES-SP, SL $\,$ - see tech table KX800 $\,$

| Communication                                            |   | To be ordered separately |      | Cable entrance      |                                          |                                                                                           |
|----------------------------------------------------------|---|--------------------------|------|---------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| interfaces                                               |   | gland<br>entrance        |      | ed plug<br>entrance | overview                                 | Notes                                                                                     |
| NP                                                       | 2 | D1<br>A                  | none | none                | 60 P<br>6 P                              | Cable entrance A, D1 are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3 | D1<br>C1<br>A            | 1    | C2                  | 9P 9 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4 | D1<br>C1 - C2<br>A       | none | none                | 00 00 00 00 00 00 00 00 00 00 00 00 00   | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

### 21 AIR BLEEDING

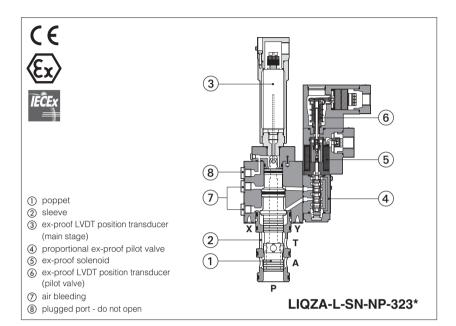






# 23 FASTENING BOLTS AND VALVE MASS

| Туре  | Size | Fastening bolts (1) supplied with the valve                            | Mass [kg] |  |  |
|-------|------|------------------------------------------------------------------------|-----------|--|--|
|       | 25   | 4 socket head screws M12x100 class 12.9<br>Tightening torque = 125 Nm  | 15,8      |  |  |
|       | 32   | 4 socket head screws M16x60 class 12.9<br>Tightening torque = 300 Nm   | 18,2      |  |  |
| LIQZA | 40   | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm   | 23,7      |  |  |
| LIGZA | 50   | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm   | 31,6      |  |  |
|       | 63   | 4 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 51,6      |  |  |
|       | 80   | 8 socket head screws M24x80 class 12.9<br>Tightening torque = 1000 Nm  | 79,2      |  |  |


### 24 RELATED DOCUMENTATION

| X010<br>X020<br>FX500<br>FX900 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Ex-proof digital proportionals with P/Q control Operating and manintenance information for ex-proof proportional valves | GS500<br>GS510<br>GX800<br>KX800 | Programming tools Fieldbus Ex-proof pressure transducer type E-ATRA-7 Cable glands for ex-proof valves |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                        | P006                             | Mounting surfaces and cavities for cartridge valves                                                    |



# Ex-proof servoproportional 3-way cartridges

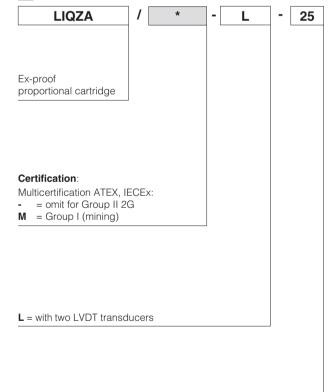
piloted, with two LVDT transducers - ATEX and IECEx



### LIQZA-L

Ex-proof digital servoproportional 3-way cartridges, with two LVDT position transducers (pilot valve and main stage) for best accuracy in not compensated flow regulations.

They are equipped with ex-proof proportional solenoid and LVDT transducers certified for safe operations in hazardous environments with potentially explosive atmosphere.


- Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)

The flameproof enclosure of solenoid and transducers prevent the propagation of accidental internal sparks or fire to the external environment.

They are also designed to limit the surface temperature within the classified limits.

Size: **25** ÷ **80** - not ISO cavity Max flow: **500** ÷ **5000 l/min** Max pressure: **420 bar** 

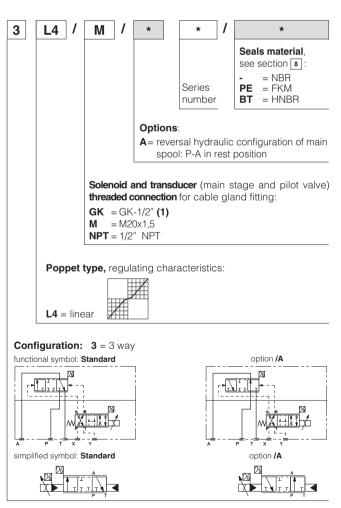
### 1 MODEL CODE



Valve size and nominal flow (I/min) at Δp 5 bar:

**25** = 185

**32** = 330


**40** = 420

**50** = 780

**63** = 1250

**80** = 2100

(1) Approved only for the italian market



### 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-LEB-* /A   | E-BM-LES-* /A |  |  |  |
|---------------|-----------------|---------------|--|--|--|
| Type          | digital digital |               |  |  |  |
| Format        | DIN-rail panel  |               |  |  |  |
| Data sheet    | GS230           | GS240         |  |  |  |

### 3 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0.8 recommended Ra 0.4 - flatness ratio 0.01/100                                                                                                                               |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                                             |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C                                 |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                                       |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spay test (EN ISO 9227) > 200 h                                                                                                                                     |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 9 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |  |  |  |  |  |

### 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Size                     |                           | 25                                        | 32            | 40                   | 50           | 63            | 80   |
|--------------------------|---------------------------|-------------------------------------------|---------------|----------------------|--------------|---------------|------|
| Max regulated flow       | [l/min]                   |                                           |               |                      |              |               |      |
| Δp P-A or A-T            | at $\Delta p = 5$ bar     | 185                                       | 330           | 420                  | 780          | 1250          | 2100 |
| '                        | at $\Delta p = 10$ bar    | 260                                       | 470           | 590                  | 1100         | 1750          | 3000 |
| Max permissible flow     |                           | 500                                       | 850           | 1050                 | 2000         | 3100          | 5000 |
| Max pressure [bar]       |                           |                                           | Ports         | P, A, T = <b>420</b> | X = 350      | Y ≤ 10        |      |
| Nominal flow of pilot va | 4                         | 8                                         | 28            | 40                   | 100          | 100           |      |
| Leakage of pilot valve   | e at P = 100 bar [I/min]  | 0,2                                       | 0,2           | 0,5                  | 0,7          | 0,7           | 0,7  |
| Piloting pressure        | [bar]                     | min:                                      | 40% of system | pressure ma          | ax 350 recor | nmended 140 ÷ | 160  |
| Piloting volume          | [cm³]                     | 2,16                                      | 7,2           | 8,9                  | 17,7         | 33,8          | 42,7 |
| Piloting flow (1)        | [l/min]                   | 6,5                                       | 20            | 25                   | 43           | 68            | 76   |
| Response time (2)        | [ms]                      | ≤ 25                                      | ≤ 27          | ≤ 27                 | ≤ 30         | ≤ 35          | ≤ 40 |
| Hysteresis               | ≤ 0,1                     |                                           |               |                      |              |               |      |
| Repeatability            | [% of the max regulation] | ± 0,1                                     |               |                      |              |               |      |
| Thermal drift            |                           | zero point displacement < 1% at ΔT = 40°C |               |                      |              |               |      |

(1) 0÷100% step signal

(2) With pilot pressure = 140 bar

### 5 ELECTRICAL CHARACTERISTICS

| Max. power                | 35W                                                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulation class          | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |
| Protection degree         | IP66/67 to DIN EN60529 with relevant cable glandraintight enclosure, UL approved                                                                 |
| Duty factor               | Continuous rating (ED=100%)                                                                                                                      |
| Voltage code              | standard                                                                                                                                         |
| Coil resistance R at 20°C | 3,2 Ω                                                                                                                                            |
| Max. solenoid current     | 2,5 A                                                                                                                                            |

### 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                |                  | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                                  |                             |                            |  |  |  |
|--------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|--|--|--|
| Seals, recommended fluid       | temperature      | FKM seals (/PE option) = -20°C ÷ +80°C                                                                           |                             |                            |  |  |  |
|                                |                  | HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                             |                            |  |  |  |
| Recommended viscosity          |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                |                             |                            |  |  |  |
| Max fluid                      | normal operation | ISO4406 class 18/16/13 NAS1638 class 7                                                                           |                             | see also filter section at |  |  |  |
| contamination level            | longer life      | ISO4406 class 16/14/11 NAS1                                                                                      | www.atos.com or KTF catalog |                            |  |  |  |
| Hydraulic fluid                |                  | Suitable seals type                                                                                              | Classification              | Ref. Standard              |  |  |  |
| Mineral oils                   |                  | NBR, FKM, HNBR                                                                                                   | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524                  |  |  |  |
| Flame resistant without water  |                  | FKM HFDU, HFDR                                                                                                   |                             | ISO 12922                  |  |  |  |
| Flame resistant with water (1) |                  | NBR, HNBR                                                                                                        | HFC                         | 130 12922                  |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

(1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

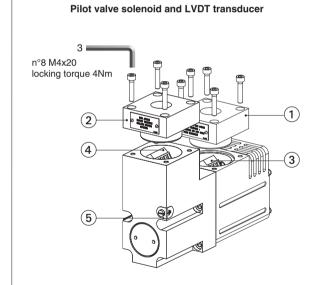


### ✓!\ WARNING

The loss of the pilot pressure causes the undefined position of the main poppet.

The sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet.

This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.


### 7 CERTIFICATION DATA

| Valve type                          | LIQZA                                   |                                        | LIQZA <b>/M</b>                                                    | LIQZA, LIQZA <b>/M</b>                                                                                                                       |  |
|-------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Component type                      | F                                       | Pilot solenoid and                     | LVDT transducer LVDT main stage transducer                         |                                                                                                                                              |  |
| Certifications                      | Multicertification Group II  ATEX IECEx |                                        | Multicertification Group I  ATEX IECEx                             | Multicertification Group I and II  ATEX IECEx                                                                                                |  |
| Solenoid certified code             | OZ                                      | A-T                                    | OZAM-T                                                             | ETHA-15                                                                                                                                      |  |
| Type examination certificate (1)    | ATEX: CESI 02<br>IECEx: IECEx C         |                                        | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x               | ATEX: TUV IT 16 ATEX 053X<br>ICEX: IECEX TPS 16.0003X                                                                                        |  |
| Method of protection                | Ex II 2G Ex d IIC T4/T3 Gb              |                                        | ATEX Ex I M2 Ex db I Mb  IECEx Ex db I Mb                          | ATEX EX II 2G EX db IIC T6 Gb EX II 2D EX tb IIIC T85°C Db EX I M2 EX db IMb  IECEX EX db IIC T6 Gb EX tb IIIC T85°C Db EX db IMD  EX db IMD |  |
| Temperature class                   | T4                                      | Т3                                     | -                                                                  | T6                                                                                                                                           |  |
| Surface temperature                 | ≤ 135 °C                                | ≤ 200 °C                               | ≤ 150 °C                                                           | ≤ 85 °C                                                                                                                                      |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                            | -40 ÷ +70 °C                           | -20 ÷ +60 °C                                                       | -40 ÷ +70 °C <b>(3)</b>                                                                                                                      |  |
| Applicable standards                |                                         | EN 60079-0<br>EN 60079-1<br>EN 60079-3 | 1                                                                  | EC 60079-0<br>EC 60079-1<br>EC 60079-31                                                                                                      |  |
| Cable entrance: threaded connection |                                         |                                        | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT |                                                                                                                                              |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code
- (3) For Group I (mining) the temperature range is -20°C ÷ +70°C

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 8 EX PROOF SOLENOIDS AND LVDT TRANSDUCER WIRING



- ① solenoid cover with threaded connection for cable gland fitting
- 2) transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring
- (5) screw terminal for additional equipotential grounding

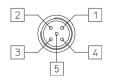
### Solenoid wiring



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)

### Position transducer wiring




- 1 = Output signal
- 2 = Supply -15 V 3 = Supply +15 V 4 = GND
- PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)

# n°5 M4x20 locking torque 4Nm The state of t

LVDT main stage transducer

- ① transducer cover with threaded connection for cable gland fitting
- 2 transducer terminal board for cables wiring
- 3 ex-proof protection for LVDT transducer
- 4) LVDT transducer
- (5) screw terminal for additional equipotential grounding

### Transducer wiring - view from $\boldsymbol{X}$



- 1 = Do not connect
- 2 = Supply +15 V
- **3** = GND
- 4 = Output signal
- **5** = Supply -15 V

### 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

### Multicertification

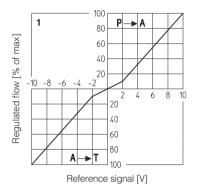
| Max ambient temperature [°C] | Tempera | ture class | Max surface te | mperature [°C] | Min. cable temperature [°C] |         |
|------------------------------|---------|------------|----------------|----------------|-----------------------------|---------|
| max ambient temperature [ C] | Goup I  | Goup II    | Goup I         | Goup II        | Goup I                      | Goup II |
| 40 °C                        | -       | T4         | 150 °C         | 135 °C         | -                           | 90 °C   |
| 60 °C                        | -       | -          | 150 °C         | -              | 110 °C                      | -       |
| 70 °C                        | N.A.    | T3         | N.A.           | 200 °C         | N.A.                        | 120 °C  |

### 10 CABLE GLANDS

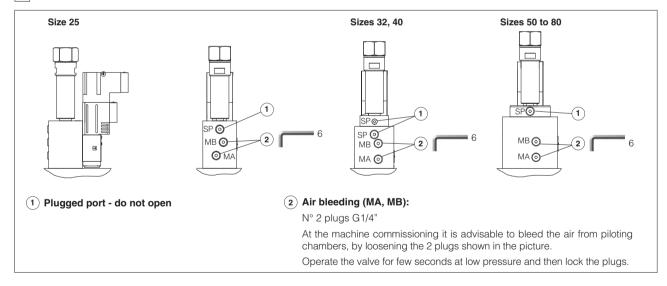
Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table KX800

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### **DIAGRAMS** (based on mineral oil ISO VG 46 at 50 °C)


### 11.1 Regulation diagrams, see note

### 1 = LIQZA (all sizes)


Hydraulic configuration vs. reference signal:

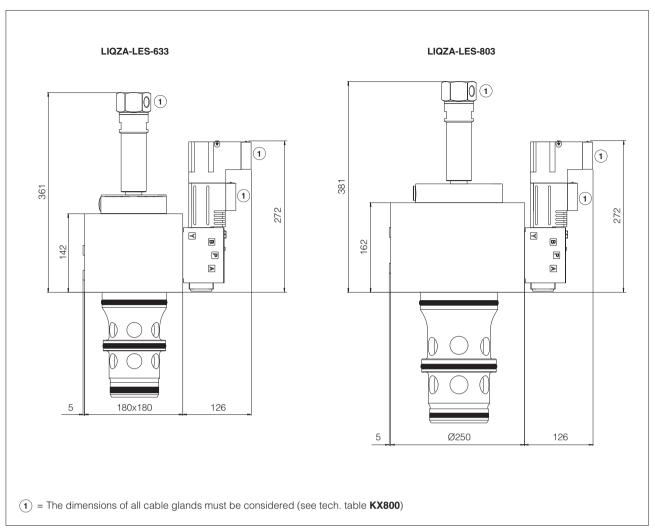
Reference signal 
$$0 \div +10 \text{ V}$$
  
 $12 \div 20 \text{ mA}$   $P \rightarrow A \qquad A \rightarrow T$ 

Reference signal 0 ÷-10 V 
$$4\div12$$
 mA  $A \rightarrow T$   $P \rightarrow A$ 



### 12 AIR BLEEDING




### 13 FASTENING BOLTS AND VALVE MASS

| Туре  | Size | Fastening bolts (1) supplied with the valve                            | Mass [kg] |  |
|-------|------|------------------------------------------------------------------------|-----------|--|
|       | 25   | 4 socket head screws M12x100 class 12.9<br>Tightening torque = 125 Nm  | 15,8      |  |
|       | 32   | 4 socket head screws M16x60 class 12.9<br>Tightening torque = 300 Nm   | 18,2      |  |
| LIQZA | 40   | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm   | 23,7      |  |
| LIQZA | 50   | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm   | 31,6      |  |
|       | 63   | 4 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 51,6      |  |
|       | 80   | 8 socket head screws M24x80 class 12.9<br>Tightening torque = 1000 Nm  | 79,2      |  |

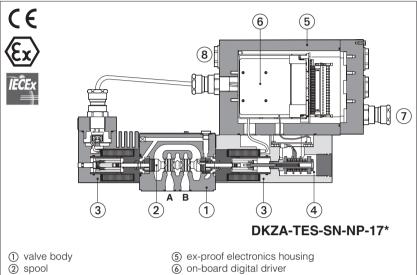
### 14 INSTALLATION DIMENSIONS [mm]



Note: for mounting surface and cavity dimensions, see table P006



Note: for mounting surface and cavity dimensions, see table P006


### 15 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | KX800 | Cable glands for ex-proof valves                    |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | P006  | Mounting surfaces and cavities for cartridge valves |
| FX900 | Operating and manintenance information for ex-proof proportional valves |       |                                                     |



# Ex-proof digital proportional directional valves high performance

direct, with on-board driver, LVDT transducer and positive spool overlap - ATEX and IECEx



72 =

73 =

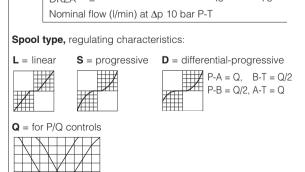
- (3) ex-proof solenoid
- ex-proof LVDT transducer
- 6 on-board digital driver
- (7) ex-proof cable glands (to be ordered separately)
- (8) USB port always present (factory plugged)

### **DHZA-TES, DKZA-TES**

Ex-proof digital high performances proportional valves, direct, with LVDT position transducer and positive spool everlap for best dynamics in directional controls and not compensated flow regulations.

They are equipped with ex-proof on-board digital driver, with LVDT transducer and proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

DHZA DKZA: Size: 06 - ISO 4401 Size: 10 - ISO 4401 Max flow: 60 I/min Max flow: 150 I/min Max pressure: 350 bar Max pressure: 315 bar

### MODEL CODE **DHZA TES** SN NP Ex-proof proportional directional valves, direct **DHZA** = size 06 **DKZA** = size 10 TES = on-board driver and LVDT transducer Alternated P/Q controls, see section 5: **SN** = none **SP** = pressure control (1 pressure tranducer) SF = force control (2 pressure tranducers) **SL** = force control (1 load cell) Fieldbus interface, USB port always present: **NP** = Not Present **BC** = CANopen **EW** = POWERLINK BP = PROFIBUS DP EI = EtherNet/IP EH = EtherCAT = PROFINET RT/IRT Valve size ISO 4401: **1** = 10 0 = 06Configuration: Standard Option /B 51 = 53 = 71 =

M Seals material, see section 9 = NBR Series PΕ = FKM number = HNBR Hydraulic options (2): B = solenoid with integral digital electronics at side of port A (3) Y = external drain Electronic options (2): C = current feedback for pressure transducer 4 ÷ 20 mA, only for SP, SF, SL (omit for std voltage ±10 VDC) I = current reference input and monitor 4÷20mA (omit for std voltage ±10Vpc) Cable entrance threaded connection:  $M = M20 \times 1.5$ **Spool size**: **14** (L) **1** (L) **2** (S) **3** (L,S,D) **5** (L,S,D,Q) 28 DHZA = 4,5 8 18 45 75 DKZA



<sup>(1)</sup> Only for DKZA-\*-S5 the spool overlapping type 2 provides the same characteristic of type 1, but in central position the internal leakages from P to A and B are drained to tank, avoiding the drift of cylinders with differential areas (2) For possible combined options, see section 15

<sup>(3)</sup> In standard configuration the solenoid with on-board digital driver and position transducer are at side port B

### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

### VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASICsupport:NP (USB)PS (Serial)IR (Infrared)E-SW-FIELDBUSsupport:BC (CANopen)BP (PROFIBUS DP)EH (EtherCAT)

E-SW-\*/PQ EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

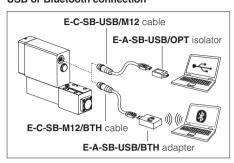


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

### 4 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

### 5 ALTERNATED P/Q CONTROLS - see tech. table FX500


**S**\* options add the closed loop control of pressure (**SP**) or force (**SF** and **SL**) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP, 2 pressure transducers for SF or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

### 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                      |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |  |

### USB or Bluetooth connection



### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                 |                             | DHZA                                        |                                                                                                          |                             |                 |                 | DKZA                                        |                                                                                                          |     |  |  |
|-----------------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-----------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|--|--|
| Pressure limits             | Pressure limits [bar]       |                                             | ports <b>P</b> , <b>A</b> , <b>B</b> = 350;<br><b>T</b> = 210 (250 with external drain /Y) <b>Y</b> = 10 |                             |                 |                 |                                             | ports <b>P</b> , <b>A</b> , <b>B</b> = 315;<br><b>T</b> = 210 (250 with external drain /Y) <b>Y</b> = 10 |     |  |  |
| Configuration               |                             |                                             |                                                                                                          | 51,                         | 53, 71, 73      |                 | 51, 53,                                     | 71, 73                                                                                                   | 72  |  |  |
| Spool Type                  |                             | L14                                         | L1                                                                                                       | S2                          | L3, S3, D3      | L5, S5, D5, Q5  | L3, S3, D3                                  | L5, S5, D5, Q5                                                                                           | S5  |  |  |
| Nominal flow                |                             |                                             |                                                                                                          |                             |                 |                 |                                             |                                                                                                          |     |  |  |
| [l/min]                     | at ∆p= 10 bar               | 1                                           | 4,5                                                                                                      | 8                           | 18              | 28              | 45                                          | 75                                                                                                       | 75  |  |  |
| Δρ Ρ-Τ                      | at ∆p= 30 bar               | 1,7                                         | 8                                                                                                        | 14                          | 30              | 50              | 80                                          | 130                                                                                                      | 130 |  |  |
|                             | max permissible flow        | 2,6                                         | 12                                                                                                       | 21                          | 40              | 60              | 90                                          | 150                                                                                                      | 150 |  |  |
| Δp max P-T                  | [bar]                       | 70                                          | 70                                                                                                       | 70                          | 50              | 50              | 40                                          | 40                                                                                                       | 40  |  |  |
| Leakage [cm <sup>3</sup> /r | min]                        | <30 (at p = 100 bar); <135 (at p = 350 bar) |                                                                                                          |                             |                 |                 | <80 (at p = 100 bar); <600 (at p = 315 bar) |                                                                                                          |     |  |  |
| Response time (1) [ms]      |                             | ≤20                                         |                                                                                                          |                             |                 |                 | ≤ 25                                        |                                                                                                          |     |  |  |
| Hysteresis                  | ≤ 0,2 [% of max regulation] |                                             |                                                                                                          |                             |                 |                 |                                             |                                                                                                          |     |  |  |
| Repeatibility               | Repeatibility               |                                             |                                                                                                          | ± 0,1 [% of max regulation] |                 |                 |                                             |                                                                                                          |     |  |  |
| Thermal drift               |                             |                                             |                                                                                                          |                             | zero point disp | lacement < 1% a | t ΔT = 40°C                                 |                                                                                                          |     |  |  |

<sup>(1) (0-100%</sup> step signal)

### 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC                                                                                                       |                          |                                |                                                    |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------------------------------------------|--|--|
| 1 ower supplies                     | Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                      |                          |                                |                                                    |  |  |
| Max power consumption               | 35 W                                                                                                                    |                          |                                |                                                    |  |  |
| Analog input signals                | Voltage: range ±10 \                                                                                                    | /DC (24 VMAX tollerant)  | Input impedance                | e: Ri > 50 kΩ                                      |  |  |
| Analog input signals                | Current: range ±20 r                                                                                                    | nA                       | Input impedance                | e: Ri = $500 \Omega$                               |  |  |
| Insulation class                    |                                                                                                                         |                          |                                | ils, the European standards                        |  |  |
| ITISUIALIOTI CIASS                  | ISO 13732-1 and EN9                                                                                                     | 82 must be taken into a  | ccount                         |                                                    |  |  |
| Monitor outputs                     | Output range: vo                                                                                                        | oltage ±10 VDC @ ma      |                                |                                                    |  |  |
| World Outputs                       | C                                                                                                                       | urrent ±20 mA @ ma       | x 500 $\Omega$ load resistance |                                                    |  |  |
| Enable input                        | Range: 0 ÷ 5 VDC (OFF                                                                                                   | state), 9 ÷ 24 VDC (ON s | state), 5 ÷ 9 VDC (not acc     | epted); Input impedance: Ri > $10 \text{ k}\Omega$ |  |  |
| Fault output                        | Output range: 0 ÷ 24                                                                                                    | VDC (ON state > [power   | er supply - 2 V]; OFF sta      | ate < 1 V ) @ max 50 mA;                           |  |  |
| Fault output                        | external negative voltage not allowed (e.g. due to inductive loads)                                                     |                          |                                |                                                    |  |  |
| Pressure/force transducer           | . 041/00 @ 200 100 200                                                                                                  | Λ /Γ ΛΤDΛ 7 acc took t   | alala CV000\                   |                                                    |  |  |
| power supply (only for SP, SF, SL)  | 1 +24VDC @ Max 100 M                                                                                                    | A (E-ATRA-7 see tech t   | able GX800)                    |                                                    |  |  |
| Alarms                              | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature,                |                          |                                |                                                    |  |  |
| Alaillis                            | valve spool transducer malfunctions                                                                                     |                          |                                |                                                    |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                   | cable gland              |                                |                                                    |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                   | =100%)                   |                                |                                                    |  |  |
| Tropicalization                     | Tropical coating on electronics PCB                                                                                     |                          |                                |                                                    |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; spool position control (SN) or pressure/force control (SP, SF, SL) |                          |                                |                                                    |  |  |
| Additional Characteristics          | by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply                            |                          |                                |                                                    |  |  |
| Electromagnetic compatibility (EMC) | According to Directive                                                                                                  | 2014/30/UE (Immunity     | : EN 61000-6-2; Emissio        | n: EN 61000-6-3)                                   |  |  |
|                                     | USB                                                                                                                     | CANopen                  | PROFIBUS DP                    | EtherCAT, POWERLINK,                               |  |  |
| Communication interface             |                                                                                                                         |                          | =                              | EtherNet/IP, PROFINET IO RT / IRT                  |  |  |
|                                     | Atos ASCII coding                                                                                                       | EN50325-4 + DS408        | EN50170-2/IEC61158             | EC 61158                                           |  |  |
| Communication physical layer        | not insulated                                                                                                           | optical insulated        | optical insulated              | Fast Ethernet, insulated                           |  |  |
| 2 2                                 | USB 2.0 + USB OTG                                                                                                       | CAN ISO11898             | RS485                          | 100 Base TX                                        |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

### 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                            |                             |  |  |
|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|
| Recommended viscosity      |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                             |                            |                             |  |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS                                                                                                                                                                                                                                                                                    | 1638 class 7               | see also filter section at  |  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1638 class 5                                                                                                                                                                                                                                                                        |                            | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification             | Ref. Standard               |  |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |  |
| Flame resistant without wa | ter              | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                |                            | ISO 12922                   |  |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                        | 130 12922                   |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:
-max operating pressure = 210 bar
-max fluid temperature = 50°C

### 10 CERTIFICATION DATA

| Valve type                       |                                     | DHZA, DKZA                                                                                                                                                   |                    |                |              |                 |          |  |
|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|--------------|-----------------|----------|--|
| Certifications                   |                                     |                                                                                                                                                              |                    | Multicertifica | '            |                 |          |  |
|                                  |                                     |                                                                                                                                                              |                    | ATEX           | IECEX        |                 |          |  |
| Solenoid certified co            | ode                                 |                                                                                                                                                              |                    | OZA-           | AES          |                 |          |  |
| Type examination certificate (1) |                                     | ATEX: TUV I                                                                                                                                                  | T 18 ATEX 068 >    | (              | • IECEx: IEC | Ex TPS 19.0004X |          |  |
| Method of protection             |                                     | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |                    |                |              | 5°C Db          |          |  |
| Tanan avatuva alaas              | Single solenoid valve               | T6                                                                                                                                                           | T6 -               |                |              | T4              | -        |  |
| Temperature class                | Double solenoid valve               | -                                                                                                                                                            | T4                 | -              |              | -               | Т3       |  |
| Surface temperature              | Э                                   | ≤ 85 °C                                                                                                                                                      | ≤ 135 °C           | ≤ 100          | ≤ 100 °C     |                 | ≤ 200 °C |  |
| Ambient temperature (2)          |                                     | -40 ÷ +40 °C                                                                                                                                                 |                    | -40 ÷ +55 °C   |              | -40 ÷ +70 °C    |          |  |
| Applicable Standards             |                                     | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1                                                                                                   |                    |                |              |                 | 1        |  |
| Cable entrance: three            | Cable entrance: threaded connection |                                                                                                                                                              | <b>M</b> = M20x1,5 |                |              |                 |          |  |

- (1) The type examinator certificates can be downloaded from www.atos.com catalog on line, technical information section
- (2) The solenoids **Group II** are certified for minimum ambient temperature -40°C

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

[11] CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> Grounding: section of external ground wire = 4 mm<sup>2</sup>

### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |  |
|------------------------------|-------------------|------------------------------|-----------------------------|--|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |  |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |  |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |  |

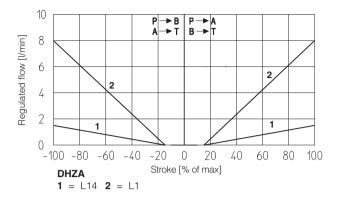
### 12 CABLE GLANDS

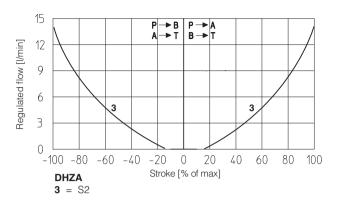
Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

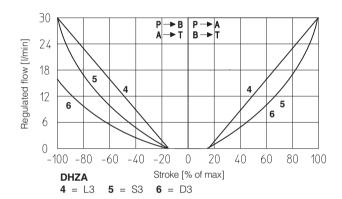
### 13 HYDRAULIC OPTIONS

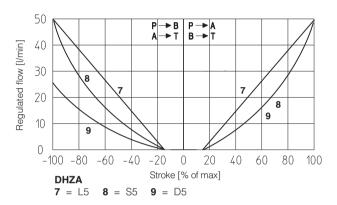
- B = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 17.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

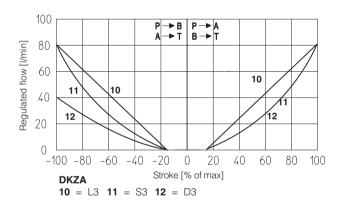
### 14 ELECTRONIC OPTIONS

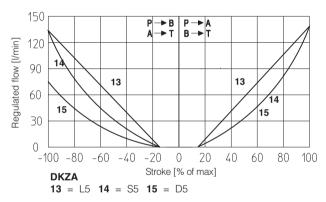

- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SP, SF, SL
  Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDc.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDc or ±20 mA.

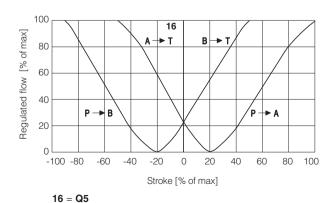

### 15 POSSIBLE COMBINED OPTIONS


For SN: /BI, /BY, /IY


For SP, SF, SL: /BI, /BY, /IY, /CI, /BCI, CIY, BCIY


### **16.1 Regulation diagrams** - values measure at Δp 30 bar P-T














Q5 spool type is specific for alternate P/Q controls in combination with S\* option of digital integral drivers (see tech table **FX500**). It allows to control the pressure in A port or B port and it provides a safety central position (A-T/B-T) to depressurize the actuator chambers.

The strong meter-in characteristic makes the spool suitable for both pressure control and motion regulations in several applications.

### Note:

Hydraulic configuration vs. reference signal for configurations 71 and 73 (standard and option /B)

 $\text{Reference signal } \begin{array}{l} 0 \;\; \div \; + \; 10 \; \text{V} \\ 12 \; \div \; 20 \; \text{mA} \end{array} \\ P \rightarrow \text{A} \; / \; \text{B} \rightarrow \text{T} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \; \div \; 4 \; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{T} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \; \div \; 4 \; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{T} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \; \div \; 4 \; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 4 \;\; \text{mA} \end{array} \\ P \rightarrow \text{B} \; / \; \text{A} \rightarrow \text{C} \qquad \text{Reference signal } \begin{array}{l} 0 \;\; \div \; - \; 10 \;\; \text{V} \\ 12 \;\; \div \; 10 \;\; \text{A} \rightarrow \text{C} \end{array} \\ P \rightarrow \text{C} \sim \text{C}$ 

FX130 PROPORTIONAL VALVES

69

### 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982).

### 17.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 17.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 17.3 Flow reference input signal (Q\_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

### 17.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SF, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

### 17.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 17.6 Pressure or force monitor output signal (F\_MONITOR) - only for SP, SF, SL

The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /l option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 17.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition does not comply with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 17.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 17.9 Remote pressure/force transducer input signal - only for SP, SF, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are ±10 VDc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 18 TERMINAL BOARD OVERVIEW



(1) Connections available only SP, SF, SL
(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

(3) Connection available only SF

### 19 ELECTRONIC CONNECTIONS

### 19.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                      | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                            | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Voc                                                                                                                                                           | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                       | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                      | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                                                                     | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                 | Gnd - analog signal                               |
| Α                 | 8   | INPUT-    | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                     | Input - analog signal                             |
| , ,               | 9   | Q_MONITOR | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                   | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                 | Input - analog signal<br>Software selectable      |
|                   | 11  | F_MONITOR | Pressure/Force monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND (1) Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option | Output - analog signal<br>Software selectable     |
|                   | 12  | F_INPUT+  | Pressure/Force reference input signal: ±10 Vpc / ±20 mA maximum range (1) Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                      | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                        |                                                   |

(1) Available only for SP, SF, SL

### 19.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 - 2       |   |
|                   | 2   | ID      | Identification           | (female)    |   |
| B                 | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              |             |   |
|                   | 5   | D+      | Data line +              |             |   |

### 19.3 BC fieldbus execution connections

| Е | CABLE<br>NTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|---|------------------|-----|----------|-----------------------------|
|   |                  | 14  | CAN_L    | Bus line (low)              |
|   | <b>~</b> .       | 16  | CAN_SHLD | Shield                      |
|   | (;1]             | 18  | CAN_GND  | Signal zero data line       |
|   |                  | 20  | CAN_H    | Bus line (high)             |
|   |                  | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|-------------------|-----|----------|-----------------------------|--|
|                   | 13  | CAN_L    | Bus line (low)              |  |
|                   | 15  | CAN_SHLD | Shield                      |  |
| $C_{2}$           | 17  | CAN_GND  | Signal zero data line       |  |
|                   | 19  | not used | Pass-through connection (1) |  |
|                   | 21  | CAN_H    | Bus line (high)             |  |

(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

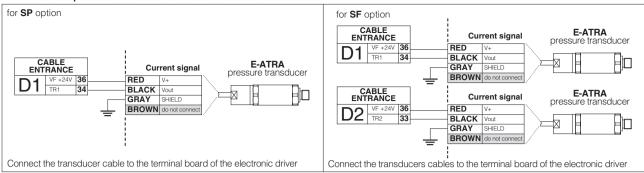
### 19.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ; 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

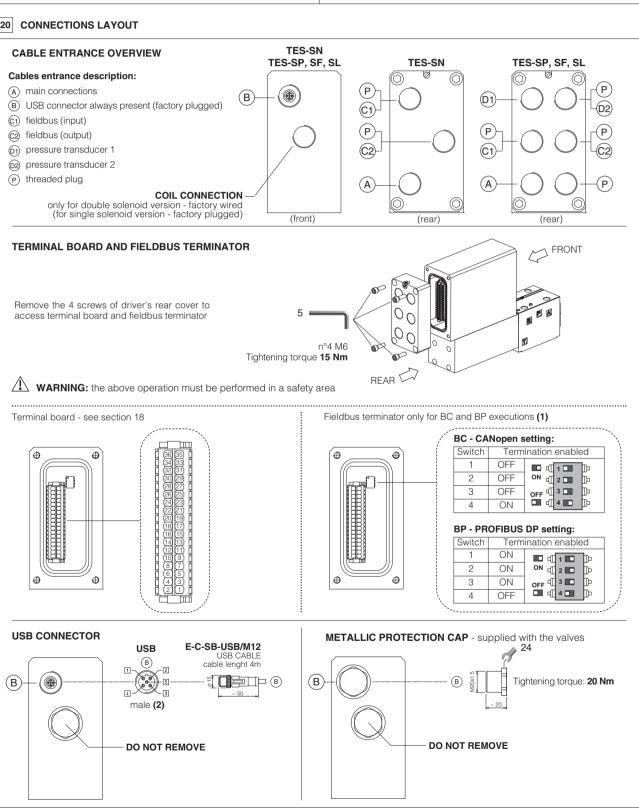
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| <b>0 L</b>        | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

### 19.5 EH, EW, EI, EP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ; 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

### 19.6 Remote pressure transducer connector - only for SP, SF, SL


| CABLE     | PIN  | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                            | SP, SL - Single | transducer (1) | SF - Double transducers (1) |         |  |
|-----------|------|---------|---------------------------------------------------------|--------------------------------------------------|-----------------|----------------|-----------------------------|---------|--|
| ENTRANCES | FIIN | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                            | Voltage         | Current        | Voltage                     | Current |  |
| D1        | 33   | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal <b>Software selectable</b> | /               | /              | Connect                     | Connect |  |
|           | 34   | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range  | Input - analog signal <b>Software selectable</b> | Connect         | Connect        | Connect                     | Connect |  |
| D2        | 35   | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect         | /              | Connect                     | /       |  |
|           | 36   | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect         | Connect        | Connect                     | Connect |  |

FX130 PROPORTIONAL VALVES 71

### E-ATRA remote pressure transducer connection - see tech table GX800



### 20 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

### 20.1 Cable glands and threaded plug for TES-SN - see tech table KX800

| Communication                                            | То    | be ordere         | ed separat | ely                  | Cable entrance |                                                                              |  |
|----------------------------------------------------------|-------|-------------------|------------|----------------------|----------------|------------------------------------------------------------------------------|--|
| interfaces                                               | Cable | gland<br>entrance |            | ed plug<br> entrance | overview       | Notes                                                                        |  |
| NP                                                       | 1     | А                 | none       | none                 | ©<br>©<br>(A)  | Cable entrance A is open for costumers  Cable entrance P are factory plugged |  |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2     | C1                | 1          | C2                   |                | Cable entrance A, C1, C2 are open for costumers                              |  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3     | C1<br>C2<br>A     | none       | none                 |                | Cable entrance A, C1, C2 are open for costumers                              |  |

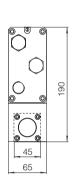
### 20.2 Cable glands and threaded plug for TES-SP, SL $\mbox{-}$ see tech table KX800

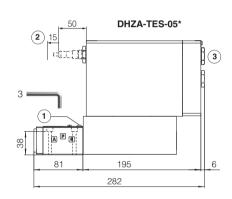
| Communication                                            | То | be ordere          | ed separat | ely                 | Cable entrance                         |                                                                                           |  |
|----------------------------------------------------------|----|--------------------|------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------|--|
| interfaces                                               |    | gland<br>entrance  |            | ed plug<br>entrance | overview                               | Notes                                                                                     |  |
| NP                                                       | 2  | D1<br>A            | none       | none                | 51) P<br>P P<br>A P                    | Cable entrance A, D1 are open for costumers  Cable entrance P are factory plugged         |  |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | D1<br>C1<br>A      | 1          | C2                  | 00<br>00<br>00<br>00<br>00<br>00<br>00 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | D1<br>C1 - C2<br>A | none       | none                | 00 00 00 00 00 00 00 00 00 00 00 00 00 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |  |

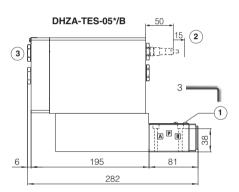
# 20.3 Cable glands and threaded plug for TES-SF - see tech table $\ensuremath{\text{KX800}}$

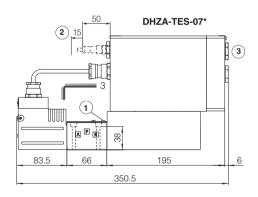
| Communication                                            | То | be ordere               | ed separat | ely                  | Cable entrance                   |                                                                                              |
|----------------------------------------------------------|----|-------------------------|------------|----------------------|----------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance       |            | ed plug<br> entrance | overview                         | Notes                                                                                        |
| NP                                                       | 3  | D1<br>D2<br>A           | none       | none                 | 60 P<br>P 62<br>A P              | Cable entrance A, D1, D2 are open for costumers  Cable entrance P are factory plugged        |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1 - D2<br>C1<br>A      | 1          | C2                   | 900<br>900<br>900<br>AP          | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1 - D2<br>C1 - C2<br>A | none       | none                 | 00 00<br>00 00<br>00 00<br>00 00 | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |

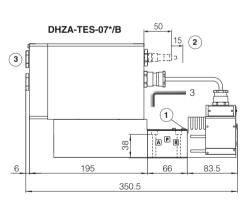
73


### 21 FASTENING BOLTS AND SEALS


|   | DHZA                                                                                                                        | DKZA                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |

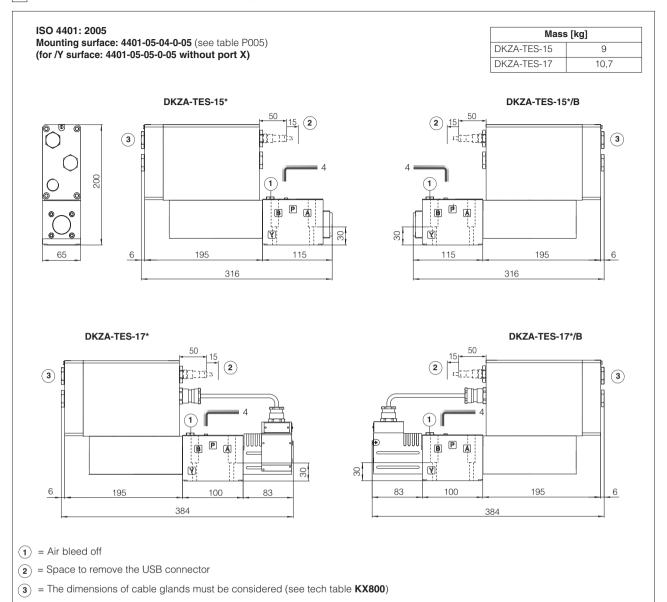

### 22 INSTALLATION DIMENSIONS FOR DHZA [mm]


ISO 4401: 2005 Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)


| Mass [kg]   |     |  |  |  |  |  |  |
|-------------|-----|--|--|--|--|--|--|
| DHZA-TES-05 | 7,2 |  |  |  |  |  |  |
| DHZA-TES-07 | 8,9 |  |  |  |  |  |  |







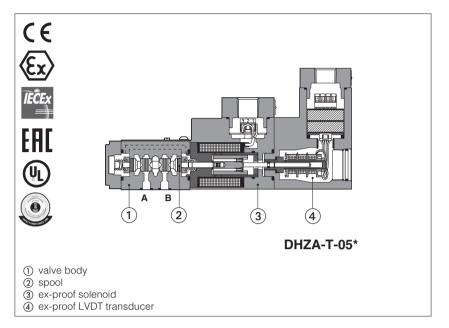





- (1) = Air bleed off
- 2 = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

### 23 INSTALLATION DIMENSIONS FOR DKZA [mm]




### 24 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS500 | Programming tools                             | l |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|---|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | GS510 | Fieldbus                                      | l |
| FX900 | Operating and manintenance norms for ex-proof proportional valves       | GX800 | Ex-proof pressure transducer type E-ATRA-7    |   |
| FX500 | Ex-proof for digital proportionals with P/Q control                     | KX800 | Cable glands for ex-proof valves              |   |
|       |                                                                         | P005  | Mounting surfaces for electrohydraulic valves |   |
|       |                                                                         |       |                                               | 1 |



# Ex-proof proportional directional valves high performance

direct, with LVDT transducer and positive spool overlap - ATEX, IECEx, EAC, PESO or cULus



### DHZA-T, DKZA-T

Ex-proof high performance proportional valves direct, with LVDT position transducer and positive spool overlap, for best dynamics in directional controls and not compensated flow regulations.

They are equipped with ex-proof proportional solenoids and LVDT transducer certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.


The solenoids are also designed to limit the surface temperature within the classified limits.

**DHZA**: **DKZA**: Size: **06** - ISO 4401 Size: **10** - ISO 4401

Size: **06** - ISO 4401 Size: **10** - ISO 4401 Max flow: **60** I/min Max pressure: **350** bar Max pressure: **315** bar

### 1 MODEL CODE

73 =



L = linear

FX120 PROPORTIONAL VALVES

**D** = differential-progressive

P-A = Q, B-T = Q/2

P-B = Q/2, A-T = Q

**S** = progressive

<sup>(1)</sup> The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com

<sup>(2)</sup> Not for multicertification M group I (mining) (3) Possible combined options: /BC, /BY, /CY, /BCY (4) Approved only for the Italian market

### 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-TEB-* /A  | E-BM-TES-* /A |  |  |
|---------------|----------------|---------------|--|--|
| Type          | digital        | digital       |  |  |
| Format        | DIN-rail panel |               |  |  |
| Data sheet    | GS230          | GS240         |  |  |

### **3 GENERAL CHARACTERISTICS**

| Assembly position                      | Any position                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                            |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +60^{\circ}$ C       |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                     |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |  |

### 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model           |                             |                                                                     |        |       | DHZA              |                  | DK                                                                  | ZA                    |
|-----------------------|-----------------------------|---------------------------------------------------------------------|--------|-------|-------------------|------------------|---------------------------------------------------------------------|-----------------------|
| Pressure limits [bar] |                             | ports P, A, B = 350;<br>T = 210 (250 with external drain /Y) Y = 10 |        |       |                   |                  | ports P, A, B = 315;<br>T = 210 (250 with external drain /Y) Y = 10 |                       |
| Configuration         |                             |                                                                     |        |       | 51, 53, 71, 73    |                  | 51, 53                                                              | 71, 73                |
| Spool type            |                             | L14                                                                 | L1     | S2    | L3, S3, D3        | L5, S5, D5       | L3, S3, D3                                                          | L5, S5, D5            |
| Max flow [l/min]      |                             |                                                                     |        |       |                   |                  |                                                                     |                       |
|                       | $\Delta p = 10 \text{ bar}$ | 1                                                                   | 4,5    | 8     | 18                | 28               | 45                                                                  | 75                    |
| Δρ Ρ-Τ                | $\Delta p = 30 \text{ bar}$ | 1,7                                                                 | 8      | 14    | 30                | 50               | 80                                                                  | 130                   |
|                       | max permissible flow        | 2,6                                                                 | 1      | 21    | 40                | 60               | 90                                                                  | 150                   |
|                       | Δp max P-T [bar]            | 70                                                                  | 70     | 70    | 50                | 50               | 40                                                                  | 40                    |
| Leakage               | [cm³/min]                   | <                                                                   | :30 (a | p = 1 | 00 bar); <135 (at | p = 350 bar)     | <80 (at p = 100 bar);                                               | <600 (at p = 315 bar) |
| Response time (1)     | [ms]                        |                                                                     |        |       | ≤ 20              |                  | ≤                                                                   | 25                    |
| Hysteresis            | [% of max regulation]       |                                                                     |        |       |                   | ≤ 0,2            | )<br>                                                               |                       |
| Repeatibility         | [% of max regulation]       |                                                                     |        |       |                   | ± 0,1            |                                                                     |                       |
| Thermal drift         |                             |                                                                     |        |       | zero po           | int displacement | $< 1\%$ at $\Delta T = 40$ °C                                       |                       |

 $\textbf{Note:} \ \text{above performance data refer to valves coupled with Atos electronic drivers, see section } \textbf{2}$ 

(1) 0-100% step signal

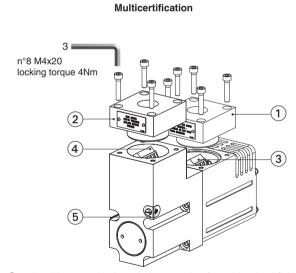
### 5 ELECTRICAL CHARACTERISTICS

| Max. power                                                                                                                    | 35W                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulation class                                                                                                              | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |
| Protection degree with relevant cable gland  Multicertification: IP66/67 to DIN EN60529  UL: raintight enclosure, UL approved |                                                                                                                                                  |
| Duty factor                                                                                                                   | Continuous rating (ED=100%)                                                                                                                      |
| Voltage code                                                                                                                  | standard                                                                                                                                         |
| Coil resistance R at 20°C                                                                                                     | 3,2 Ω                                                                                                                                            |
| Max. solenoid current                                                                                                         | 2,5 A                                                                                                                                            |
|                                                                                                                               |                                                                                                                                                  |

### 6 SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult Atos Technical Office

| Seals, recommended fluid      | l temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                            |                             |  |  |
|-------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                                                      |                            |                             |  |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | 638 class 7                | see also filter section at  |  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | 638 class 5                | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification             | Ref. Standard               |  |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                 | ICO 10000                   |  |  |
| Flame resistant with water    | (1)              | NBR, HNBR HFC ISO 12922                                                                                                                                                                                                                                                                                                                |                            |                             |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


### 7 CERTIFICATION DATA

| Valve type                          | DHZA<br>DKZA                                                                                                                                                                                  |                                                   | DHZA <b>/M</b><br>DKZA <b>/M</b>                     |                                                                                | DHZA <b>/UL</b><br>DKZA <b>/UL</b>   |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|--|
| Certifications                      | Multicertification Group II ATEX IECEX EAC PESO                                                                                                                                               |                                                   | Multicertification Group I  ATEX IECEx               | North American <b>cULus</b>                                                    |                                      |  |
| Solenoid cerified code              | OZ                                                                                                                                                                                            | A-T                                               | OZAM-T                                               | OZA                                                                            | OZA-T/EC                             |  |
| Type examination certificate (1)    | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131                                                                                           |                                                   | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324                                                                       | 20170324 - E366100                   |  |
| Method of protection                | ATEX, EAC     Ex II 2G Ex d IIC T6/T4/T3 Gb     Ex II 2D Ex tb IIIC T85°C/T200°C Db     IECEx     Ex d IIC T6/T4/T3 Gb     Ex tb IIIC T85°C/T200°C Db     PESO     Ex II 2G Ex d IIC T6/T4 Gb |                                                   | ATEX     Ex   M2 Ex db   Mb     IECEx     Ex db   Mb | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |                                      |  |
| Temperature class                   | T4                                                                                                                                                                                            | Т3                                                | -                                                    | T4                                                                             | Т3                                   |  |
| Surface temperature                 | ≤ 135 °C                                                                                                                                                                                      | ≤ 200 °C                                          | ≤ 150 °C                                             | ≤ 135°C                                                                        | ≤ 200 °C                             |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                                                  | -40 ÷ +70 °C                                      | -20 ÷ +60 °C                                         | -40 ÷ +55 °C                                                                   | -40 ÷ +70 °C                         |  |
| Applicable standards                | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                                                                                                                       |                                                   | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | CSA 22                                                                         | and UL429,<br>2.2 n°30<br>! n°139-13 |  |
| Cable entrance: threaded connection |                                                                                                                                                                                               | <b>GK</b> = G<br><b>M</b> = M20<br><b>NPT</b> = 1 | 0x1,5                                                | 1/2"                                                                           | NPT                                  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### **EX PROOF SOLENOIDS WIRING**



- (1) solenoid cover with threaded connection for cable gland fitting
- ② transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- (4) transducer terminal board for cables wiring
- (5) screw terminal for additional equipotential grounding

### Solenoid wiring



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

### Position transducer wiring



- 1 = Output signal 2 = Supply -15 V
  - 3 = Supply +15 V = GND

PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

# cULus certification 3 n°8 M4x20 locking torque 4Nm (1)(2)

- (1) solenoid cover with threaded connection for cable gland fitting
- ② transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring

### Solenoid wiring 1



### Pay attention to respect the polarity

1 = Coil + **2** = GND **3** = Coil -

PCB 3 poles terminal board suggested cable section up to 1,5 mm² (max AWG16), see section 9 note 1

alternative GND screw terminal connected to solenoid housing

### Position transducer wiring



- = Output signal
- = Supply -15 V 3 = Supply +15 V
- **4** = GND

PCB 4 poles terminal board suggested cable section up to 1,5 mm² (max AWG16), see section 9 note 1

### 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

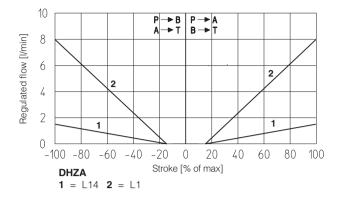
| Max ambient temperature [°C] | Temperature class |         | Max surface temperature [°C] |         | Min. cable ten | nperature [°C] |
|------------------------------|-------------------|---------|------------------------------|---------|----------------|----------------|
| wax ambient temperature [ C] | Goup I            | Goup II | Goup I                       | Goup II | Goup I         | Goup II        |
| 40 °C                        | -                 | T4      | 150 °C                       | 135 °C  | =              | 90 °C          |
| 60 °C                        | -                 | -       | 150 °C                       | -       | 110 °C         | -              |
| 70 °C                        | N.A.              | T3      | N.A.                         | 200 °C  | N.A.           | 120 °C         |

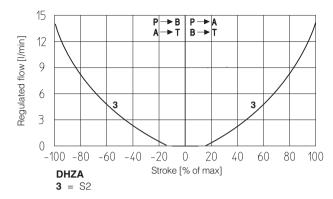
#### cULus certification

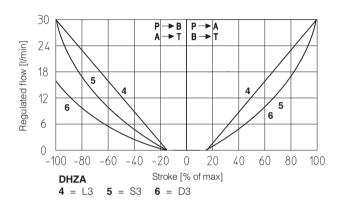
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |

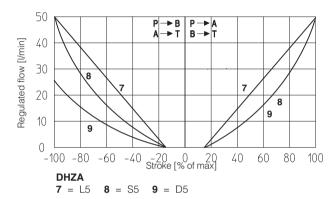
### 10 CABLE GLANDS - only Multicertification

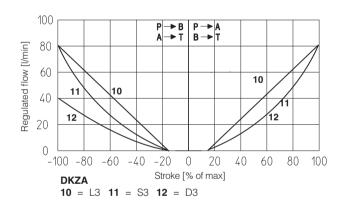
Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

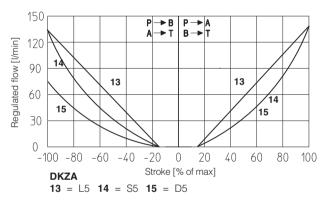

Note: a Loctite sealant type 545, should be used on the cable gland entry threads


### 11 OPTIONS


- B = Solenoid and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see section 12
- C = Position trasducer with current feedback 4÷20 mA, suggested in case of long distance between the electric driver and the proportional valve
- Y = External drain, to be selected if the pressure at T port is higher than the max allowed limits


### 11.1 Possible combined options: /BC, /BY, /CY, /BCY

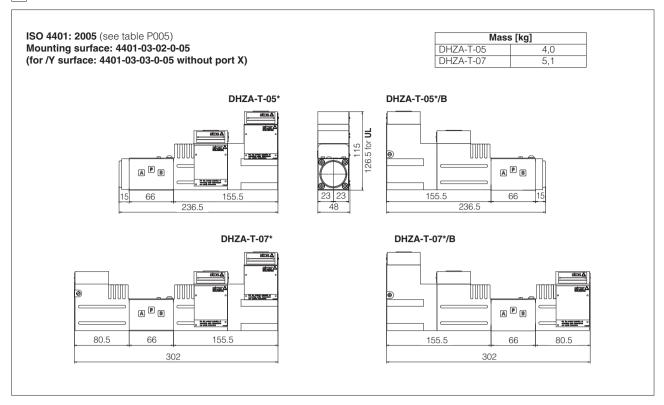

Regulation diagrams of valves with configrations 51, 53, 71, 73 (positive spool overlap) - values measure at Δp 30 bar P-T



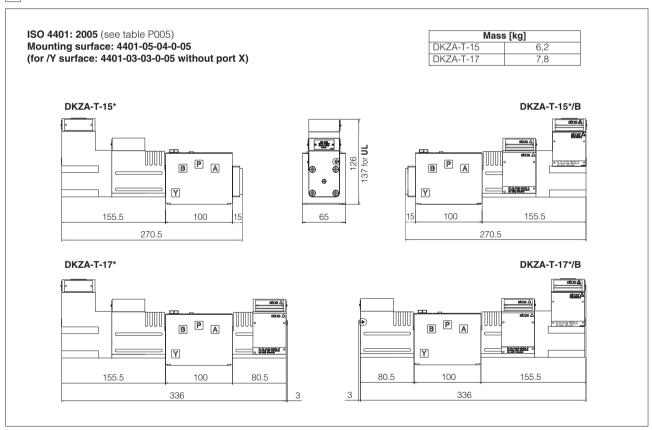










### 13 FASTENING BOLTS AND SEALS

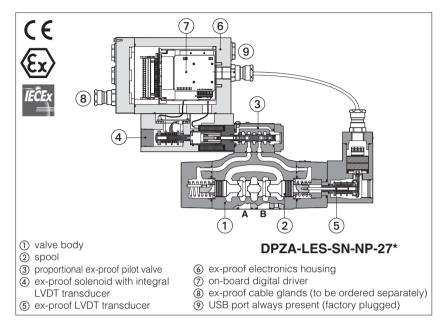
|     | DHZA                                                                  | DKZA                                                                |
|-----|-----------------------------------------------------------------------|---------------------------------------------------------------------|
|     |                                                                       |                                                                     |
|     | Fastening bolts:                                                      | Fastening bolts:                                                    |
| l P | 4 socket head screws M5x50 class 12.9                                 | 4 socket head screws M6x40 class 12.9                               |
|     | Tightening torque = 8 Nm                                              | Tightening torque = 15 Nm                                           |
|     | Seals:                                                                | Seals:                                                              |
|     | 4 OR 108;                                                             | 5 OR 2050;                                                          |
|     | Diameter of ports P, A, B, T: Ø 7,5 mm (max)                          | Diameter of ports P, A, B, T: Ø 11,5 mm (max)                       |
|     | 1 OR 2025                                                             | 1 OR 108                                                            |
|     | Diameter of port Y: $\emptyset = 3.2 \text{ mm}$ (only for /Y option) | Diameter of port Y: $\emptyset = 5 \text{ mm}$ (only for /Y option) |
|     |                                                                       |                                                                     |

### 14 INSTALLATION DIMENSIONS FOR DHZA [mm]



### 15 INSTALLATION DIMENSIONS FOR DKZA [mm]




### 16 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  |
|-------|-------------------------------------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO |
| X030  | Summary of Atos ex-proof components certified to cULus                  |
| FX900 | Operating and manintenance information for ex-proof proportional valves |
| KX800 | Cable glands for ex-proof valves                                        |
| P005  | Mounting surfaces for electrohydraulic valves                           |
|       |                                                                         |



### Ex-proof digital proportional directional valves high performance

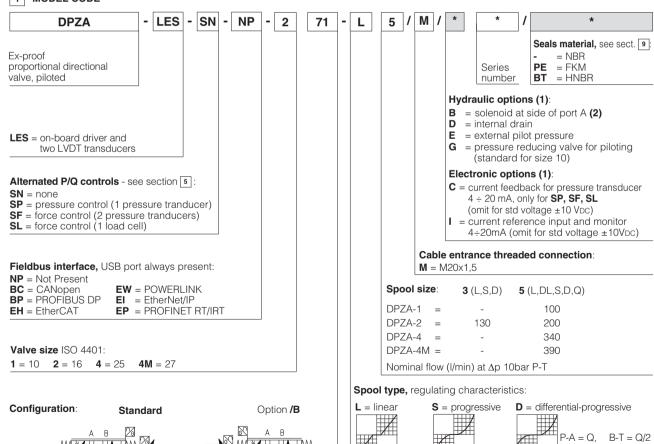
piloted, with on-board driver, two LVDT transducers and positive spool overlap - ATEX and IECEx



### **DPZA-LES**

Ex-proof digital high performances proportional valves, piloted with two LVDT position transducers (pilot valve and main stage) and positive spool overlap for best dynamics in directional controls and not compensated flow regulations.

They are equipped with ex-proof on-board digital driver,LVDT transducer and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.


### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and trasducers, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

Size:  $\mathbf{10} \div \mathbf{27}$  - ISO 4401 Max flow:  $\mathbf{180} \div \mathbf{800}$  l/min Max pressure:  $\mathbf{350}$  bar

### 1 MODEL CODE



(1) For possible combined options, see section 15

DL = differential-linear

P-A = Q,

P-B = Q/2, A-T = Q

0 PROPORTIONAL VALVES

B-T = Q/2

P-B = Q/2, A-T = Q

Q = for P/Q controls

<sup>(2)</sup> In standard configuration the solenoid with on-board digital driver and position transducer are at side A of main stage (side B of pilot valve)

### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

### VALVE SETTINGS AND PROGRAMMING TOOLS



WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared)

E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

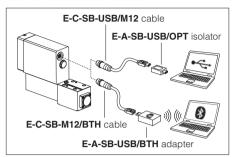


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

### 4 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

### 5 ALTERNATED P/Q CONTROLS - see tech. table FX500


S\* options add the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions.

An additional connector is available for transducers to be interfaced to the valve's driver (1 pressure transducer for SP, 2 pressure transducers for SF or 1 load cell for SL). The alternated pressure control (SP) is possible only for specific installation conditions.

### 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                       |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}$         |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spay test (EN ISO 9227) > 200 h                                                                                                               |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |

### **USB** or Bluetooth connection



### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model           |                             | DPZA-*-1                                                                                                 | DPZA-*-2        |                       | DPZA-*-4                    | DPZA-*-4M |
|-----------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------------|-----------|
| Pressure limits [bar] |                             | ports <b>P</b> , <b>A</b> , <b>B</b> , <b>X</b> = 350; <b>T</b> = 250 (10 for option /D); <b>Y</b> = 10; |                 |                       |                             |           |
| Spool type            |                             | L5, DL5, S5, D5, Q5                                                                                      | L3, S3, D3      | ı                     | L5, DL5, S5, D5, Q5         | j         |
| Nominal flow [I/min]  |                             |                                                                                                          |                 |                       |                             |           |
|                       | $\Delta p = 10 \text{ bar}$ | 100                                                                                                      | 130             | 200                   | 340                         | 390       |
| Δρ Ρ-Τ                | $\Delta p = 30 \text{ bar}$ | 160                                                                                                      | 220             | 350                   | 590                         | 670       |
|                       | Max permissible flow        | 180                                                                                                      | 320             | 440                   | 680                         | 800       |
| Δp max P-T            | [bar]                       | 50                                                                                                       | 60              | 60                    | 60                          | 60        |
| Piloting pressure     | [bar]                       | min. = 2                                                                                                 | 5; max = 350 (o | ption /G advisable fo | or pilot pressure > 1       | 50 bar)   |
| Piloting volume       | [cm <sup>3</sup> ]          | 1,4                                                                                                      | 3,7             |                       | 9,0                         | 11,3      |
| Piloting flow (1)     | [l/min]                     | 1,7                                                                                                      | 3               | 3,7                   | 6,8                         | 8         |
| Leakage               | Pilot [cm³/min]             | 100/300                                                                                                  | 100             | 0/300                 | 200/500                     | 200/600   |
| (2)                   | Main stage [I/min]          | 0,15/0,5                                                                                                 | 0,2             | 2/0,6                 | 0,3/1,0                     | 0,3/1,0   |
| Response time (1)     | [ms]                        | ≤ 55                                                                                                     | ≤               | 65                    | ≤ 85                        | ≤ 90      |
| Hysteresis            |                             | ≤ 0,1 [% of max regulation]                                                                              |                 |                       |                             |           |
| Repeatability         |                             |                                                                                                          | ± 0             | ,1 [% of max regulat  | ion]                        |           |
| Thermal drift         |                             |                                                                                                          | zero point o    | lisplacement < 1% a   | at $\Delta T = 40^{\circ}C$ |           |

<sup>(1) 0 ÷100 %</sup> step signal and pilot pressure 100 bar

### 8 ELECTRICAL CHARACTERISTICS

| Power supplies                                               | Nominal<br>Rectified and filtered                                                                                                                                                                               | : +24 VDC<br>: VRMS = 20 ÷ 32 VMAX                                                                                                                | (ripple max 10 % VPP)             |                                                                       |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption                                        | 35 W                                                                                                                                                                                                            |                                                                                                                                                   |                                   |                                                                       |  |  |  |
| Analog input signals                                         | Voltage: range ±10 \ Current: range ±20 n                                                                                                                                                                       | Voltage: range $\pm 10$ VDC (24 VMAX tollerant) Input impedance: Ri > 50 k $\Omega$ Current: range $\pm 20$ mA Input impedance: Ri = 500 $\Omega$ |                                   |                                                                       |  |  |  |
| Insulation class                                             |                                                                                                                                                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account  |                                   |                                                                       |  |  |  |
| Monitor outputs                                              |                                                                                                                                                                                                                 | Output range: voltage ±10 VDC @ max 5 mA current ±20 mA @ max 500 Ω load resistance                                                               |                                   |                                                                       |  |  |  |
| Enable input                                                 | Range: $0 \div 5$ VDC (OFF state), $9 \div 24$ VDC (ON state), $5 \div 9$ VDC (not accepted); Input impedance: Ri > 10 k $\Omega$                                                                               |                                                                                                                                                   |                                   |                                                                       |  |  |  |
| Fault output                                                 | Output range: 0 ÷ 24 Vpc (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads)                                                    |                                                                                                                                                   |                                   |                                                                       |  |  |  |
| Pressure/force transducer power supply (only for SP, SF, SL) | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                                                                                                                                                     |                                                                                                                                                   |                                   |                                                                       |  |  |  |
| Alarms                                                       | Solenoid not connecte valve spool transduce                                                                                                                                                                     |                                                                                                                                                   | reak with current refere          | ence signal, over/under temperature,                                  |  |  |  |
| Protection degree to DIN EN60529                             | IP66/67 with relevant of                                                                                                                                                                                        | cable gland                                                                                                                                       |                                   |                                                                       |  |  |  |
| Duty factor                                                  | Continuous rating (ED                                                                                                                                                                                           | =100%)                                                                                                                                            |                                   |                                                                       |  |  |  |
| Tropicalization                                              | Tropical coating on ele                                                                                                                                                                                         | ectronics PCB                                                                                                                                     |                                   |                                                                       |  |  |  |
| Additional characteristics                                   | Short circuit protection of solenoid current supply; spool position control (SN) or pressure/force control (SP, SF by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                                                                                   |                                   |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC)                          | According to Directive                                                                                                                                                                                          | 2014/30/UE (Immunity                                                                                                                              | : EN 61000-6-2; Emissio           | n: EN 61000-6-3)                                                      |  |  |  |
| Communication interface                                      | USB Atos ASCII coding                                                                                                                                                                                           | CANopen<br>EN50325-4 + DS408                                                                                                                      | PROFIBUS DP<br>EN50170-2/IEC61158 | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer                                 | not insulated<br>USB 2.0 + USB OTG                                                                                                                                                                              | optical insulated<br>CAN ISO11898                                                                                                                 | optical insulated<br>RS485        | Fast Ethernet, insulated<br>100 Base TX                               |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

### 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$<br>FKM seals (/PE option) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$<br>HNBR seals (/BT option) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-40^{\circ}\text{C} \div +50^{\circ}\text{C}$ |                            |                             |  |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed r                                                                                                                                                                                                                                                                                                                                                          | ange 15 ÷ 380 mm²/s        |                             |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                                                                            | 638 class 7                | see also filter section at  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                                                                            | 638 class 5                | www.atos.com or KTF catalog |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                                                                    | Classification             | Ref. Standard               |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without wa | ter              | FKM                                                                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                 | ISO 12922                   |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                                                                              | HFC                        | 1 130 12922                 |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

FX230 PROPORTIONAL VALVES 85

<sup>(2)</sup> at P = 100/350 bar

<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:

<sup>-</sup>max operating pressure = 210 bar -max fluid temperature = 50°C

### 10 CERTIFICATION DATA

| Valve type                          | DPZA                                                                                                                                                         |                    |                            |              |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|--------------|--|--|
| Certifications                      | Multicertification Group II  ATEX IECEX                                                                                                                      |                    |                            |              |  |  |
| Solenoid certified code             |                                                                                                                                                              | OZA-LES            |                            |              |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X                                                                                                     |                    |                            |              |  |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |                    |                            |              |  |  |
| Temperature class                   | T6                                                                                                                                                           | T5                 |                            | T4           |  |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                      | ≤ 100 °            | °C                         | ≤ 135 °C     |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                 | -40 ÷ +55 °C       |                            | -40 ÷ +70 °C |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 EN 60079-1                                                                                                                            |                    | IEC 60079-0<br>IEC 60079-1 | IEC 60079-31 |  |  |
| Cable entrance: threaded connection |                                                                                                                                                              | <b>M</b> = M20x1,5 |                            |              |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C.

  In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

11 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

### 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

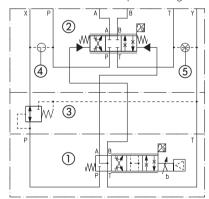
### 13 HYDRAULIC OPTIONS

- B = Solenoid, integral electronics and position transducer at side of port B of the main stage.
- D and E = Pilot and drain configuration can be modified as shown in section [21].
  The valve's standard configuration provides internal pilot and external drain.
  For different pilot / drain configuration select:

Option /D Internal drain.

Option /E External pilot (through port X).

G = Pressure reducing valve installed between pilot valve and main body with fixed setting:


DPZA-2 = 28 bar

DPZA-1, -4 and -4M = 40 bar

It is advisable for valves with internal pilot in case of system pressure higher than 150 bar.

Pressure reducing valve is standard for DPZA-1, for other sizes add  $\slash\!\!/ G$  option.

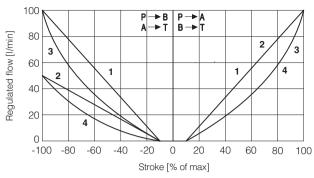
FUNCTIONAL SCHEME - example of configuration 71



- (1) Pilot valve
- ② Main stage
- ③ Pressure reducing valve
- (4) Plug to be added for external pilot trough port X
- (5) Plug to be removed for internal drain through port T

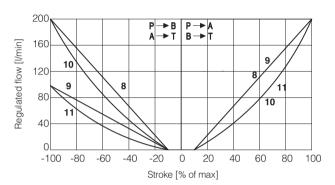
### 14 ELECTRONIC OPTIONS

- = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 Vpc.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA.
  It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SP, SF, SL


Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.

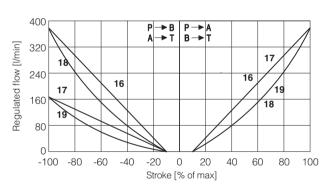
### 15 POSSIBLE COMBINED OPTIONS

**Hydraulic options**: all combination possible **Electronics options**: /Cl (only for **SP**, **SF**, **SL**)


### 16 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

### **16.1 Regulation diagrams** (values measure at Δp 10 bar P-T)

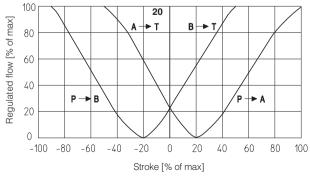



### DPZA-1:

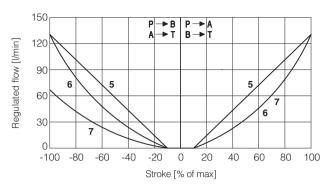
**1**=L5 **2** = DL5 **3**=S5 **4** = D5



### DPZA-2:


**8** = L5 9 = DL5**10** = S5 **11** = D5

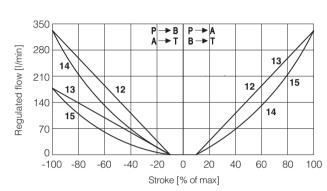



### DPZA-4M:

**16** = L5 **17** = DL5

**18** = S5 **19** = D5




**20** = Q5



DPZA-2:

**5**=L3 **6** = S3

**7**=D3



DPZA-4:

**12** = L5 **13** = DL5

**14** = S5 **15** = D5

Note: Hydraulic configuration vs. reference signal (standard and option /B)

Reference signal  $\begin{array}{cc} 0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array}\} P \rightarrow \text{A / B} \rightarrow \text{T}$ 

Reference signal  $\begin{array}{c} 0 \div - 10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array} \right\} \text{ P} \rightarrow \text{B} / \text{A} \rightarrow \text{T}$ 

### 20 = linear spool Q5

Q5 spool type is specific for alternate P/Q controls in combination with /S\* option, (see tech. table FX500).

It allows to control the pressure in A port or B port and it provides a safety central position (A-T/B-T) to depressurize the actuator chambers.

The strong meter-in characteristic makes the spool suitable for both pressure control and motion regulations in several applications.

87

### 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 17.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 17.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 17.3 Flow reference input signal (Q INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 17.4 Pressure or force reference input signal (F\_INPUT+) - only SP, SF, SL

Functionality of F\_INPUT+ signal (pin 12), is used as reference for the driver pressure/force closed loop (see tech. table FX500). Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 17.5 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.

### 17.6 Pressure or force monitor output signal (F MONITOR) - only for SP, SF, SL

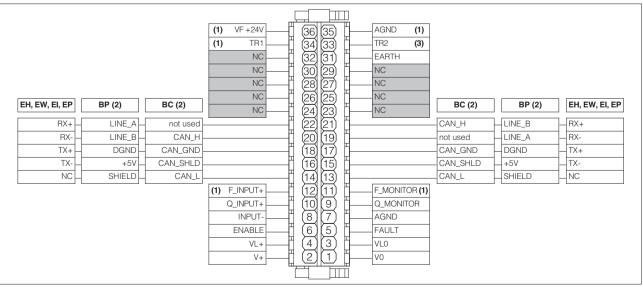
The driver generates an analog output signal proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

### 17.7 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 17.8 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection

### 17.9 Remote pressure/force transducer input signal - only for SP, SF, SL

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see table FX500).

### 18 TERMINAL BOARD OVERVIEW



(1) connections available only SP, SF, SL

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

(3) connection available only SF

### 19 ELECTRONIC CONNECTIONS

### 19.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                      | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                            | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Voc                                                                                                                                                           | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                       | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                      | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                                                     | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                 | Gnd - analog signal                               |
| A                 | 8   | INPUT-    | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                     | Input - analog signal                             |
|                   | 9   | Q_MONITOR | Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option                                   | Output - analog signal <b>Software selectable</b> |
|                   | 10  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option                                                 | Input - analog signal<br>Software selectable      |
|                   | 11  | F_MONITOR | Pressure/Force monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND (1) Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option | Output - analog signal <b>Software selectable</b> |
|                   | 12  | F_INPUT+  | Pressure/Force reference input signal: ±10 Vpc / ±20 mA maximum range (1) Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option                                      | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                        |                                                   |

(1) Available only for SP, SF, SL

### 19.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             | 1-2         |   |
|                   | 2   | ID      | Identification           | 4 ((1)      |   |
| $\mid B \mid$     | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              |             |   |
|                   | 5   | D+      | Data line +              | (female)    |   |

### 19.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
| ( ) 1             | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
| (?)               | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

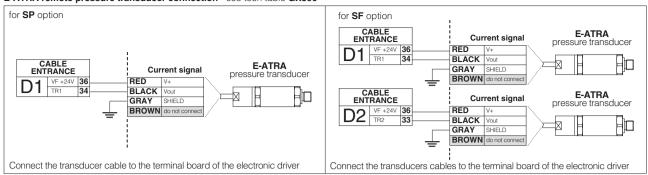
### 19.4 BP fieldbus execution connections

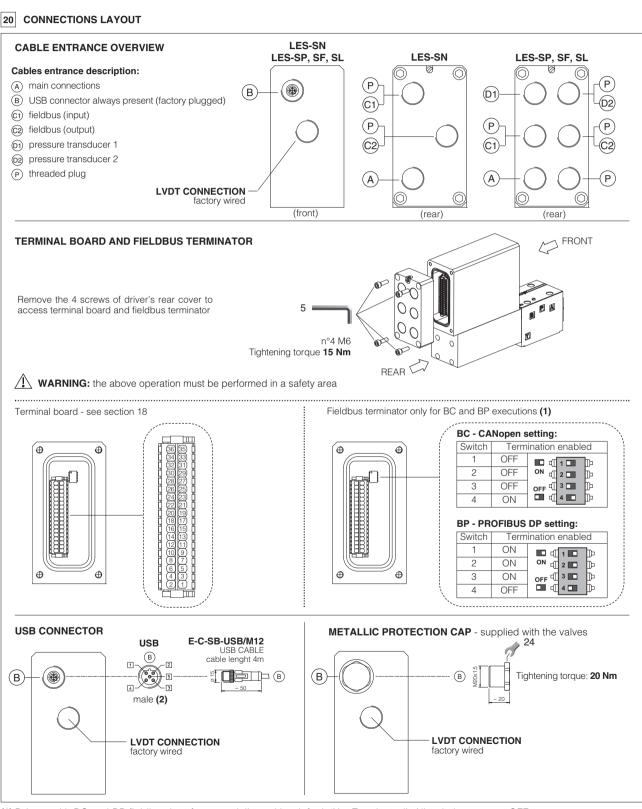
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| C1                | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

### 19.5 EH, EW, EI, EP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| <b>( ) 1</b>      | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |


### 19.6 Remote pressure transducer connector - only for SP, SF, SL

| CABLE     | PIN              | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                               | SP, SL - Single | transducer (1) | SF - Double tr | ansducers (1) |
|-----------|------------------|---------|---------------------------------------------------------|-----------------------------------------------------|-----------------|----------------|----------------|---------------|
| ENTRANCES | PIN SIGNAL TECHN |         |                                                         | ECTINICAL SPECIFICATIONS NOTES                      |                 | Current        | Voltage        | Current       |
| D1        | 33               | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal<br><b>Software selectable</b> | /               | /              | Connect        | Connect       |
|           | 34               | TR1     | 1st ignal transducer<br>±10 Vpc / ±20 mA maximum range  | Input - analog signal <b>Software selectable</b>    | Connect         | Connect        | Connect        | Connect       |
| D2        | 35               | AGND    | Common gnd for transducer power and signals             | Common gnd                                          | Connect         | /              | Connect        | /             |
|           | 36               | VF +24V | Power supply +24Vpc                                     | Output - power supply                               | Connect         | Connect        | Connect        | Connect       |

FX230 PROPORTIONAL VALVES 89

### E-ATRA remote pressure transducer connection - see tech table GX800





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

### 20.1 Cable glands and threaded plug for LES-SN - see tech table $\ensuremath{\mathsf{KX800}}$

| Communication                                            | То    | be ordere         | ed separat | ely                 | Cable entrance |                                                                              |
|----------------------------------------------------------|-------|-------------------|------------|---------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                               | Cable | gland<br>entrance |            | ed plug<br>entrance | overview       | Notes                                                                        |
| NP                                                       | 1     | А                 | none       | none                | ©<br>©<br>(A)  | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2     | C1                | 1          | C2                  |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3     | C1<br>C2<br>A     | none       | none                |                | Cable entrance A, C1, C2 are open for costumers                              |

### 20.2 Cable glands and threaded plug for LES-SP, SL - see tech table KX800 $\,$

| Communication                                            | То | be ordere          | ed separat | ely                 | Cable entrance                         |                                                                                           |
|----------------------------------------------------------|----|--------------------|------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance  |            | ed plug<br>entrance | overview                               | Notes                                                                                     |
| NP                                                       | 2  | D1<br>A            | none       | none                | 0) P<br>P P<br>A P                     | Cable entrance A, D1 are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | D1<br>C1<br>A      | 1          | C2                  | 00000000000000000000000000000000000000 | Cable entrance A, C1, C2, D1 are open for costumers Cable entrance P are factory plugged  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | D1<br>C1 - C2<br>A | none       | none                | 00000000000000000000000000000000000000 | Cable entrance A, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

### ${\bf 20.3~Cable~glands~and~threaded~plug~for~LES-SF}$ - see tech table ${\bf KX800}$

| Communication                                            | То | be ordere               | ed separat | ely                 | Cable entrance                   |                                                                                              |
|----------------------------------------------------------|----|-------------------------|------------|---------------------|----------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance       |            | ed plug<br>entrance | overview                         | Notes                                                                                        |
| NP                                                       | 3  | D1<br>D2<br>A           | none       | none                | 61 P<br>P 62<br>A P              | Cable entrance A, D1, D2 are open for costumers  Cable entrance P are factory plugged        |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1 - D2<br>C1<br>A      | 1          | C2                  | 902<br>902<br>902<br>002<br>002  | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1 - D2<br>C1 - C2<br>A | none       | none                | 00 00<br>00 00<br>00 00<br>00 00 | Cable entrance A, C1, C2, D1, D2 are open for costumers  Cable entrance P is factory plugged |

91

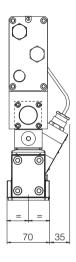
### 21 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

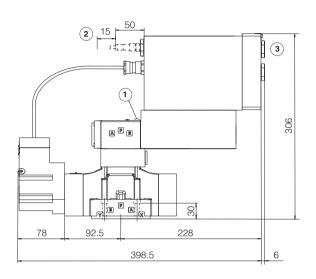
Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below. To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain

### Drain channels DPZA-1 Pilot channels Internal piloting: blinded plug SP-X300F ① in X; External piloting: blinded plug SP-X300F ② in Pp; Internal drain: blinded plug SP-X300F ③ in Y; External drain: blinded plug SP-X300F ④ in Dr. **(**4) (1)DPZA-2 Pilot channels **Drain channels** Internal piloting: Without blinded plug SP-X300F ①; External piloting: Add blinded plug SP-X300F ①; (2) Without blinded plug SP-X300F 2; Internal drain: External drain: Add blinded plug SP-X300F 2. DPZA-4 Pilot channels Drain channels DPZA-4M Internal piloting: Without blinded plug SP-X500F ①; External piloting: Add blinded plug SP-X500F ①; 2 Without blinded plug SP-X300F 2; Internal drain: External drain: Add blinded plug SP-X300F 2.

### 22 FASTENING BOLTS AND SEALS

| Туре | Size                                                                                        | Fastening bolts                                                    | Seals                                                     |
|------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|
|      | 1 10                                                                                        | 4 socket head screws M6x40 class 12.9                              | 5 OR 2050;<br>Diameter of ports A, B, P, T: Ø 11 mm (max) |
|      | Tightening torque = 15 Nm  4 socket head screws M10x50 class 12.9 Tightening torque = 70 Nm | Tightening torque = 15 Nm                                          | 2 OR 108<br>Diameter of ports X, Y: Ø = 5 mm (max)        |
|      |                                                                                             |                                                                    | 4 OR 130;<br>Diameter of ports A, B, P, T: Ø 20 mm (max)  |
| DPZA | 2 = 10                                                                                      | 2 socket head screws M6x45 class 12.9<br>Tightening torque = 15 Nm | 2 OR 2043<br>Diameter of ports X, Y: Ø = 7 mm (max)       |
| DFZA | 4 - 25 6 soc                                                                                | 6 socket head screws M12x60 class 12.9                             | 4 OR 4112;<br>Diameter of ports A, B, P, T: Ø 24 mm (max) |
|      |                                                                                             | Tightening torque = 125 Nm                                         | 2 OR 3056<br>Diameter of ports X, Y: Ø = 7 mm (max)       |
|      | <b>4M</b> = 27                                                                              | 6 socket head screws M12x60 class 12.9                             | 4 OR 3137;<br>Diameter of ports A, B, P, T: Ø 32 mm (max) |
|      | <b>TIVI</b> — 21                                                                            | Tightening torque = 125 Nm                                         | 2 OR 3056<br>Diameter of ports X, Y: Ø = 7 mm (max)       |


### **DPZA-LES-\*-1**

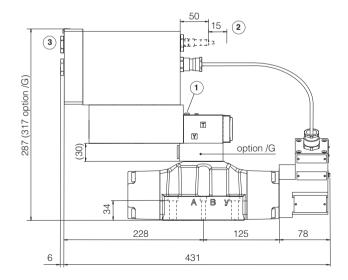

ISO 4401: 2005

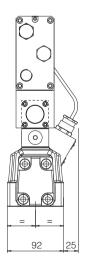
Mounting surface: 4401-05-05-0-05

(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-17* | 9,5  |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |







### DPZA-LES-\*-2

ISO 4401: 2005

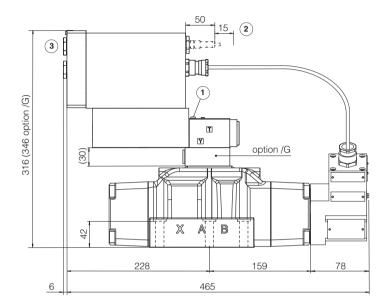
Mounting surface: 4401-07-07-0-05 (see table P005)

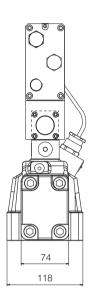
| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-27* | 17,9 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |





- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


### DPZA-LES-\*-4 DPZA-LES-\*-4M


ISO 4401: 2005

Mounting surface: 4401-08-08-0-05

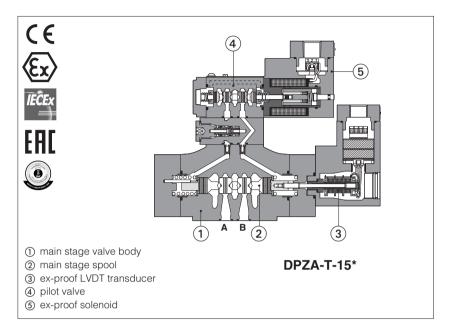
(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-4*  | 23,1 |  |  |  |  |
| DPZA-*-4M* | 23,1 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |





- $\bigcirc$  = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


### 24 RELATED DOCUMENTATION

| X020 Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO  Ex-proof digital proportionals with P/Q control  Operating and manintenance information for ex-proof proportional valves | GS500 Programming tools GS510 Fieldbus GX800 Ex-proof pressure transducer type E-ATF KX800 Cable glands for ex-proof valves P005 Mounting surfaces for electrohydraulic values |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



# **Ex-proof proportional directional valves**

piloted, with LVDT transducer and positive spool overlap - ATEX, IECEx, EAC, PESO

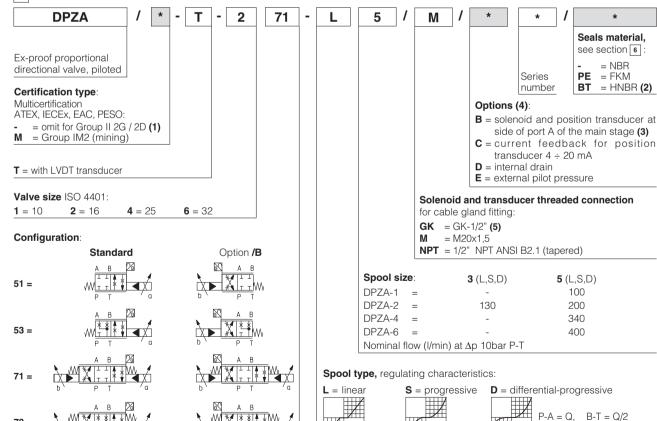


#### **DPZA-T**

Ex-proof proportional valves, piloted, with LVDT position transducer and positive spool overlap, for directional and not compensated speed controls

They are equipped with ex-proof proportional solenoid and LVDT transducer, certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Cortifications


- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)

The flameproof enclosure of solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

Size: **10** ÷ **32** - ISO 4401 Max flow: **180** ÷ **1000 l/min** Max pressure: **350 l/min** 

### 1 MODEL CODE



<sup>(1)</sup> The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com

P-B = Q/2, A-T = Q

<sup>(2)</sup> Not for multicertification M group I (mining) (3) In standard configuration the solenoid and transducer are at side B of the main stage

<sup>(4)</sup> Possible combined options: /BC, /BD, /BE, /CD, /CE, /DE (5) Approved only for the Italian market

For valve with internal drain (option /D) the pressure at T port makes difficult the manual override operation that can be possible only if the pressure at T port is lower than 50 bar

### 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-TEB-* /A | E-BM-TES-* /A |
|---------------|---------------|---------------|
| Туре          | digital       | digital       |
| Format        | DIN-ra        | il panel      |
| Data sheet    | GS230         | GS240         |

### 3 GENERAL CHARACTERISTICS

| Assembly position                                                                        | Any position                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subplate surface finishing to ISO 4401                                                   | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |
| MTTFd valves according to EN ISO 13849                                                   | 75 years, see technical table P007                                                                                                                                             |  |  |
| Ambient temperature range                                                                | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C /PE option = $-20^{\circ}$ C $\div$ +70°C /BT option = $-40^{\circ}$ C $\div$ +70°C                                             |  |  |
| Storage temperature range                                                                | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |
| Surface protection                                                                       | Zinc coating with black passivation - Salt spray test (EN ISO 9227) > 200h                                                                                                     |  |  |
| Compliance                                                                               | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |
| RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |                                                                                                                                                                                |  |  |

### 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model          |                             | DPZA-*-1                                                                | DPZ                         | A-*-2                      | DPZA-*-4                      | DPZA-*-6   |
|----------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------------|-------------------------------|------------|
| Pressure limits      | [bar]                       | p                                                                       | orts <b>P, A, B, X</b> = 35 | i0; <b>T</b> = 250 (10 for | roption /D); $\mathbf{Y} = 1$ | 0;         |
| Spool type           | standard                    | L5, S5, D5                                                              | L3, S3, D3                  | L5, S5, D5                 | L5, S5, D5                    | L5, S5, D5 |
| Nominal flow [I/min] |                             |                                                                         |                             |                            |                               |            |
|                      | $\Delta p = 10 \text{ bar}$ | 100                                                                     | 130                         | 200                        | 340                           | 400        |
| Δp P-T               | $\Delta p = 30 \text{ bar}$ | 160                                                                     | 220                         | 350                        | 590                           | 700        |
|                      | max permissible flow        | 180                                                                     | 320                         | 440                        | 680                           | 1000       |
| Δp max P-T           | [bar]                       | 50                                                                      | 60                          | 60                         | 60                            | 70         |
| Piloting pressure    | [bar]                       | min. = 25; max = 350 (option /G advisable for pilot pressure > 200 bar) |                             |                            |                               | 200 bar)   |
| Piloting volume      | [cm <sup>3</sup> ]          | 1,4                                                                     | 3                           | ,7                         | 9,0                           | 21,6       |
| Piloting flow (1)    | [l/min]                     | 1,7                                                                     | 3                           | ,7                         | 6,8                           | 14,4       |
| Leakage (2)          | Pilot [cm³/min]             | 100/300                                                                 | 100                         | /300                       | 200/500                       | 900/2800   |
|                      | Main stage [I/min]          | 0,15/0,5                                                                | 0,2                         | /0,6                       | 0,3/1,0                       | 1,0/3,0    |
| Response time (1)    | [ms]                        | ≤ 70                                                                    | ≤                           | 85                         | ≤ 100                         | ≤ 130      |
| Hysteresis           |                             | ≤ 1 [% of max regulation]                                               |                             |                            |                               |            |
| Repeatability        |                             | ± 0,5 [% of max regulation]                                             |                             |                            |                               |            |
| Thermal drift        |                             |                                                                         | zero point d                | isplacement < 1%           | at ΔT = 40°C                  |            |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 2

(1) 0 ÷ 100 % step signal and pilot pressure 100 bar

(2) at  $\Delta p = 100/350$  bar

### 5 ELECTRICAL CHARACTERISTICS

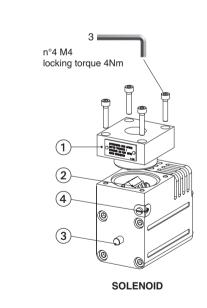
| Max. power                                  | 35W                                                                                             |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| Insulation class                            | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards |
| Illisulation class                          | ISO 13732-1 and EN982 must be taken into account                                                |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529                                                      |
| Duty factor                                 | Continuous rating (ED=100%)                                                                     |
| Voltage code                                | standard                                                                                        |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                                           |
| Max. solenoid current                       | 2,5 A                                                                                           |

### 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | l temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |               |  |
|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                    |                            |               |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          |                            |               |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          |                            |               |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922     |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 130 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

### (1) performance limitations in case of flame resistant fluids with water:


### 7 CERTIFICATION DATA

| Valve type                                           | DPZA                                                                                                                                                                                        | DPZA                                                                                                                                       |              |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| Certifications                                       |                                                                                                                                                                                             | Multicertification Group II  ATEX IECEX EAC PESO                                                                                           |              |  |  |
| Solenoid certified code                              |                                                                                                                                                                                             | OZA-A + ETHA-4                                                                                                                             |              |  |  |
| Type examination certificate (1)                     | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131                                                                                         | IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784                                                                                   |              |  |  |
| Method of protection                                 | ATEX, EAC     Ex II 2G Ex d IIC T4/T3 Gb     Ex II 2D Ex tb IIIC T135°C/T200°C Db      IECEx     Ex d IIC T4/T3 Gb     Ex tb IIIC T135°C/T200°C Db      PESO     Ex II 2G Ex d IIC T6/T4 Gb | Ex II 2G Ex d IIC T4/T3 Gb<br>Ex II 2D Ex tb IIIC T135°C/T200°C Db<br>• IECEX<br>Ex d IIC T4/T3 Gb<br>Ex tb IIIC T135°C/T200°C Db<br>•PESO |              |  |  |
| Temperature class                                    | T4                                                                                                                                                                                          | Т3                                                                                                                                         | -            |  |  |
| Surface temperature                                  | ≤ 135 °C                                                                                                                                                                                    | ≤ 200 °C                                                                                                                                   | ≤ 150 °C     |  |  |
| Ambient temperature (2)                              | -40 ÷ +40 °C                                                                                                                                                                                | -40 ÷ +70 °C                                                                                                                               | -20 ÷ +60 °C |  |  |
| Mechanical construction<br>Flameproof enclosure Ex d | EN 60079-0, EN 60079-1                                                                                                                                                                      |                                                                                                                                            |              |  |  |
| Cable entrance: threaded connection                  | M =                                                                                                                                                                                         | $\mathbf{M} = M20x1,5$                                                                                                                     |              |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 8 EX PROOF SOLENOIDS AND TRANSDUCERS WIRING




- ① cover with threaded connection for vertical cable gland fitting
- (2) terminal board for cables wiring
- 3 standard manual override
- 4 screw terminal for additional equipotential grounding

### Solenoid wiring



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)



### **TRANSDUCER**

- ① cover with threaded connection for vertical cable gland fitting
- terminal board for cables wiring
- 3 screw terminal for additional equipotential grounding

### Position transducer wiring

3

- 1 = Output signal
- **2** = Supply -15 V = Supply +15 V
- = GND

PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

### 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### SOLENOID - Multicertification

| Max ambient temperature [°C] |        | ture class | Max surface te | mperature [°C] | Min. cable temperature [°C] |         |
|------------------------------|--------|------------|----------------|----------------|-----------------------------|---------|
| wax ambient temperature [ C] | Goup I | Goup II    | Goup I         | Goup II        | Goup I                      | Goup II |
| 40 °C                        | -      | T4         | 150 °C         | 135 °C         | 90 °C                       | 90 °C   |
| 45 °C                        | -      | T4         | -              | 135 °C         | -                           | 95 °C   |
| 55 °C                        | -      | T3         | -              | 200 °C         | -                           | 110 °C  |
| 60 °C                        | -      | -          | 150 °C         | -              | 110 °C                      | -       |
| 70 °C                        | N.A.   | T3         | N.A.           | 200 °C         | N.A.                        | 120 °C  |

### **TRANSDUCER - Multicertification**

| Max ambient temperature [°C] | Temperature class |         | Temperature class Max surface temperature [°C] |         | Min. cable temperature [°C] |         |
|------------------------------|-------------------|---------|------------------------------------------------|---------|-----------------------------|---------|
| max ambient temperature [ C] | Goup I            | Goup II | Goup I                                         | Goup II | Goup I                      | Goup II |
| 40 °C                        | N.A.              | T6      | 150 °C                                         | 85 °C   | -                           | -       |
| 70 °C                        | N.A.              | T6      | 150 °C                                         | 85 °C   | 90 °C                       | 90 °C   |

### 10 CABLE GLANDS

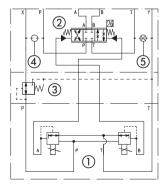
Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### 11 OPTIONS

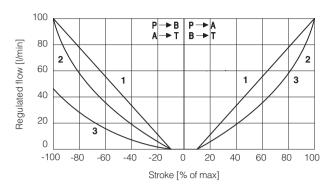
- **B** = DPZA-\*-\*5 = solenoid and integral electronics at side of port B of the main stage.

  DPZA-\*-\*7 = integral electronics at side of port B of the main stage.
- **C** = Position transducer with current feedback 4÷20 mA, suggested in case of long distance between the electronic driver and the proportional valve
- D and E = Pilot and drain configuration can be modified as shown in section 13.
  The valve's standard configuration provides internal pilot and external drain.
  For different pilot / drain configuration select:

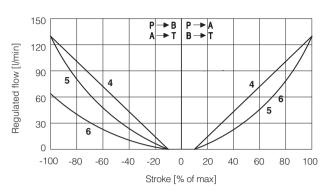

Option /D Internal drain.

Option /E External pilot (through port X).

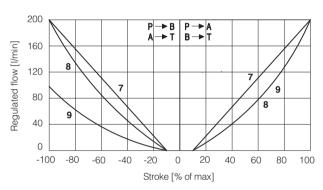
### 11.1 Possible combined options: /BC, /BD, /BE, /CD, /CE, /DE


### **FUNCTIONAL SCHEME**

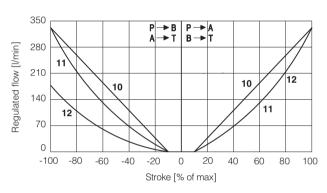
example of configuration 7\* 3 positions, spring centered



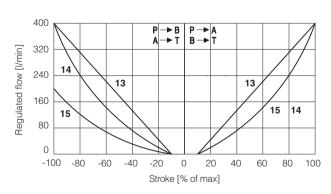

- ① Pilot valve
- ② Main stage
- ③ Pressure reducing valve
- 4) Plug to be added for external pilot trough port X
- ⑤ Plug to be removed for internal drain through port T


### **Regulation diagrams** (values measure at Δp 10 bar P-T)




**DPZA-1: 1** = L5 **2** = S5 **3** = D5




**DPZA-2: 4** = L3 **5** = S3 **6** = D3

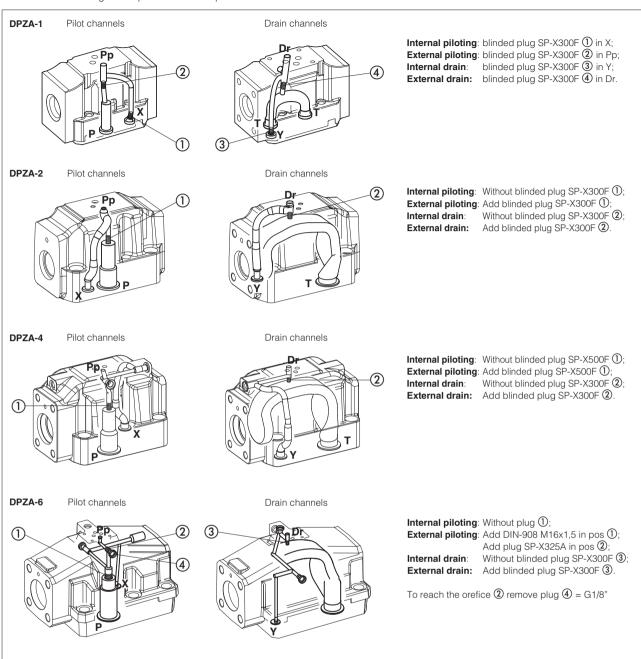


**DPZA-2: 7** = L5 **8** = S5 **9** = D5



**DPZA-4: 10** = L5 **11** = S5 **12** = D5




**DPZA-6: 13** = L5 **14** = S5 **15** = D5

Note: Hydraulic configuration vs. reference signal for configuration 71 and 73 (standard and option /B)

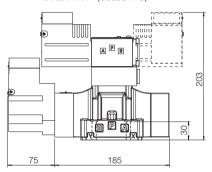
Reference signal  $\begin{array}{cc} 0 \ \div + 10 \ V \\ 12 \ \div 20 \ \text{mA} \end{array}$   $\left. \begin{array}{cc} P \rightarrow A \ / \ B \rightarrow T \end{array} \right.$  Reference signal  $\begin{array}{cc} 0 \ \div - 10 \ V \\ 12 \ \div 4 \ \text{mA} \end{array}$   $\left. \begin{array}{cc} P \rightarrow B \ / \ A \rightarrow T \end{array} \right.$ 

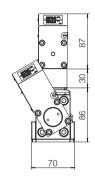
### 13 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below. To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain



### 14 FASTENING BOLTS AND SEALS


| DPZA-1                                                                | DPZA-2                                                                                                                                          | DPZA-4                                                                  | DPZA-6                                                                  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Fastening bolts:                                                      | Fastening bolts:                                                                                                                                | Fastening bolts:                                                        | Fastening bolts:                                                        |
| 4 socket head screws<br>M6x40 class 12.9<br>Tightening torque = 15 Nm | 4 socket head screws<br>M10x50 class 12.9<br>Tightening torque = 70 Nm<br>2 socket head screws<br>M6x45 class 12.9<br>Tightening torque = 15 Nm | 6 socket head screws<br>M12x60 class 12.9<br>Tightening torque = 125 Nm | 6 socket head screws<br>M20x90 class 12.9<br>Tightening torque = 600 Nm |
| Seals:                                                                | Seals:                                                                                                                                          | Seals:                                                                  | Seals:                                                                  |
| 5 OR 2050<br>Diameter of ports A, B, P, T:<br>Ø 11 mm (max)           | 4 OR 130 Diameter of ports A, B, P, T: Ø 20 mm (max)                                                                                            | 4 OR 4112<br>Diameter of ports A, B, P, T:<br>Ø 24 mm (max)             | 4 OR 144 Diameter of ports A, B, P, T: Ø 34 mm (max)                    |
| 2 OR 108<br>Diameter of ports X, Y:<br>Ø 5 mm (max)                   | 2 OR 2043<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                                                                                            | 2 OR 3056<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                    | 2 OR 3056<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                    |


DPZA-1

ISO 4401: 2005 (see table P005) Mounting surface: 4401-05-05-0-05

| Mass [kg]  |      |  |  |
|------------|------|--|--|
| DPZA-*-15* | 10,4 |  |  |
| DPZA-*-17* | 11,8 |  |  |

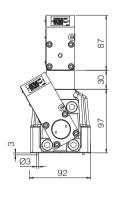
DPZA-T-15\* DPZA-T-17\* (dotted line)

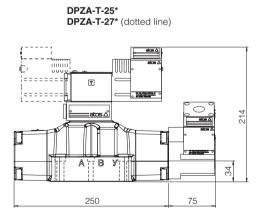


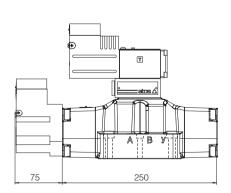


A P B BPA 185 75

DPZA-T-15\* /B


DPZA-2

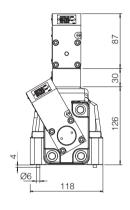

ISO 4401: 2005

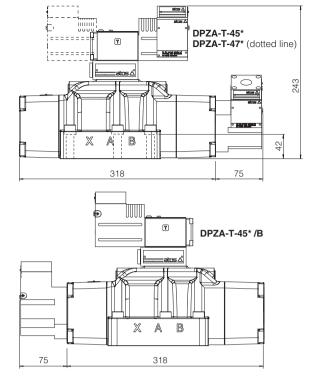

Mounting surface: 4401-07-07-0-05 (see table P005)

| Mass [kg]  |      |  |  |  |
|------------|------|--|--|--|
| DPZA-*-25* | 13,3 |  |  |  |
| DPZA-*-27* | 14,7 |  |  |  |

DPZA-T-25\* /B





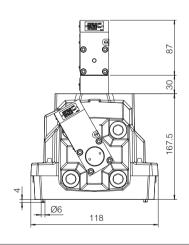



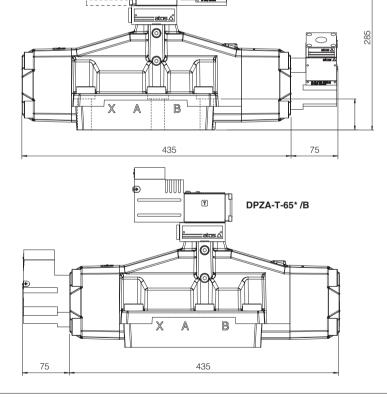



ISO 4401: 2005 (see table P005)
Mounting surface: 4401-08-08-0-05

| Mass [kg]  |      |  |  |
|------------|------|--|--|
| DPZA-*-45* | 20,8 |  |  |
| DPZA-*-47* | 22,2 |  |  |







DPZA-T-65\* DPZA-T-67\* (dotted line)

### DPZA-6

ISO 4401: 2005 (see table P005) Mounting surface: 4401-10-09-0-05

| Mass [kg]  |      |  |  |
|------------|------|--|--|
| DPZA-*-65* | 47,3 |  |  |
| DPZA-*-67* | 48,7 |  |  |





T

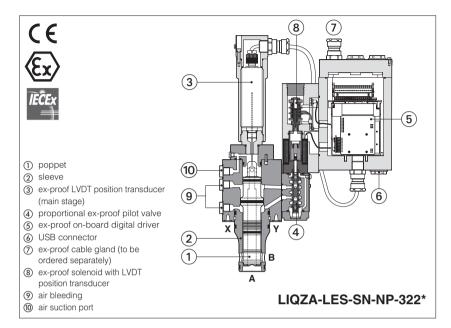
### 16 RELATED DOCUMENTATION

**X010** Basics for electrohydraulics in hazardous environments

X020 Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

**X030** Summary of Atos ex-proof components certified to cULus

**FX900** Operating and manintenance information for ex-proof proportional valves


KX800 Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves



# Ex-proof digital proportional 2-way cartridges high performance

piloted, with on-board driver and two LVDT transducers - ATEX and IECEx



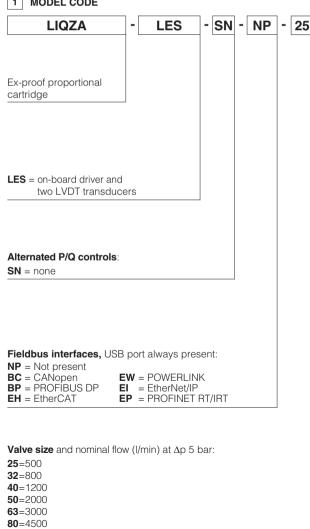
#### **LIQZA-LES**

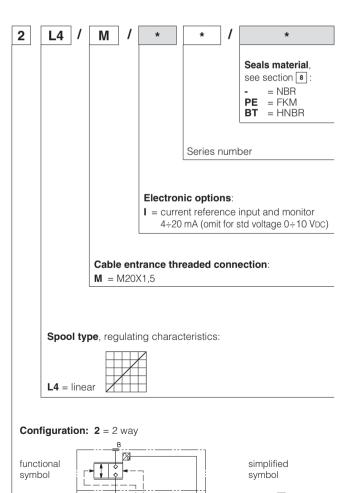
Ex-proof digital proportional 2-way cartridges, high performance with two LVDT position transducers (pilot valve and main stage) for best accuracy in not compensated flow regulations.

They are equipped with ex-proof on-board digital driver,LVDT transducers and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

### Multicertification ATEX and IECEx

for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver, solenoid and transducers, prevents the propagation of accidental internal sparks or fire to the external environment.


The driver and solenoid are also designed to limit the surface temperature within the classified limits.

Size: **25** ÷ **100** - ISO 7368 Max flow: **1200** ÷ **16000 l/min** Max pressure: **420 bar** 

### 1 MODEL CODE

**100**=7200





### 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.



### WARNING

The loss of the pilot pressure causes the undefined position of the main poppet.

The sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet.

This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

### **3 VALVE SETTINGS AND PROGRAMMING TOOLS**



WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support:
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support:
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection



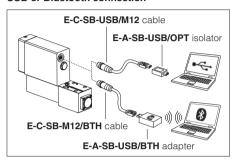
WARNING: Bluetooth adapter is available only for European, USA and Canadian markets! Bluetooth adapter is certified according RED (Europe), FCC (USA) and ISED (Canada) directives

### 4 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

### 5 GENERAL CHARACTERISTICS

| Assembly position                                                                                                     | Any position                                                                             |                                                       |                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|
| Subplate surface finishing to ISO 4401                                                                                | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100         |                                                       |                                                       |  |  |
| MTTFd valves according to EN ISO 13849                                                                                | 75 years, see technical table P007                                                       |                                                       |                                                       |  |  |
| Ambient temperature range                                                                                             | <b>Standard</b> = $-20^{\circ}$ C ÷ $+60^{\circ}$ C                                      | <b>/PE</b> option = $-20^{\circ}$ C ÷ $+60^{\circ}$ C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+60^{\circ}$ C |  |  |
| Storage temperature range                                                                                             | <b>Standard</b> = $-20^{\circ}$ C ÷ $+70^{\circ}$ C                                      | <b>/PE</b> option = $-20^{\circ}$ C ÷ $+70^{\circ}$ C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C |  |  |
| Surface protection                                                                                                    | Zinc coating with black passiv                                                           | ation - salt spay test (EN ISO 922                    | 7) > 200 h                                            |  |  |
| Explosion proof protection, see section 9 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" |                                                                                          |                                                       |                                                       |  |  |
|                                                                                                                       | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |                                                       |                                                       |  |  |


### 6 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Size                     |                                                 | 25         | 32             | 40              | 50              | 63                   | 80            | 100           |
|--------------------------|-------------------------------------------------|------------|----------------|-----------------|-----------------|----------------------|---------------|---------------|
| Max regulated flow       | [l/min]                                         |            |                |                 |                 |                      |               |               |
| Δρ Α-Β                   | at $\Delta p = 5$ bar<br>at $\Delta p = 10$ bar | 500<br>700 | 800<br>1100    | 1200<br>1700    | 2000<br>2800    | 3000<br>4250         | 4500<br>6350  | 7200<br>10200 |
| Max permissible flow     | '                                               | 1200       | 1800           | 2500            | 4000            | 6000                 | 10000         | 16000         |
| Max pressure             | [bar]                                           |            |                | Ports A, B = 4  | <b>20</b> X = 3 | 50 Y≤1               | 0             |               |
| Nominal flow of pilot va | alve at Δp = 70 bar [I/min]                     | 8          | 20             | 40              | 40              | 100                  | 100           | 100           |
| Leakage of pilot valve   | e at P = 100 bar [I/min]                        | 0,2        | 0,3            | 0,7             | 0,7             | 1                    | 1             | 1             |
| Piloting pressure        | [bar]                                           | n          | nin: 40% of sy | stem pressur    | e max 350       | ) recomme            | nded 140 ÷ 16 | 60            |
| Piloting volume          | [cm³]                                           | 2,2        | 7,0            | 9,4             | 17,7            | 32,5                 | 39,5          | 49,5          |
| Piloting flow (1)        | [l/min]                                         | 5,3        | 14             | 19              | 35,5            | 56                   | 60            | 60            |
| Response time 0 ÷ 10     | 00% step signal <b>(2)</b> [ms]                 | ≤30        | ≤32            | ≤ 35            | ≤ 35            | ≤ 40                 | ≤ 45          | ≤ 55          |
| Hysteresis               | [% of the max regulation]                       |            |                |                 | ≤ 0,1           |                      |               |               |
| Repeatability            | [% of the max regulation]                       |            |                |                 | ± 0,1           |                      |               |               |
| Thermal drift            |                                                 |            | Ž              | zero point disp | placement < 1   | % at $\Delta T = 40$ | °C            |               |

(1) 0÷100% step signal

(2) With pilot pressure = 140 bar

### USB or Bluetooth connection



### 7 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal<br>Rectified and filtered                                                                                                                                        | : +24 VDC<br>: VRMS = 20 ÷ 32 VMAX                                                                                                                           | (ripple max 10 % VPP)             |                                                                       |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                     |                                                                                                                                                              |                                   |                                                                       |  |  |  |
| Analog input signals                |                                                                                                                                                                          | Voltage: range $\pm 10$ VDC (24 VMAX tollerant) Input impedance: Ri > 50 k $\Omega$ Current: range $\pm 20$ mA Input impedance: Ri = $500 \Omega$            |                                   |                                                                       |  |  |  |
| Insulation class                    | , ,                                                                                                                                                                      | ccuring surface tempera<br>82 must be taken into a                                                                                                           |                                   | ils, the European standards                                           |  |  |  |
| Monitor outputs                     |                                                                                                                                                                          | Output range: voltage ±10 VDC @ max 5 mA current ±20 mA @ max 500 Ω load resistance                                                                          |                                   |                                                                       |  |  |  |
| Enable input                        | Range: 0 ÷ 5 VDC (OFF                                                                                                                                                    | Range: $0 \div 5$ VDC (OFF state), $9 \div 24$ VDC (ON state), $5 \div 9$ VDC (not accepted); Input impedance: Ri > 10 k $\Omega$                            |                                   |                                                                       |  |  |  |
| Fault output                        |                                                                                                                                                                          | Output range: 0 ÷ 24 VDC (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                   |                                                                       |  |  |  |
| Alarms                              | Solenoid not connecte valve spool transduce                                                                                                                              |                                                                                                                                                              | reak with current refere          | nce signal, over/under temperature,                                   |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                                    | cable gland                                                                                                                                                  |                                   |                                                                       |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                                    | =100%)                                                                                                                                                       |                                   |                                                                       |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                                   | ectronics PCB                                                                                                                                                |                                   |                                                                       |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; spool position control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                                                                                              |                                   |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive                                                                                                                                                   | 2014/30/UE (Immunity                                                                                                                                         | : EN 61000-6-2; Emissio           | n: EN 61000-6-3)                                                      |  |  |  |
| Communication interface             | USB Atos ASCII coding                                                                                                                                                    | CANopen<br>EN50325-4 + DS408                                                                                                                                 | PROFIBUS DP<br>EN50170-2/IEC61158 | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                       | optical insulated<br>CAN ISO11898                                                                                                                            | optical insulated<br>RS485        | Fast Ethernet, insulated<br>100 Base TX                               |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

### 8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                             |               |  |
|----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                     |                             |               |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | see also filter section at  |               |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | www.atos.com or KTF catalog |               |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification              | Ref. Standard |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |
| Flame resistant without wa | ter              | FKM HFDU, HFDR                                                                                                                                                                                                                                                                       |                             | ISO 12922     |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                         | 130 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

(1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

### 9 CERTIFICATION DATA

| Components type                     | Pilot va                                                        | live solenoid and LVDT tra                                                                                                        | ınsducer                   | LVDT main stage transducer  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|--|
| Certifications                      |                                                                 | Multicertification ATEX IECEx                                                                                                     |                            |                             |  |  |  |
| Components Certified code           |                                                                 | OZA-LES                                                                                                                           |                            | ETHA-15                     |  |  |  |
|                                     | •                                                               | ATEX: TUV IT 18 ATEX 06                                                                                                           | 88 X                       | ATEX: TUV IT 16 ATEX 053 X  |  |  |  |
| Type examination certificate (1)    | •                                                               | IECEx: IECEx TPS 19.000                                                                                                           | )4X                        | • IECEx: IECEx TPS 16.0003X |  |  |  |
| Method of protection                | ATEX     Ex II 2G Ex db IIC T6/T     Ex II 2D Ex tb IIIC T85°C/ | ATEX EX II 2G EX db IIC T6 Gb EX II 2D EX tb IIIC T85°C Db EX I M2 EX db IMb  IECEX EX db IIC T6 Gb EX tb IIIC T85°C Db EX db IMb |                            |                             |  |  |  |
| Temperature class                   | Т6                                                              | T5                                                                                                                                | T4                         | T6                          |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                         | ≤ 100 °C                                                                                                                          | ≤ 135 °C                   | ≤ 85 °C                     |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                    | -40 ÷ +55 °C                                                                                                                      | -40 ÷ +70 °C               | -40 ÷ +70 °C                |  |  |  |
| Applicable Standards                | EN 60079-0<br>EN 60079-1                                        | EN 60079-31                                                                                                                       | IEC 60079-0<br>IEC 60079-1 | IEC 60079-31                |  |  |  |
| Cable entrance: threaded connection |                                                                 | <b>M</b> = M20x1,5                                                                                                                |                            | factory wired               |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver solenoid and LVDT transducers are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

105

10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

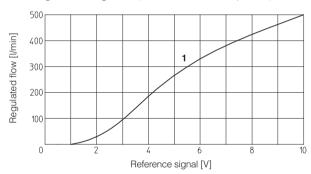
**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 10.1 Cable temperature

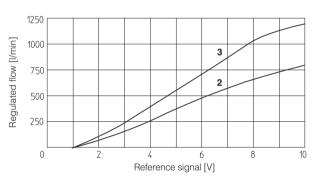
The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

### 11 CABLE GLANDS

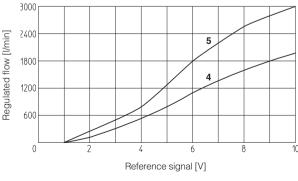

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

### 12 ELECTRONIC OPTIONS


I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 VDC.
Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.
It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

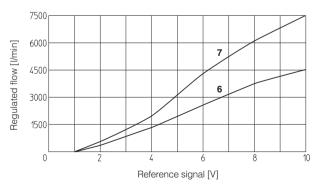
### 13 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

### **13.1 Regulation diagrams** (values measured at Δp 5 bar)




1 = LIQZA-LES-25\*




 $\mathbf{2} = \text{LIQZA-LES-32}^*$   $\mathbf{3} = \text{LIQ}$ 





4 = LIQZA-LES-50\*

**5** = LIQZA-LES-63\*



6 = LIQZA-LES-80\*

**7** = LIQZA-LES-100\*

### 14 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982).

### 14.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 14.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

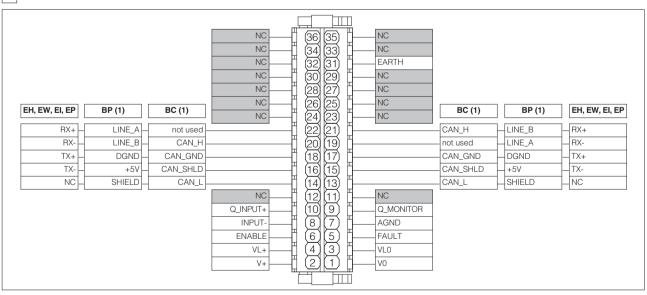
A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 14.3 Flow reference input signal (Q INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal. Reference input signal is factory preset according to selected valve code, defaults are 0 ÷ 10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

### 14.4 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are 0 ÷ 10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.


### 14.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition does not comply with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 14.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 15 TERMINAL BOARD OVERVIEW



FX360

(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

PROPORTIONAL VALVES

### 16 ELECTRONIC CONNECTIONS

### 16.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                       | NOTES                                            |
|-------------------|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                             | Gnd - power supply                               |
|                   | 2   | V+        | Power supply 24 Voc                                                                                                                            | Input - power supply                             |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                        | Gnd - power supply                               |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                       | Input - power supply                             |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                      | Output - on/off signal                           |
| <b>\</b>          | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                 | Input - on/off signal                            |
|                   | 7   | AGND      | Analog ground                                                                                                                                  | Gnd - analog signal                              |
|                   | 8   | INPUT-    | Negative reference input signal for INPUT+                                                                                                     | Input - analog signal                            |
|                   | 9   | Q_MONITOR | Flow monitor output signal: 0 ÷ 10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Output - analog signal<br>Software selectable    |
|                   | 10  | Q_INPUT+  | Flow reference input signal: 0 ÷ 10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option               | Input - analog signal <b>Software selectable</b> |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                         |                                                  |

### 16.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view  | B |
|-------------------|-----|---------|--------------------------|--------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 - 2        |   |
|                   | 2   | ID      | Identification           | [ To a   15] |   |
| $\mid B \mid$     | 3   | GND_USB | Signal zero data line    |              |   |
|                   | 4   | D-      | Data line -              | (famala)     |   |
|                   | 5   | D+      | Data line +              | (female)     |   |

### 16.3 BC fieldbus execution connections

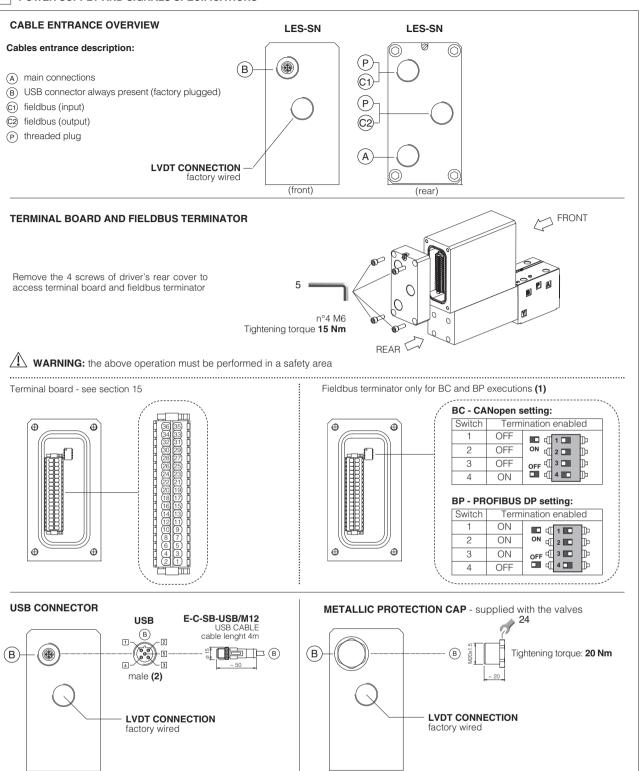
| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|--|-------------------|-----|----------|-----------------------------|--|
|  | C2                | 13  | CAN_L    | Bus line (low)              |  |
|  |                   | 15  | CAN_SHLD | Shield                      |  |
|  |                   | 17  | CAN_GND  | Signal zero data line       |  |
|  |                   | 19  | not used | Pass-through connection (1) |  |
|  |                   | 21  | CAN_H    | Bus line (high)             |  |

<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

### 16.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| (;1               | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

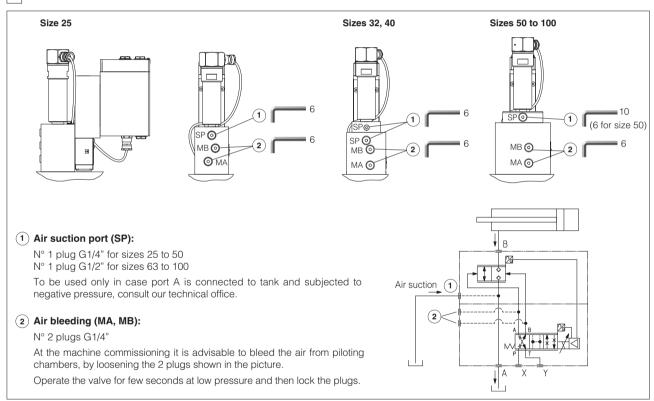

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| OL.               | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

### 16.5 EH, EW, EI, EP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

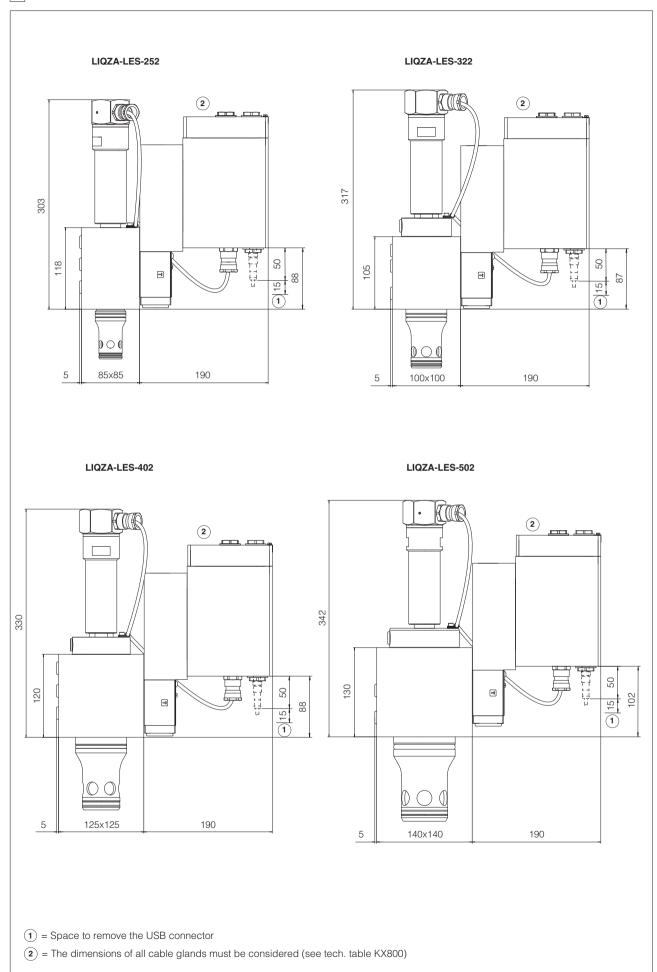
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

### 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

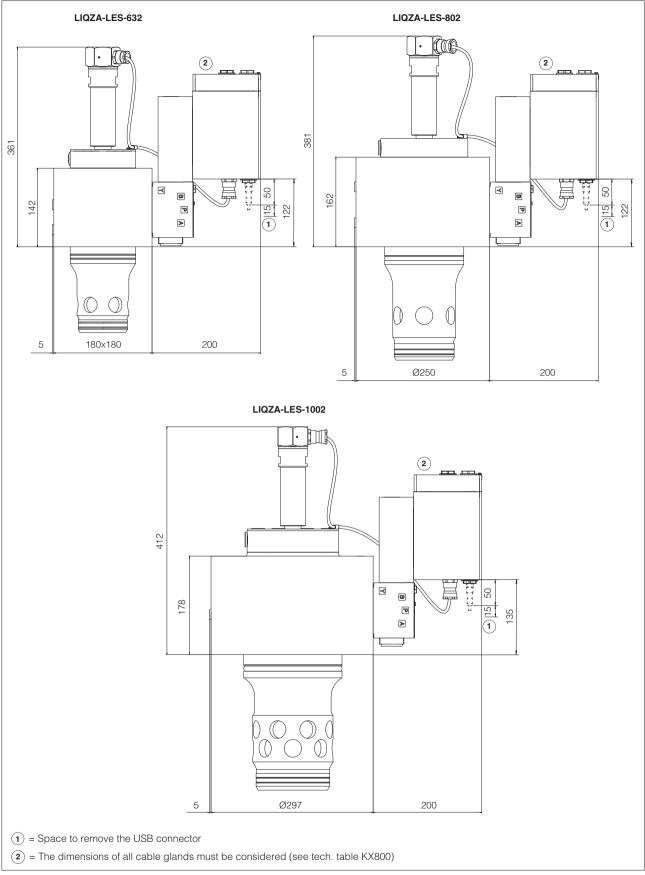



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

### 17.1 Cable glands and threaded plug - see tech table KX800


| Communication                                            | То | be ordere         | ed separat | tely                 | Cable entrance |                                                                              |
|----------------------------------------------------------|----|-------------------|------------|----------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |            | ed plug<br> entrance | overview       | Notes                                                                        |
| NP                                                       | 1  | А                 | none       | none                 | ®<br>®<br>(A)  | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2  | C1                | 1          | C2                   |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none       | none                 |                | Cable entrance A, C1, C2 are open for costumers                              |

### 18 AIR BLEEDING




### 19 FASTENING BOLTS AND VALVE MASS

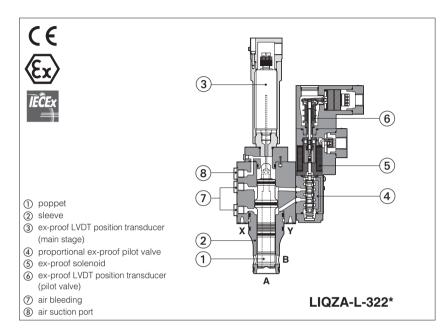
| Type | Size | Fastening bolts (supplied with the valve)                              | Mass [kg] |  |  |
|------|------|------------------------------------------------------------------------|-----------|--|--|
|      | 25   | 4 socket head screws M12x100 class 12.9<br>Tightening torque = 125 Nm  | 15,2      |  |  |
|      | 32   | 4 socket head screws M16x60 class 12.9<br>Tightening torque = 300 Nm   | 18        |  |  |
|      | 40   | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm   | 23,7      |  |  |
| 68   | 50   | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm   | 31        |  |  |
|      | 63   | 4 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 51        |  |  |
|      | 80   | 8 socket head screws M24x80 class 12.9<br>Tightening torque = 1000 Nm  | 78,6      |  |  |
|      | 100  | 8 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 130       |  |  |



Note: for mounting surface and cavity dimensions, see table P006



Note: for mounting surface and cavity dimensions, see table P006


## 21 RELATED DOCUMENTATION

| X010<br>X020<br>FX900<br>GS500 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and manintenance information for ex-proof proportional valves Programming tools | GS510<br>KX800<br>P006 | Fieldbus Cable glands for ex-proof valves Mounting surfaces and cavities for cartridge valves |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|



# Ex-proof proportional 2-way cartridges high performance

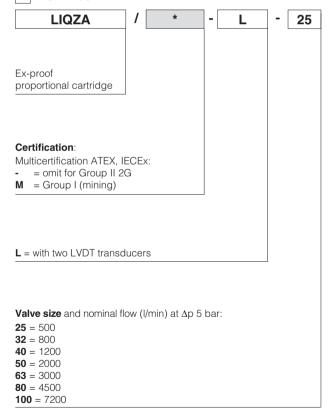
piloted, with two LVDT transducers - ATEX and IECEx



#### LIQZA-L

Ex-proof digital proportional 2-way cartridges, high performance with two LVDT position transducers (pilot valve and main stage) for best accuracy in not compensated flow regulations.

They are equipped with ex-proof proportional solenoid and LVDT transducers certified for safe operations in hazardous environments with potentially explosive atmosphere.


- Multicertification ATEX and IECEx
  for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)

The flameproof enclosure of solenoid and transducers prevent the propagation of accidental internal sparks or fire to the external environment.

They are designed to limit the surface temperature within the classified limits.

Size:  $25 \div 100$  - ISO 7368 Max flow:  $1200 \div 16000$  I/min Max pressure: 420 bar

## 1 MODEL CODE



2 L4 M Seals material. see section 8: = NBR Series = FKM = HNBR Solenoid and transducers (main stage and pilot valve) threaded connection for cable gland fitting: GK = GK-1/2" (1) = M20x1,5**NPT** = 1/2" NPT Poppet type, regulating characteristics: L4 = linear Configuration: 2 = 2 way functional simplified symbol svmbol

(1) Approved only for the italian market

## 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-LEB-* /A  | E-BM-LES-* /A  |  |  |
|---------------|----------------|----------------|--|--|
|               | L-DIVI-LLD- /A | L-DIVI-LLO- /A |  |  |
| Type          | digital        | digital        |  |  |
| Format        | DIN-rail panel |                |  |  |
| Data sheet    | GS230          | GS240          |  |  |

## **3 GENERAL CHARACTERISTICS**

| Assembly position                      | Any position                                                                                                                                                                                           |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                                     |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C                                        |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spay test (EN ISO 9227) > 200 h                                                                                                                             |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 9 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                               |  |  |  |  |

## 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Size                        |                          | 25   | 32             | 40              | 50              | 63                   | 80            | 100   |
|-----------------------------|--------------------------|------|----------------|-----------------|-----------------|----------------------|---------------|-------|
| Max regulated flow          | [l/min]                  |      |                |                 |                 |                      |               |       |
| Δρ Α-Β                      | at $\Delta p = 5$ bar    | 500  | 800            | 1200            | 2000            | 3000                 | 4500          | 7200  |
|                             | at $\Delta p = 10$ bar   | 700  | 1100           | 1700            | 2800            | 4250                 | 6350          | 10200 |
| Max permissible flow        |                          | 1200 | 1800           | 2500            | 4000            | 6000                 | 10000         | 16000 |
| Max pressure                | [bar]                    |      |                | Ports A, B = 4  | <b>20</b> X = 3 | 50 Y ≤ 1             | 0             |       |
| Nominal flow of pilot valve | e at Δp = 70 bar [I/min] | 8    | 20             | 40              | 40              | 100                  | 100           | 100   |
| Leakage of pilot valve a    | t P = 100 bar [I/min]    | 0,2  | 0,3            | 0,7             | 0,7             | 1                    | 1             | 1     |
| Piloting pressure           | [bar]                    | n    | nin: 40% of sy | stem pressur    | e max 350       | ) recomme            | nded 140 ÷ 16 | 60    |
| Piloting volume             | [cm³]                    | 2,2  | 7,0            | 9,4             | 17,7            | 32,5                 | 39,5          | 49,5  |
| Piloting flow (1)           | [l/min]                  | 5,3  | 14             | 19              | 35,5            | 56                   | 60            | 60    |
| Response time 0 ÷ 1009      | % step signal (2) [ms]   | ≤30  | ≤32            | ≤35             | ≤35             | ≤ 40                 | ≤ 45          | ≤ 55  |
| Hysteresis [%               | of the max regulation]   |      |                |                 | ≤ 0,1           |                      |               |       |
| Repeatability [%            | of the max regulation]   |      |                |                 | ± 0,1           |                      |               |       |
| Thermal drift               |                          |      | Ž              | zero point disp | olacement < 1   | % at $\Delta T = 40$ | °C            |       |

<sup>(1) 0÷100%</sup> step signal

## 5 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35W                                                                                                                                              |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulation class                            | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |
| Protection degree with relevant cable gland | IP66/67 to DIN EN60529                                                                                                                           |
| Duty factor                                 | Continuous rating (ED=100%)                                                                                                                      |
| Voltage code                                | standard                                                                                                                                         |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                                                                                            |
| Max. solenoid current                       | 2,5 A                                                                                                                                            |

## 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid                                   | temperature | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                             |               |  |
|------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|
| Recommended viscosity                                      |             | 20 ÷ 100 mm²/s - max allowed                                                                                                                                                                                                                                                         | range 15 ÷ 380 mm²/s        |               |  |
| Max fluid normal operation contamination level longer life |             | ISO4406 class 18/16/13 NAS                                                                                                                                                                                                                                                           | see also filter section at  |               |  |
|                                                            |             | ISO4406 class 16/14/11 NAS                                                                                                                                                                                                                                                           | www.atos.com or KTF catalog |               |  |
| Hydraulic fluid                                            |             | Suitable seals type                                                                                                                                                                                                                                                                  | Classification              | Ref. Standard |  |
| Mineral oils                                               |             | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |
| Flame resistant without water                              |             | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                  | - ISO 12922   |  |
| Flame resistant with water                                 | (1)         | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                         | 130 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

#### (1) Performance limitations in case of flame resistant fluids with water:

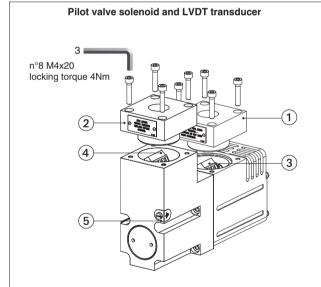
-max operating pressure = 210 bar -max fluid temperature = 50°C



The loss of the pilot pressure causes the undefined position of the main poppet.

The sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet. This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

<sup>(2)</sup> With pilot pressure = 140 bar


## 7 CERTIFICATION DATA

| Valve type                          | LIQZA                                                              |                    | LIQZA <b>/M</b>                                      | LIQZA, LIQZA <b>/M</b>                                                                                                            |
|-------------------------------------|--------------------------------------------------------------------|--------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Component type                      | 1                                                                  | Pilot solenoid and | LVDT transducer                                      | LVDT main stage transducer                                                                                                        |
| Certifications                      |                                                                    | ation Group II     | Multicertification Group I  ATEX IECEx               | Multicertification Group I and II  ATEX IECEx                                                                                     |
| Solenoid certified code             | OZ                                                                 | A-T                | OZAM-T                                               | ETHA-15                                                                                                                           |
| Type examination certificate (1)    | ATEX: CESI 02<br>IECEx: IECEx C                                    |                    | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | ATEX: TUV IT 16 ATEX 053X<br>ICEX: IECEX TPS 16.0003X                                                                             |
| Method of protection                | Ex II 2G Ex d IIC T4/T3 Gb                                         |                    | ATEX Ex I M2 Ex db I Mb IECEx Ex db I Mb             | ATEX EX II 2G EX db IIC T6 Gb EX II 2D EX tb IIIC T85°C Db EX I M2 EX db IMb  IECEX EX db IIC T6 Gb EX tb IIIC T85°C Db EX db IMb |
| Temperature class                   | T4                                                                 | Т3                 | -                                                    | Т6                                                                                                                                |
| Surface temperature                 | ≤ 135 °C                                                           | ≤ 200 °C           | ≤ 150 °C                                             | ≤ 85 °C                                                                                                                           |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                       | -40 ÷ +70 °C       | -20 ÷ +60 °C                                         | -40 ÷ +70 °C <b>(3)</b>                                                                                                           |
| Applicable standards                | EN 60079-0<br>EN 60079-1<br>EN 60079-31                            |                    | 1                                                    | EC 60079-0<br>EC 60079-1<br>EC 60079-31                                                                                           |
| Cable entrance: threaded connection | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT |                    |                                                      |                                                                                                                                   |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids Group II are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code
- (3) For Group I (mining) the temperaturerange is -20°C ÷ +70°C

(NARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

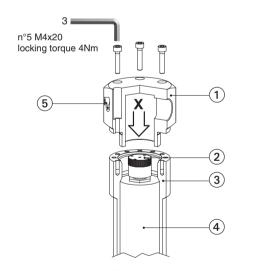
## 8 EX PROOF SOLENOIDS AND LVDT TRANSDUCER WIRING



- ① solenoid cover with threaded connection for cable gland fitting
- ② transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring
- (5) screw terminal for additional equipotential grounding

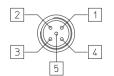
#### Solenoid wiring

1 = Coil **2** = GND 3 = Coil


PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

## Position transducer wiring

- 1 = Output signal 2 = Supply -15 V
  - 3 = Supply + 15 V**4** = GND


PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

## LVDT main stage transducer



- 1) transducer cover with threaded connection for cable gland fitting
- ② transducer terminal board for cables wiring
- ③ ex-proof protection for LVDT transducer
- 4) LVDT transducer
- (5) screw terminal for additional equipotential grounding

## Transducer wiring - view from X



- 1 = Do not connect
- = Supply +15 V **3** = GND
- 4 = Output signal = Supply -15 V

FX350 PROPORTIONAL VALVES

## 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Multicertification Group I and Group II

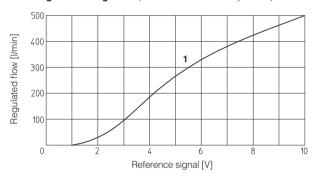
**Power supply:** section of coil connection wires = 2,5 mm<sup>2</sup> **Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup>

Main LVDT transducer: section of cable connection wires = 1 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

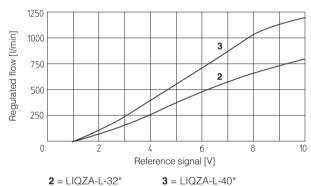
#### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

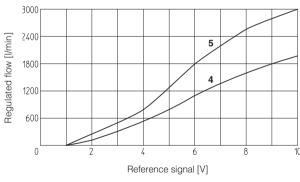
| Max ambient temperature | Temperature class |         | Max surface temperature [°C] |         | Min. cable temperature [°C] |         |                 |
|-------------------------|-------------------|---------|------------------------------|---------|-----------------------------|---------|-----------------|
| [°C]                    | Goup I            | Goup II | Goup I                       | Goup II | Goup I                      | Goup II | LVDT main stage |
| 40 °C                   | -                 | T4      | 150 °C                       | 135 °C  | -                           | 90 °C   | -               |
| 60 °C                   | -                 | -       | 150 °C                       | -       | 110 °C                      | -       | -               |
| 70 °C                   | N.A.              | T3      | N.A.                         | 200 °C  | N.A.                        | 120 °C  | 90°C            |


## 10 CABLE GLANDS

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

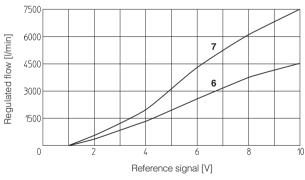

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

## 11 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)


#### 11.1 Regulation diagrams (values measured at $\Delta p$ 5 bar)



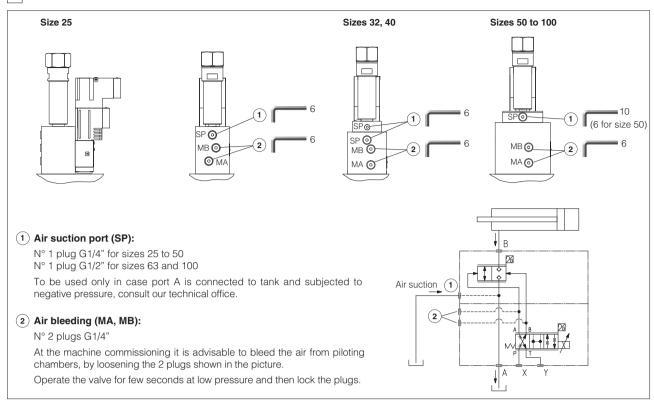
**1** = LIQZA-L-25\*




**2** = LIQZA-L-32 **3** = LIQZA-L-40

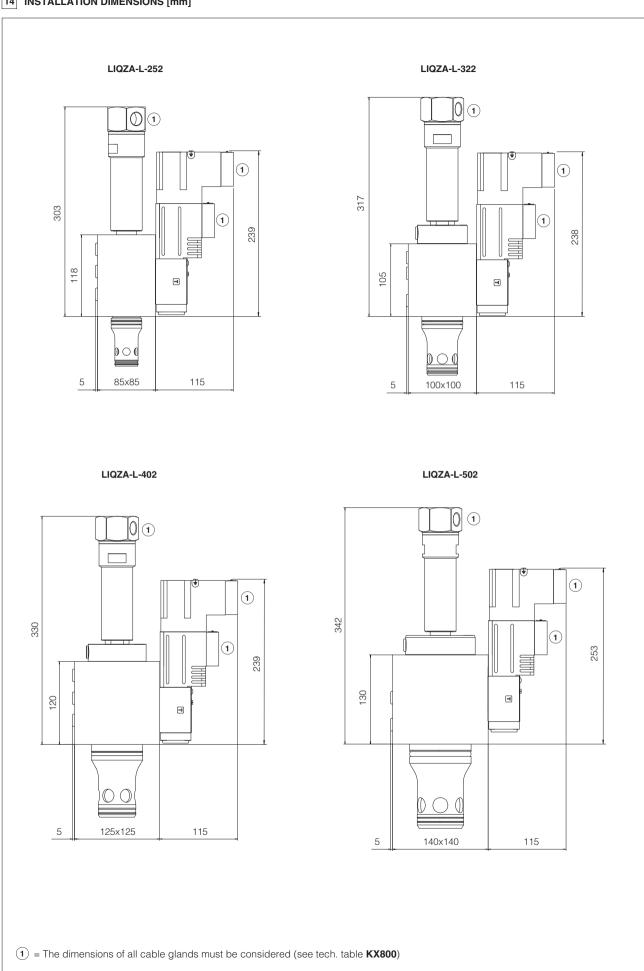


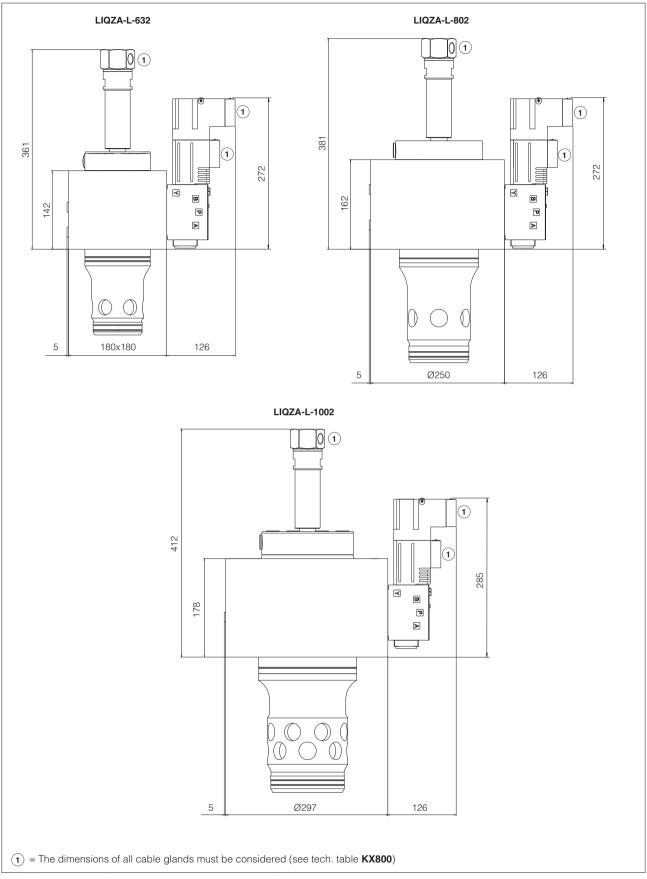
4 = LIQZA-L-50\*


**5** = LIQZA-L-63\*



**6** = LIQZA-L-80\*


**7** = LIQZA-L-100\*


## 12 AIR BLEEDING



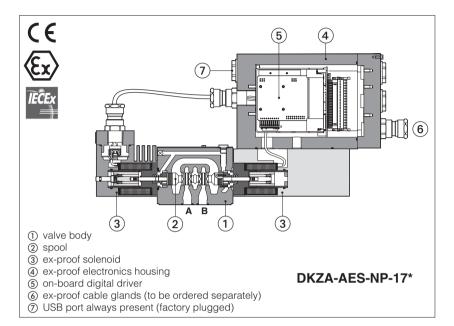
## 13 FASTENING BOLTS AND VALVE MASS

| Туре  | Size | Fastening bolts (supplied with the valve)                              | Mass [kg] |
|-------|------|------------------------------------------------------------------------|-----------|
|       | 25   | 4 socket head screws M12x100 class 12.9<br>Tightening torque = 125 Nm  | 12        |
|       | 32   | 4 socket head screws M16x60 class 12.9<br>Tightening torque = 300 Nm   | 14,8      |
|       | 40   | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm   | 20,5      |
| LIQZA | 50   | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm   | 22,8      |
|       | 63   | 4 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 48,1      |
|       | 80   | 8 socket head screws M24x80 class 12.9<br>Tightening torque = 1000 Nm  | 75,7      |
|       | 100  | 8 socket head screws M30x120 class 12.9<br>Tightening torque = 2100 Nm | 127,1     |





Note: for mounting surface and cavity dimensions, see table P006


## 15 RELATED DOCUMENTATION

| X010          | Basics for electrohydraulics in hazardous environments                                                                                          | KX800 | Cable glands for ex-proof valves                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|
| X020<br>FX900 | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and manintenance information for ex-proof proportional valves | P006  | Mounting surfaces and cavities for cartridge valves |



## Ex-proof digital proportional directional valves

direct, with on-board driver, without transducer and with positive spool overlap ATEX and IECEx



#### **DHZA-AES, DKZA-AES**

Ex-proof digital proportional valves direct, without position transducer and with positive spool overlap, for open loop directional controls and not compensated flow regulations.

They are equipped with ex-proof on-board digital driver and proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver and solenoid, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

 DHZA:
 DKZA:

 Size: 06 -ISO 4401
 Size: 10 -ISO 4401

 Max flow: 60 l/min
 Max flow: 120 l/min

 Max pressure: 350 bar
 Max pressure: 315 bar

#### MODEL CODE **DHZA** NP 0 M Seals material. see section 8 Ex-proof proportional directional valves, direct = NBR **DHZA** = size 06 = FKM DKZA = size 10 = HNBR Series number AES = on-board driver, without transducer Hydraulic options (1): **B** = solenoid with integral digital electronics at side of port A (2) Y = external drain Fieldbus interfaces, USB port always present: NP = Not Present Electronic options (1): BC = CANopen **C** = current feedback for pressure **BP** = PROFIBUS DP transducer 4 ÷ 20 mA, only for W EH = EtherCAT (omit for std voltage 0 ÷ 10 V<sub>DC</sub>) I = current reference input 4 ÷ 20 mA (omit for std voltage ±10 Vpc) **W**= power limitation function Valve size ISO 4401: Cable entrance threaded connection: M = M20x1,5Configuration: Standard Option /B **Spool size**: **14** (L) **1** (L) **2** (S) **3** (L,S,D) **5** (L,S,D) DHZA = 4,5 8 18 28 1 DK7A 45 60 Nominal flow (I/min) at $\Delta p$ 10 bar P-T 53 = Spool type, regulating characteristics: **D** = differential-progressive S = progressive P-A = Q, B-T = Q/273 =

FX110

P-B = Q/2, A-T = Q

<sup>(1)</sup> For possible combined options, see section 14

<sup>(2)</sup> In standard configuration the solenoid with on-board digital driver and position transducer are at side port B

## 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table FX900 and in the user manuals included in the E-SW-\* programming software.

**USB** or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

## 3 VALVE SETTINGS AND PROGRAMMING TOOLS



WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

F-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared) BP (PROFIBUS DP) **E-SW-FIELDBUS** support: BC (CANopen) EH (EtherCAT)

> EW (POWERLINK) EI (EtherNet/IP) **EP (PROFINET)**

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)



WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved



## FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

## 5 GENERAL CHARACTERISTICS

| Assembly position                      | Horizontal position only                                                                                                                                                       |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years; 150 years only for RZMA-010, see technical table P007                                                                                                                |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C /PE option = $-20^{\circ}$ C $\div$ +70°C /BT option = $-40^{\circ}$ C $\div$ +70°C                                             |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                    |  |  |  |  |
| Compliance                             | Explosion proof protection, see section  -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                           |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |

#### 6 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve mo                                                                                                                     | del                    |      | DHZA                                        |         |                                             |                                |                              |               | DKZA                 |              |
|------------------------------------------------------------------------------------------------------------------------------|------------------------|------|---------------------------------------------|---------|---------------------------------------------|--------------------------------|------------------------------|---------------|----------------------|--------------|
| Pressure limits [bar] ports <b>P</b> , <b>A</b> , <b>B</b> = 350; <b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 10 |                        |      |                                             |         | ports <b>P</b> , <b>A</b> , <b>B</b> = 315; | <b>T</b> = 210 (250 with exter | nal drain /Y); <b>Y</b> = 10 |               |                      |              |
| Configura                                                                                                                    | ation                  |      |                                             | 51, 53, | , 71, 73                                    |                                | 70                           | 51, 53,       | 71, 73               | 70           |
| Spool typ                                                                                                                    | е                      | L14  | L1                                          | S2      | L3,S3,D3                                    | L5,S5,D5                       | L5                           | L3,S3,D3      | L5,S5,D5             | L3,L5,D5     |
| Nominal f                                                                                                                    | flow [l/min]           |      |                                             |         |                                             | •                              |                              |               |                      |              |
| . 5.                                                                                                                         | Δp= 10 bar             | 1    | 4,5                                         | 8       | 18                                          | 28                             |                              | 45            | 60                   |              |
| ∆р Р-Т                                                                                                                       | Δp= 30 bar             | 1,7  | 8                                           | 14      | 30                                          | 5                              | 0                            | 80            | 100                  |              |
| Max perm                                                                                                                     | nissible flow          | 2,6  | 12                                          | 21      | 40                                          | 6                              | 0                            | 90            | 12                   | 20           |
| Δp max F                                                                                                                     | P-T [bar]              | 70   | 70                                          | 70      | 50                                          | 5                              | 0                            | 40            | 4                    | 0            |
| Response                                                                                                                     | e time [ms] <b>(1)</b> | ≤ 35 |                                             |         |                                             |                                |                              | ≤ 45          |                      |              |
| Leakage                                                                                                                      | [cm³/min]              |      | <30 (at P = 100 bar); <135 (at P = 350 bar) |         |                                             |                                | bar)                         | <80 (at P = 1 | 100 bar); <600 (at F | P = 315 bar) |
| Hysteresis ≤ 5 [% of max regulation]                                                                                         |                        |      |                                             |         |                                             |                                |                              |               |                      |              |
| Repeatability ± 1 [% of max regulation]                                                                                      |                        |      |                                             |         |                                             |                                |                              |               |                      |              |

(1) 0 ÷ 100% step signal

## 7 ELECTRICAL CHARACTERISTICS

| Power supplies                                    | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                         |                                                             |                                                       |                                                        |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Max power consumption                             | 35 W                                                                                                                                                                         | 35 W                                                        |                                                       |                                                        |  |  |  |
| Analog input signals                              | Voltage: range ±10 V<br>Current: range ±20 m                                                                                                                                 | /DC (24 VMAX tollerant)<br>nA                               | Input impedance<br>Input impedance                    |                                                        |  |  |  |
| Insulation class                                  |                                                                                                                                                                              | curing surface tempera<br>82 must be taken into a           |                                                       | ils, the European standards                            |  |  |  |
| Monitor outputs                                   | Voltage: maximum rai                                                                                                                                                         | nge ± 5 Vpc @ max                                           | 5 mA                                                  |                                                        |  |  |  |
| Enable input                                      | Range: 0 ÷ 9 VDC (OFF                                                                                                                                                        | state), 15 ÷ 24 VDC (ON                                     | state), 9 ÷ 15 VDC (not ac                            | cepted); Input impedance: Ri > $87k\Omega$             |  |  |  |
| Fault output                                      | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                                             |                                                       |                                                        |  |  |  |
| Pressure transducer power supply (only /W option) | +24VDC @ max 100 n                                                                                                                                                           | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> ) |                                                       |                                                        |  |  |  |
| Alarms                                            |                                                                                                                                                                              |                                                             | reak with current referen<br>vel, pressure transducer | ce signal, over/under temperature, failure (/W option) |  |  |  |
| Protection degree to DIN EN60529                  | IP66/67 with relevant                                                                                                                                                        | cable gland                                                 |                                                       |                                                        |  |  |  |
| Duty factor                                       | Continuous rating (ED                                                                                                                                                        | =100%)                                                      |                                                       |                                                        |  |  |  |
| Tropicalization                                   | Tropical coating on ele                                                                                                                                                      | ectronics PCB                                               |                                                       |                                                        |  |  |  |
| Additional characteristics                        | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply            |                                                             |                                                       |                                                        |  |  |  |
| Electromagnetic compatibility (EMC)               | According to Directive                                                                                                                                                       | 2014/30/UE (Immunity                                        | : EN 61000-6-2; Emissio                               | n: EN 61000-6-3)                                       |  |  |  |
| Communication interface                           | USB<br>Atos ASCII coding                                                                                                                                                     | CANopen<br>EN50325-4 + DS408                                | PROFIBUS DP<br>EN50170-2/IEC61158                     | EtherCAT<br>EC 61158                                   |  |  |  |
| Communication physical layer                      | not insulated<br>USB 2.0 + USB OTG                                                                                                                                           | optical insulated<br>CAN ISO11898                           | optical insulated<br>RS485                            | Fast Ethernet, insulated<br>100 Base TX                |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

## 8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | I temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |                             |  |
|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                    |                            |                             |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | see also filter section at |                             |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | 638 class 5                | www.atos.com or KTF catalog |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard               |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922                   |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 100 12922                   |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

## (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

## 9 CERTIFICATION DATA

| Valve type              |                       | DHZA, DKZA                                                                                                                                                   |               |                                        |               |                 |          |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|---------------|-----------------|----------|
| Certifications          |                       |                                                                                                                                                              |               | Multicertifica                         | tion Group II |                 |          |
|                         |                       |                                                                                                                                                              |               | ATEX                                   | IECEx         |                 |          |
| Solenoid certified co   | ode                   |                                                                                                                                                              |               | OZA                                    | -AES          |                 |          |
| Type examination co     | ertificate (1)        | ATEX: TUV I                                                                                                                                                  | T 18 ATEX 068 | X                                      | • IECEx: IEC  | Ex TPS 19.0004X |          |
| Method of protection    |                       | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |               |                                        |               |                 | 5°C Db   |
| Temperature class       | Single solenoid valve | T6                                                                                                                                                           | -             | T:                                     | 5             | T4              | -        |
| remperature class       | Double solenoid valve | -                                                                                                                                                            | T4            | -                                      | 1             | -               | Т3       |
| Surface temperature     | ;                     | ≤ 85 °C                                                                                                                                                      | ≤ 135 °C      | ≤ 10                                   | 0 °C          | ≤ 135 °C        | ≤ 200 °C |
| Ambient temperature (2) |                       | -40 ÷ +40 °C                                                                                                                                                 |               | -40 ÷ +55 °C                           |               | -40 ÷ +70 °C    |          |
| Applicable Standards    |                       | EN 60079-0<br>EN 60079-1                                                                                                                                     |               | EN 60079-31 IEC 60079-0<br>IEC 60079-1 |               | IEC 60079-31    |          |
| Cable entrance: three   | eaded connection      |                                                                                                                                                              |               | $\mathbf{M} = M$                       | 20x1,5        |                 |          |

<sup>(1)</sup> The type examinator certificates can be downloaded from www.atos.com

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

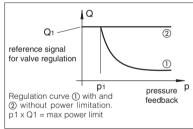
#### 11 CABLE GLANDS

 $Cable \ glands \ with \ threaded \ connections \ M20x1, 5 \ for \ standard \ or \ armoured \ cables \ have \ to \ be \ ordered \ separately, \ see \ tech \ table \ \textbf{KX600}$ 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

## 12 HYDRAULIC OPTIONS

- B = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 15.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

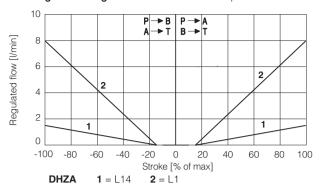

## 13 ELECTRONIC OPTIONS

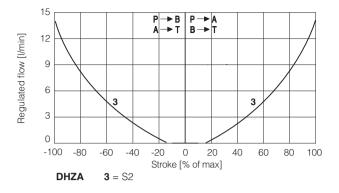
- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only in combination with option /W

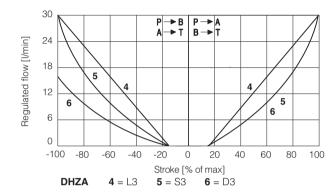
  It is available to connect pressure transducer with 4 ÷ 20 mA current output signal, instead of the standard 0 ÷ 10Vpc .Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA.
- W = Only for valves coupled with pressure compensator type HC-011 or KC-011 (see tech table D150). It provides the hydraulic power limitation function. The driver receives the flow reference signal by the analog input INPUT+ and a pressure transducer, installed in the hydraulic system, has to be connected to the driver's analog input TR. When the actual requested hydraulic power pxQ (TR x INPUT+) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:

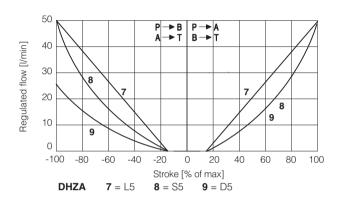
Flow regulation = Min ( 
$$\frac{\text{PowerLimit [sw setting]}}{\text{Transducer Pressure [TR]}} ; \text{Flow Reference [INPUT+]})$$

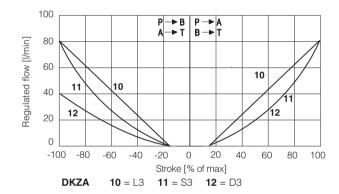
## Hydraulic Power Limitation - option /W

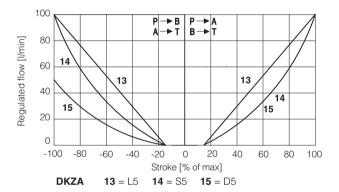




#### 14 POSSIBLE COMBINED OPTIONS


/BI, /BW, /BY, /IW, /IY, /WY, /BIW, /BIY, /BWY, /IWY, /CWB, /CWY, /BIWY, /CWBY


## **DIAGRAMS** (based on mineral oil ISO VG 46 at 50 °C)


## **15.1 Regulation diagrams** - values measure at $\Delta p$ 30 bar P-T














#### 16 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 16.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 16.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 16.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /l option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

#### 16.4 Monitor output signals (MONITOR and MONITOR2)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is ±5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.

#### Option /W

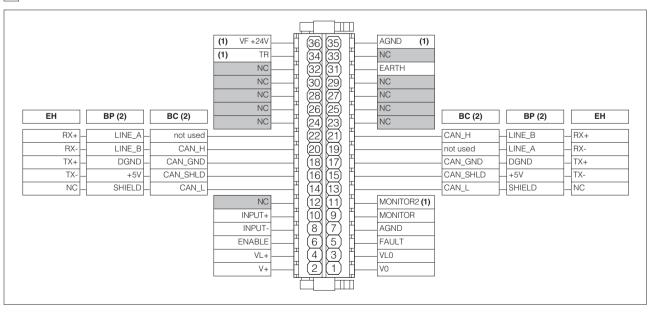
The driver generates a second analog output signal (MONITOR2) proportional to the actual system pressure.

The output maximum range is ±5 VDC; default setting is 0 ÷ 5 VDC

#### 16.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

#### 16.6 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

#### 16.7 Remote Pressure Transducer Input signal (TR) - only for /W option

Analog pressure transducers can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are 0 ÷ 10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. Note: transducer feedback can be read as a digital information through fieldbus communication - software selectable.

#### 17 TERMINAL BOARD OVERVIEW



- (1) Connections available only for /W option
- (2) For BC and BP executions the fieldbus connections have an internal pass-through connection

## 18 ELECTRONIC CONNECTIONS

## 18.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL                                                                                                                          | TECHNICAL SPECIFICATIONS                                                         | NOTES                                             |
|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0                                                                                                                              | Power supply 0 Vpc                                                               | Gnd - power supply                                |
|                   | 2   | V+                                                                                                                              | Power supply 24 Vpc                                                              | Input - power supply                              |
|                   | 3   | VL0                                                                                                                             | Power supply 0 Vpc for driver's logic and communication                          | Gnd - power supply                                |
|                   | 4   | VL+                                                                                                                             | Power supply 24 Vpc for driver's logic and communication                         | Input - power supply                              |
|                   | 5   | FAULT                                                                                                                           | Fault (0 VDC) or normal working (24 VDC), referred to VL0                        | Output - on/off signal                            |
| _                 | 6   | ENABLE                                                                                                                          | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                   | Input - on/off signal                             |
| Α                 | 7   | AGND                                                                                                                            | Analog ground                                                                    | Gnd - analog signal                               |
| / \               | 8   | INPUT-                                                                                                                          | Negative reference input signal for INPUT+                                       | Input - analog signal                             |
|                   | 9   | MONITOR                                                                                                                         | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc | Output - analog signal <b>Software selectable</b> |
|                   | 10  | 10 INPUT+ Reference input signal: ±10 Vpc / ±20 mA maximum range Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option |                                                                                  | Input - analog signal <b>Software selectable</b>  |
|                   | 11  | MONITOR2 2nd monitor output signal: ±5 Vbc maximum range, referred to AGND (1) Default is: 0 ÷ 5 Vbc                            |                                                                                  | Output - analog signal <b>Software selectable</b> |
|                   | 31  | EARTH                                                                                                                           | Internally connected to driver housing                                           |                                                   |

<sup>(1) 2</sup>nd monitor output signal is available only for /W option

## 18.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B |
|-------------------|-----|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                   | 1   | +5V_USB | Power supply             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                   | 2   | ID      | Identification           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                   | 4   | D-      | Data line -              | 4 -/ \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \ |   |
|                   | 5   | D+      | Data line +              | (female)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |

## 18.3 BC fieldbus execution connections

| E | CABLE<br>ENTRANCE | PIN         | SIGNAL         | TECHNICAL SPECIFICATIONS    |
|---|-------------------|-------------|----------------|-----------------------------|
|   | 14                | CAN_L       | Bus line (low) |                             |
|   | C1                | 16 CAN_SHLD |                | Shield                      |
|   |                   | 18          | CAN_GND        | Signal zero data line       |
|   |                   | 20          | CAN_H          | Bus line (high)             |
|   |                   | 22          | not used       | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
| C2                | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

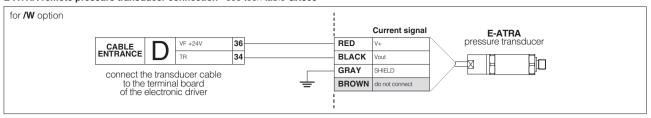
<sup>(1)</sup> pin 19 and 22 can be fed with external +5V supply of CAN interface

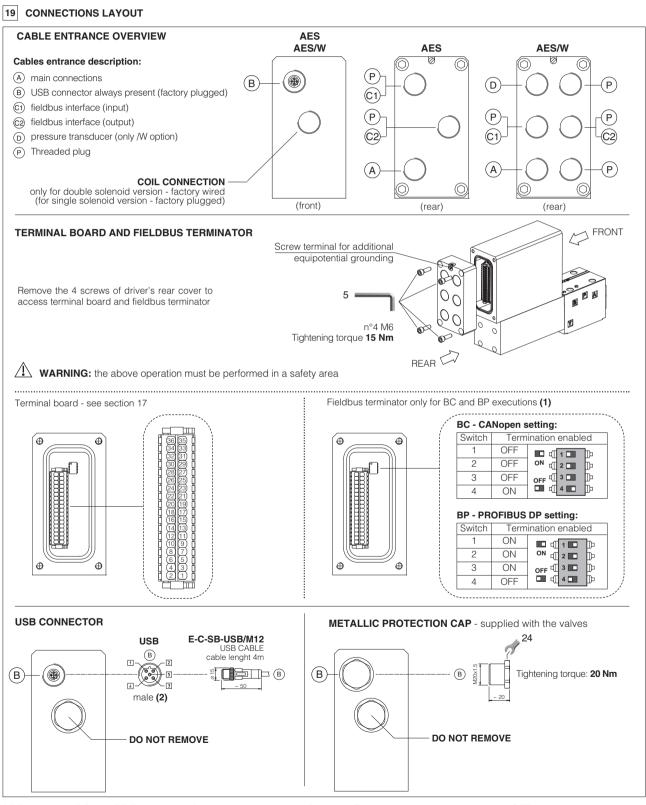
## 18.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|----------|-----|--------|---------------------------------------|
| C2       | 13  | SHIELD |                                       |
|          | 15  | +5V    | Power supply                          |
|          | 17  | DGND   | Data line and termination signal zero |
| <u> </u> | 19  | LINE_A | Bus line (high)                       |
|          | 21  | LINE_B | Bus line (low)                        |

## 18.5 EH fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (;2               | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

## 18.6 Remote pressure transducer connector - only for /W option

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                            | NOTES                                     | Voltage | Current |
|-------------------|-----|---------|-----------------------------------------------------|-------------------------------------------|---------|---------|
|                   | 34  | TR      | Signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable | Connect | Connect |
|                   | 35  | AGND    | Common gnd for transducer power and signals         | Common gnd                                | Connect | /       |
|                   | 36  | VF +24V | Power supply +24Vpc                                 | Output - power supply                     | Connect | Connect |

#### E-ATRA remote pressure transducer connection - see tech table GX800





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

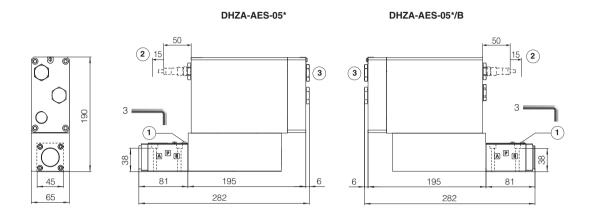
## 19.1 Cable glands and threaded plug for AES - see tech table KX800

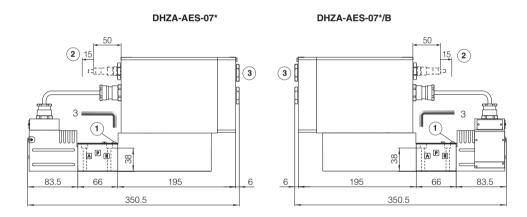
| Communication                             | То       | To be ordered separately  Cable entrance |          | Cable entrance | News       |                                                                              |
|-------------------------------------------|----------|------------------------------------------|----------|----------------|------------|------------------------------------------------------------------------------|
| interfaces                                |          | gland                                    |          | ed plug        | overview   | Notes                                                                        |
|                                           | quantity | entrance                                 | quantity | entrance       |            |                                                                              |
| NP                                        | 1        | А                                        | none     | none           | (P)<br>(A) | Cable entrance P are factory plugged  Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2        | C1                                       | 1        | C2             |            | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP, EH<br>"daisy chain"<br>connection | 3        | C1<br>C2<br>A                            | none     | none           |            | Cable entrance A, C1, C2 are open for costumers                              |

## 19.2 Cable glands and threaded plug for AES with /W option - see tech table KX800

|                                           | To be ordered separately Cable entrance |                   |      |         | Cable entrance    |                                                                                         |
|-------------------------------------------|-----------------------------------------|-------------------|------|---------|-------------------|-----------------------------------------------------------------------------------------|
| Communication interfaces                  | Cable gland quantity entrance           |                   |      | ed plug | overview          | Notes                                                                                   |
| NP                                        | 2                                       | D A               | none | none    | © P<br>P P<br>A P | Cable entrance P are factory plugged  Cable entrance A, D are open for costumers        |
| BC, BP, EH<br>"via stub"<br>connection    | 3                                       | D<br>C1<br>A      | 1    | C2      |                   | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |
| BC, BP, EH<br>"daisy chain"<br>connection | 4                                       | D<br>C1 - C2<br>A | none | none    |                   | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |

## 20 FASTENING BOLTS AND SEALS


|   | DHZA                                                                                                                        | DKZA                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |


FX110 PROPORTIONAL VALVES 129

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)

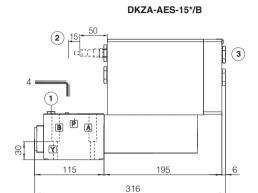
| Mass [kg]   |     |  |  |  |  |  |  |
|-------------|-----|--|--|--|--|--|--|
| DHZA-AES-05 | 8,2 |  |  |  |  |  |  |
| DHZA-AES-07 | 9,9 |  |  |  |  |  |  |





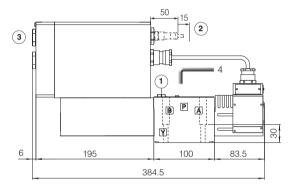
- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

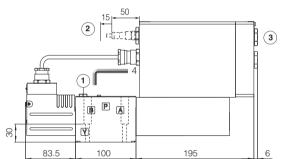

## 22 INSTALLATION DIMENSIONS FOR DKZA [mm]


ISO 4401: 2005

Mounting surface: 4401-05-04-0-05 (see table P005) (for /Y surface: 4401-05-05-0-05 without port X)

| Mass [kg]   |      |  |  |  |  |  |
|-------------|------|--|--|--|--|--|
| DKZA-AES-15 | 10   |  |  |  |  |  |
| DKZA-AES-17 | 11,7 |  |  |  |  |  |


## DKZA-AES-15\*






DKZA-AES-17\*/B

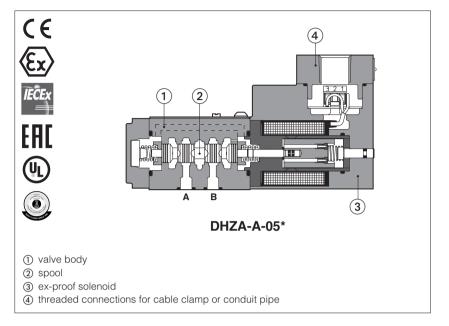
#### DKZA-AES-17\*





384.5

- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


## 23 RELATED DOCUMENTATION

| X010<br>X020<br>FX900<br>GS500<br>GS510 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and manintenance informationfor ex-proof proportional valves Programming tools Fieldbus | GX800<br>KX800<br>P005 | Ex-proof pressure transducer type E-ATRA-7 Cable glands for ex-proof valves Mounting surfaces for electrohydraulic valves |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------|



## **Ex-proof proportional directional valves**

direct, without transducer and with positive spool overlap - ATEX, IECEx, EAC, PESO or cULus



## DHZA-A, DKZA-A

Ex-proof proportional valves direct, without position transducer and with positive spool overlap, for open loop directional controls and not compensated flow regulations.

They are equipped with ex-proof proportional solenoids certified for safe operations in hazardous environments with potentially explosive

#### Certifications:

- Multicertification ATEX, IECEx EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group **C&D**

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

#### DHZA DKZA: Size: **06** - ISO 4401 Max flow: 60 l/min

Size: 10 - ISO 4401 Max flow: 120 I/min Max pressure: 350 bar Max pressure: 315 bar

#### **MODEL CODE DHZA** Α 0 51 L 5 M Seals material, Ex-proof proportional see section 6 directional valves, direct = NBR DHZA = size 06 = FKM Series DKZA = size 10 number вт = HNBR (2) Certification type: Voltage code: Multicertification ATEX, IECEX, EAC, PESO: - = omit for Group II 2G / 2D (1) = standard coil for 24 VDC Atos 24 = optional coil for 24 VDC low = Group I M2 (mining) current drivers North American Certification: **UL** = CULus Options (3): = solenoid at side of port A A = without transducer MV = vertical hand lever (only for DHZA) (4) = horizontal cable entrance (2) Valve size ISO 4401: WP = A manual override protected by metallic cap **0** = 06 **1** = 10 = external drain Configuration: Option /B Solenoid threaded connection for cable gland fitting: **GK** = GK-1/2" - not for **cULus (5)** = M20x1,5 - not for cULus **NPT** = 1/2" NPT **5** (L,S,D) Spool size: 14 (L) 1 (L) 2 (S) **3** (L,S,D) DHZA 1 4,5 8 18 28 53 = 45 60 DK7A Nominal flow (I/min) at $\Delta p$ 10 bar P-T Spool type - regulating characteristics: L = linear **S** = progressive **D** = differential-progressive P-A = Q, B-T = Q/2

- (1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (3) Possible combined options: all combination are available, with exception of MV + WP (2) Not for multicertification **M** group I (mining)
- (4) MV option is available only for DHZA with spool type S3, S5, D3, D5, L3, L5, not available in combination with WP option
- (5) Approved only for italian market

ox l. The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

P-B = Q/2, A-T = Q

133

## 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A | E-BM-AES-* /A |  |  |
|---------------|--------------|---------------|--|--|
| Туре          | digital      | digital       |  |  |
| Format        | DIN-ra       | il panel      |  |  |
| Data sheet    | G030 GS050   |               |  |  |

## 3 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                            |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C /PE option = $-20^{\circ}$ C $\div$ +70°C /BT option = $-40^{\circ}$ C $\div$ +70°C                                             |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                     |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                                    |  |  |  |  |  |

## 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve mod  | del                         |                                                                                         |                                                                                                                                                                     |    | DHZA     |          | DKZA         |                              |     |          |  |
|------------|-----------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----------|--------------|------------------------------|-----|----------|--|
| Pressure I | limits [bar]                | ports P                                                                                 | <b>A, B</b> = 350; <b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 10 ports <b>P, A, B</b> = 315; <b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 1 |    |          |          |              | nal drain /Y); <b>Y</b> = 10 |     |          |  |
| Configura  | ntion                       | 51, 53, 71, 73 70 51, 53, 71, 73                                                        |                                                                                                                                                                     |    |          | 70       |              |                              |     |          |  |
| Spool type | е                           | L14                                                                                     | L1                                                                                                                                                                  | S2 | L3,S3,D3 | L5,S5,D5 | L5           | L3,S3,D3 L5,S5,D5 L3,L5,D5   |     | L3,L5,D5 |  |
| Nominal fl | low [l/min]                 |                                                                                         |                                                                                                                                                                     |    |          |          |              |                              |     |          |  |
|            | $\Delta p = 10 \text{ bar}$ | 1                                                                                       | 4,5                                                                                                                                                                 | 8  | 18       | 28       |              | 45                           | 60  |          |  |
| ∆p P-T     | $\Delta p = 30 \text{ bar}$ | 1,7                                                                                     | 8                                                                                                                                                                   | 14 | 30       | 50       |              | 80                           | 100 |          |  |
| Max perr   | missible flow               | 2,6                                                                                     | 12                                                                                                                                                                  | 21 | 40       | 6        | 0            | 90                           | 12  | 20       |  |
| Δp max P   | P-T [bar]                   | 70                                                                                      | 70                                                                                                                                                                  | 70 | 50       | 5        | 0            | 40                           | 40  | 0        |  |
| Response   | time <b>(1)</b> [ms]        |                                                                                         | ≤ 35                                                                                                                                                                |    |          |          |              | ≤ 45                         |     |          |  |
| Leakage    | [cm³/min]                   | <30 (at p = 100 bar); <135 (at p = 350 bar) <80 (at p = 100 bar); <600 (at p = 315 bar) |                                                                                                                                                                     |    |          |          | ) = 315 bar) |                              |     |          |  |
| Hysteresis | S                           |                                                                                         |                                                                                                                                                                     |    |          | <u> </u> | ≤5 [% of ma  | ax regulation]               |     |          |  |
| Repeatab   | ility                       |                                                                                         |                                                                                                                                                                     |    |          | ź        | ± 1 [% of ma | ax regulation]               |     |          |  |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 3

(1) 0-100% step signal

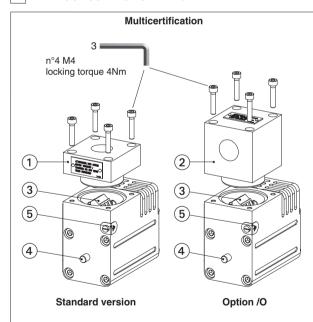
## 5 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 38                                                                              | 35W                                                                                                                                              |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insulation class                            |                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | · ·                                                                                                                                              |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |
| Voltage code                                | standard                                                                        | option /24                                                                                                                                       |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω 17,6 Ω                                                                    |                                                                                                                                                  |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 2,5 A 1,1 A                                                                                                                                      |  |  |

#### 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature |             | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C |                                                                                                                  |                             |  |  |
|--------------------------------------|-------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|                                      |             | FKM seals (/PE option) = $-20^{\circ}$ C $\div +80^{\circ}$ C                   |                                                                                                                  |                             |  |  |
|                                      |             | HNBR seals (/BT option) = -40°                                                  | HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                             |  |  |
| Recommended viscosity                |             | 20 ÷ 100 mm²/s - max allowed r                                                  | ange 15 ÷ 380 mm²/s                                                                                              |                             |  |  |
| Max fluid normal ope                 |             | ISO4406 class 18/16/13 NAS1                                                     | 638 class 7                                                                                                      | see also filter section at  |  |  |
| contamination level                  | longer life | ISO4406 class 16/14/11 NAS1                                                     | 638 class 5                                                                                                      | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid                      |             | Suitable seals type                                                             | Classification                                                                                                   | Ref. Standard               |  |  |
| Mineral oils                         |             | NBR, FKM, HNBR                                                                  | HL, HLP, HLPD, HVLP, HVLPD                                                                                       | DIN 51524                   |  |  |
| Flame resistant without water        |             | FKM                                                                             | HFDU, HFDR                                                                                                       | ISO 12922                   |  |  |
| Flame resistant with water           | (1)         | NBR, HNBR                                                                       | HFC                                                                                                              | 130 12922                   |  |  |

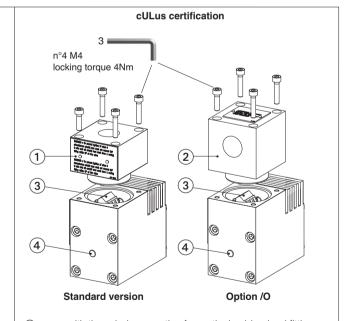
The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


## 7 CERTIFICATION DATA

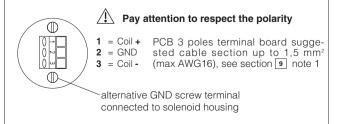
| Valve type                                                                        | DHZA                                                              | , DKZA                                               | DHZA <b>/M</b> , DKZA <b>/M</b>                      | DHZA <b>/UL</b>                                   | , DKZA <b>/UL</b>                    |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------|
| Certifications                                                                    |                                                                   | tion Group II  EAC PESO                              | Multicertification Group I  ATEX IECEx               |                                                   | merican<br><b>Lus</b>                |
| Solenoid certified code                                                           | OZ                                                                | A-A                                                  | OZAM-A                                               | OZA-                                              | -A/EC                                |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO: P338131 | ES 10.0010x<br>IT. 08.B.01784                        | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324                                          | - E366100                            |
| Method of protection                                                              | • ATEX, EAC                                                       | C T4/T3 Gb<br>T135°C/T200°C Db<br>Gb<br>°C/T200°C Db | ATEX Ex   M2 Ex db   Mb  IECEx Ex db   Mb            | • UL 1203<br>Class I, Div.I, (<br>Class I, Zone I | Groups C & D<br>, Groups IIA & IIE   |
| Temperature class                                                                 | T4                                                                | Т3                                                   | -                                                    | T4                                                | Т3                                   |
| Surface temperature                                                               | ≤ 135 °C                                                          | ≤ 200 °C                                             | ≤ 150 °C                                             | ≤ 135 °C                                          | ≤ 200 °C                             |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                      | -40 ÷ +70 °C                                         | -20 ÷ +60 °C                                         | -40 ÷ +55 °C                                      | -40 ÷ +70 °C                         |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                           |                                                      | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | CSA 22                                            | and UL429,<br>2.2 n°30<br>! n°139-13 |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>M</b> = M                                                      |                                                      | GK-1/2"<br>20x1,5<br>: 1/2" NPT                      | 1/2"                                              | NPT                                  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


#### 8 EX PROOF SOLENOIDS WIRING




- $\ensuremath{\textcircled{\textbf{1}}}$  cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- $\begin{tabular}{ll} \hline \end{tabular}$  cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- (3) terminal board for cables wiring
- (4) standard manual override



## 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

## Multicertification Group I and Group II

**Power supply:** section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| May ambient tonenerature [°C] | Temperature class |         | Max surface temperature [°C] |         | Min. cable temperature [°C] |         |
|-------------------------------|-------------------|---------|------------------------------|---------|-----------------------------|---------|
| Max ambient temperature [°C]  | Goup I            | Goup II | Goup I                       | Goup II | Goup I                      | Goup II |
| 40 °C                         | -                 | T4      | 150 °C                       | 135 °C  | 90 °C                       | 90 °C   |
| 45 °C                         | -                 | T4      | -                            | 135 °C  | -                           | 95 °C   |
| 55 °C                         | -                 | T3      | -                            | 200 °C  | -                           | 110 °C  |
| 60 °C                         | -                 | -       | 150 °C                       | -       | 110 °C                      | -       |
| 70 °C                         | N.A.              | T3      | N.A.                         | 200 °C  | N.A.                        | 120 °C  |

#### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |

#### 10 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

## 11 OPTIONS

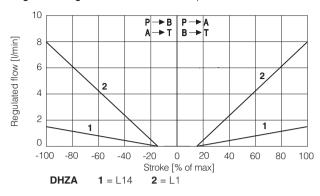
- **B** = Solenoid at side of port A of the main stage
- **MV** = Auxiliary vertical hand levers (only for DHZA)

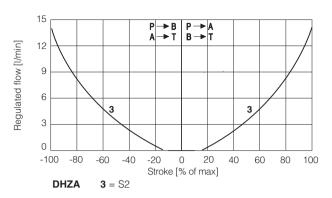
This option allows to operate the valves in absence of electrical power supply, i.e. during commissioning, maintenance or in case of emergency.

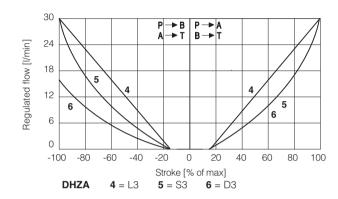
When the valve is electrically operated the hand lever remains stopped in its rest position

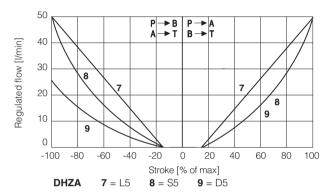
The hand lever execution does not affect the performances of the original valves

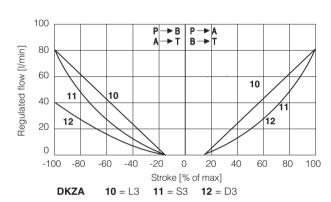
| Total angle stroke   | [°deg] | ± 28° | Lever actuating force | [N] | 1 ÷ 8 |
|----------------------|--------|-------|-----------------------|-----|-------|
| Working angle stroke | [°deg] | ± 15° | Lever device weight   | [g] | 880   |

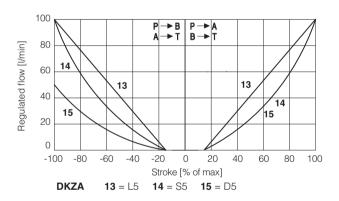

O = Horizontal cable entrance, to be selected in case of limited vertical space


**WP** = Manual override protect by metallic cap.


Y = External drain, to be selected if the pressure at T port is higher than the max allowed limits


#### 11.1 Possible combined options: all combination are available

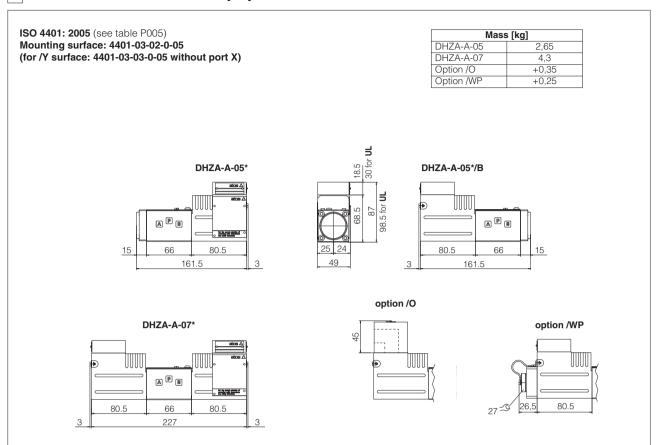

**Regulation diagrams** - values measure at  $\Delta p$  30 bar P-T



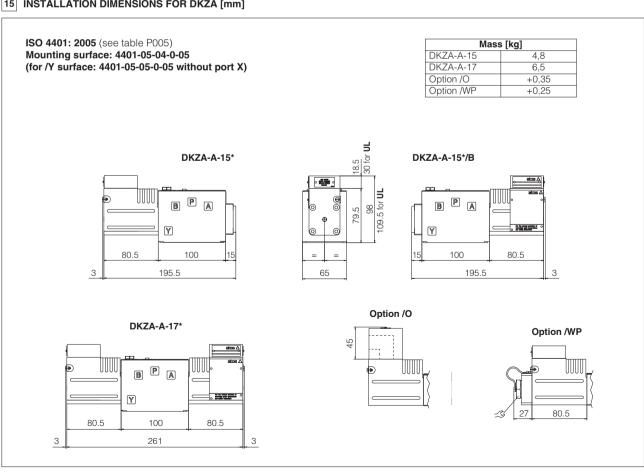




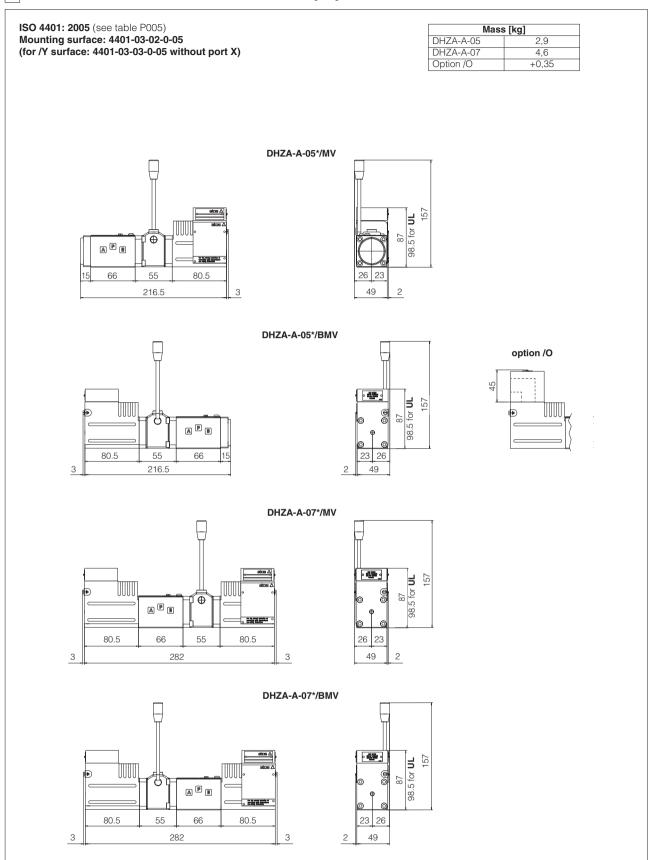






## 13 FASTENING BOLTS AND SEALS

|          | DHZA                                                                  | DKZA                                              |
|----------|-----------------------------------------------------------------------|---------------------------------------------------|
|          |                                                                       |                                                   |
| <b>@</b> | Fastening bolts:                                                      | Fastening bolts:                                  |
| H        | 4 socket head screws M5x50 class 12.9                                 | 4 socket head screws M6x40 class 12.9             |
|          | Tightening torque = 8 Nm                                              | Tightening torque = 15 Nm                         |
|          | Seals:                                                                | Seals:                                            |
|          | 4 OR 108;                                                             | 5 OR 2050;                                        |
| ( )      | Diameter of ports P, A, B, T: Ø 7,5 mm (max)                          | Diameter of ports P, A, B, T: Ø 11,5 mm (max)     |
|          | 1 OR 2025                                                             | 1 OR 108                                          |
|          | Diameter of port Y: $\emptyset = 3,2 \text{ mm (only for /Y option)}$ | Diameter of port Y: Ø = 5 mm (only for /Y option) |


## 14 INSTALLATION DIMENSIONS FOR DHZA [mm]



## 15 INSTALLATION DIMENSIONS FOR DKZA [mm]

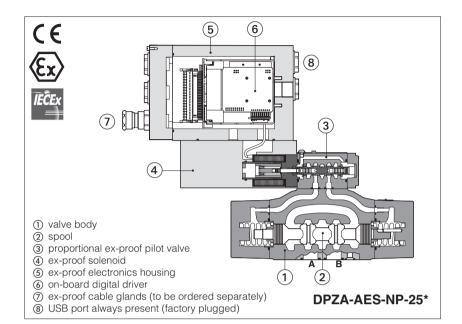


## 16 INSTALLATION DIMENSIONS FOR DHZA WITH OPTION /MV [mm]



## 17 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  |
|-------|-------------------------------------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO |
| X030  | Summary of Atos ex-proof components certified to cULus                  |
| FX900 | Operating and manintenance information for ex-proof proportional valves |


KX800 Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves



## Ex-proof digital proportional directional valves

Piloted, with on-board driver, without position transducer and with positive spool overlap ATEX and IECEx

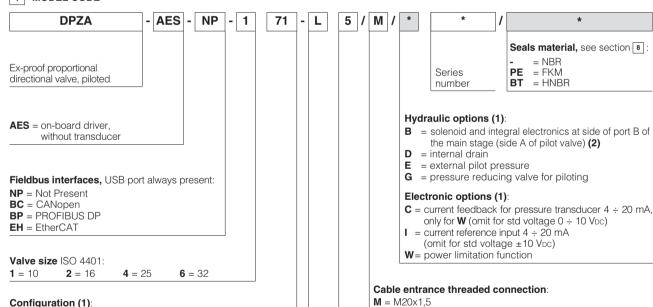


#### **DPZA-AES**

Ex-proof digital proportional valves, piloted, without position transducer and with positive spool overlap, for open loop directional controls and not compensated flow

They are equipped with ex-proof on-board digital driver and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver and solenoid prevents the propagation of accidental internal sparks or fire to the external

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

= NBR

Size: 10 ÷ 32 -ISO 4401 Max flow: 180 ÷ 1500 l/min Max pressure: 350 bar

## 1 MODEL CODE



| Conf | Configuration (1):                                                                                                   |                                         |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
|      | Standard                                                                                                             | Option /B                               |  |  |  |  |
| 51 = |                                                                                                                      | A B T T                                 |  |  |  |  |
| 53 = | A B D D D D D D D D D D D D D D D D D D                                                                              | A B T T                                 |  |  |  |  |
| 71 = | $\begin{array}{c c} & A & B \\ \hline & A & T & T \\ \hline & A & T & T \\ \hline & A & T & T \\ \hline \end{array}$ | A B T T T D D                           |  |  |  |  |
| 73 = | a P T D                                                                                                              | A B D D D D D D D D D D D D D D D D D D |  |  |  |  |

| Spool siz                                    | ze: | <b>3</b> (L,S,D) | <b>5</b> (L,S,D) |  |
|----------------------------------------------|-----|------------------|------------------|--|
| DPZA-1                                       | =   | -                | 100              |  |
| DPZA-2                                       | =   | 160              | 250              |  |
| DPZA-4                                       | =   | -                | 480              |  |
| DPZA-6                                       | =   | -                | 640              |  |
| Nominal flow (I/min) at $\Delta p$ 10bar P-T |     |                  |                  |  |

#### Spool type, regulating characteristics:

| <b>L</b> = linear | <b>S</b> = progressive | <b>D</b> = differential-progressive      |
|-------------------|------------------------|------------------------------------------|
|                   |                        | P-A = Q, B-T = Q/2<br>P-B = Q/2, A-T = Q |

<sup>(1)</sup> For possible combined options, see section 14

<sup>(2)</sup> In standard configuration the solenoid (config. 51 and 53) and the on-board digital driver are at side A of the main stage (side B of pilot valve)

## 2 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table FX900 and in the user manuals included in the E-SW-\* programming software.

**USB** or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

## 3 VALVE SETTINGS AND PROGRAMMING TOOLS

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared) **E-SW-FIELDBUS** support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

> EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved



## 4 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

## 5 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                                       |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                 |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 9 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                    |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                                              |  |  |  |  |  |

#### 6 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model         | alve model                  |                                                                         | DPZ                                                                                                      | 'A-*-2       | DPZA-*-4 | DPZA-*-6 |
|---------------------|-----------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------|----------|----------|
| Pressure limits     | [bar]                       |                                                                         | ports <b>P</b> , <b>A</b> , <b>B</b> , <b>X</b> = 350; <b>T</b> = 250 (10 for option /D); <b>Y</b> = 10; |              |          |          |
| Spool type          |                             | L5, S5, D5                                                              | L3, S3, D3                                                                                               | 3 L5, S5, D5 |          |          |
| Nominal flow [I/min | n]                          |                                                                         |                                                                                                          |              |          |          |
|                     | $\Delta p = 10 \text{ bar}$ | 100                                                                     | 160                                                                                                      | 250          | 480      | 640      |
| Δp P-T              | $\Delta p = 30 \text{ bar}$ | 160                                                                     | 270                                                                                                      | 430          | 830      | 1100     |
|                     | max permissible flow        | 180                                                                     | 400                                                                                                      | 550          | 900      | 1500     |
| Δp max P-T          | [bar]                       | 50                                                                      | 60                                                                                                       | 60           | 60       | 60       |
| Piloting pressure   | [bar]                       | min. = 25; max = 350 (option /G advisable for pilot pressure > 150 bar) |                                                                                                          |              |          | 50 bar)  |
| Piloting volume     | [cm <sup>3</sup> ]          | 1,4                                                                     | 3,7 9,0                                                                                                  |              | 21,6     |          |
| Piloting flow (1)   | [l/min]                     | 1,7                                                                     | 3,7                                                                                                      |              | 6,8      | 14,4     |
| Leakage (2)         | Main stage [I/min]          | 0,15/0,5                                                                | 0,2/0,6                                                                                                  |              | 0,3/1,0  | 1,0/3,0  |
| Response time (1)   | [ms]                        | ≤ 90                                                                    | ≤ 110                                                                                                    |              | ≤ 130    | ≤ 190    |
| Hysteresis          |                             | ≤ 5 [% of max regulation]                                               |                                                                                                          |              |          |          |
| Repeatability       |                             | ± 1 [% of max regulation]                                               |                                                                                                          |              |          |          |

(1) 0 ÷100 % step signal and pilot pressure 100 bar

(2) at p = 100/350 bar

## 7 ELECTRICAL CHARACTERISTICS

| Power supplies                                    | Nominal : +24 VDC   Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                                             |                                                                                                                                                                              |                                    |                                            |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|--|--|
| Max power consumption                             | 35 W                                                                                                                                                                                               |                                                                                                                                                                              |                                    |                                            |  |  |
| Analog input signals                              | Voltage: range ±10 V<br>Current: range ±20 m                                                                                                                                                       | DC (24 VMAX tollerant)                                                                                                                                                       | Input impedance<br>Input impedance |                                            |  |  |
| Insulation class                                  |                                                                                                                                                                                                    | curing surface tempera<br>32 must be taken into a                                                                                                                            |                                    | ils, the European standards                |  |  |
| Monitor outputs                                   | Voltage: maximum rar                                                                                                                                                                               | nge ± 5 Vpc @ max                                                                                                                                                            | 5 mA                               |                                            |  |  |
| Enable input                                      | Range: 0 ÷ 9 VDC (OFF                                                                                                                                                                              | state), 15 ÷ 24 VDC (ON                                                                                                                                                      | state), 9 ÷ 15 VDC (not ac         | cepted); Input impedance: Ri > $87k\Omega$ |  |  |
| Fault output                                      | Output range: 0 ÷ 24 external negative volta                                                                                                                                                       | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                    |                                            |  |  |
| Pressure transducer power supply (only /W option) | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                                                                                                                                        |                                                                                                                                                                              |                                    |                                            |  |  |
| Alarms                                            | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, current control monitoring, power supplies level, pressure transducer failure (/W option) |                                                                                                                                                                              |                                    |                                            |  |  |
| Protection degree to DIN EN60529                  | IP66/67 with relevant cable gland                                                                                                                                                                  |                                                                                                                                                                              |                                    |                                            |  |  |
| Duty factor                                       | Continuous rating (ED=100%)                                                                                                                                                                        |                                                                                                                                                                              |                                    |                                            |  |  |
| Tropicalization                                   | Tropical coating on electronics PCB                                                                                                                                                                |                                                                                                                                                                              |                                    |                                            |  |  |
| Additional characteristics                        | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply                                  |                                                                                                                                                                              |                                    |                                            |  |  |
| Electromagnetic compatibility (EMC)               | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                                                 |                                                                                                                                                                              |                                    |                                            |  |  |
| Communication interface                           | USB<br>Atos ASCII coding                                                                                                                                                                           | CANopen<br>EN50325-4 + DS408                                                                                                                                                 | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT<br>EC 61158                       |  |  |
| Communication physical layer                      | not insulated<br>USB 2.0 + USB OTG                                                                                                                                                                 | optical insulated<br>CAN ISO11898                                                                                                                                            | optical insulated<br>RS485         | Fast Ethernet, insulated 100 Base TX       |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

## 8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid       | d temperature    | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                            |               |  |
|--------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|
| Recommended viscosity          |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                             |                            |               |  |
| Max fluid                      | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                   | see also filter section at |               |  |
| contamination level            | longer life      | ISO4406 class 16/14/11 NAS1638 class 5 www.atos.com or KTF ca                                                                                                                                                                                                                                                 |                            |               |  |
| Hydraulic fluid                |                  | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification             | Ref. Standard |  |
| Mineral oils                   |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |
| Flame resistant without water  |                  | FKM                                                                                                                                                                                                                                                                                                           | HFDU, HFDR                 | ISO 12922     |  |
| Flame resistant with water (1) |                  | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                        | 130 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

## 9 CERTIFICATION DATA

| Valve type              |                       | DPZA                                                       |          |              |      |                                                                 |          |  |
|-------------------------|-----------------------|------------------------------------------------------------|----------|--------------|------|-----------------------------------------------------------------|----------|--|
| Certifications          |                       | Multicertification Group II  ATEX IECEx                    |          |              |      |                                                                 |          |  |
| Solenoid certified co   | ode                   |                                                            |          | OZA          | -AES |                                                                 |          |  |
| Type examination co     | ertificate (1)        | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X   |          |              |      |                                                                 |          |  |
| Method of protection    | n                     | Ex II 2G Ex db IIC T6/T5/T4 Gb Ex                          |          |              |      | CEx<br>( db IIC T6/T5/T4 Gb<br>( tb IIIC T85°C/T100°C/T135°C Db |          |  |
| _ Single solenoid valve |                       | T6                                                         | -        | Т            | 5    | T4                                                              | -        |  |
| Temperature class       | Double solenoid valve | -                                                          | T4       | -            | •    | -                                                               | Т3       |  |
| Surface temperature     |                       | ≤ 85 °C                                                    | ≤ 135 °C | ≤ 10         | 0 °C | ≤ 135 °C                                                        | ≤ 200 °C |  |
| Ambient temperature (2) |                       | -40 ÷ +40 °C                                               |          | -40 ÷ +55 °C |      | -40 ÷ +70 °C                                                    |          |  |
| Applicable Standards    |                       | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1 |          |              |      | 31                                                              |          |  |
| Cable entrance: three   | eaded connection      | <b>M</b> = M20x1,5                                         |          |              |      |                                                                 |          |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

NARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup>

**Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

## 11 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

## 12 HYDRAULIC OPTIONS

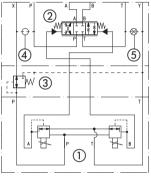
B = DPZA-\*-\*5 = solenoid and integral electronics at side of port B of the main stage.

DPZA-\*-\*7 = integral electronics at side of port B of the main stage.

**D** and **E** = Pilot and drain configuration can be modified as shown in section 13. The valve's standard configuration provides internal pilot and external drain. For different pilot / drain configuration select:

Option /D Internal drain.

Option /E External pilot (through port X).


G = Pressure reducing valve installed between pilot valve and main body with fixed setting:
DPZA-1 and -2 = 28 bar

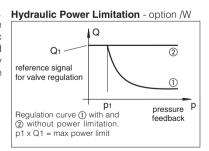
DPZA-4 and -6 = 40 bar

It is advisable for valves with internal pilot in case of system pressure higher than 150 bar.

#### **FUNCTIONAL SCHEME**

example of configuration 7\* 3 positions, spring centered



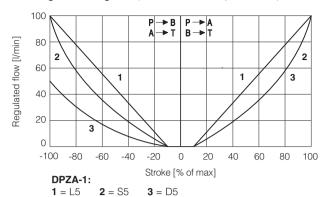

- (1) Pilot valve
- 2) Main stage
- ③ Pressure reducing valve
- 4 Plug to be added for external pilot trough port X
- ⑤ Plug to be removed for internal drain through port T

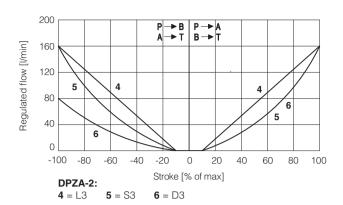
## 13 ELECTRONIC OPTIONS

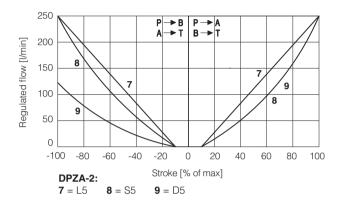
- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only in combination with option /W

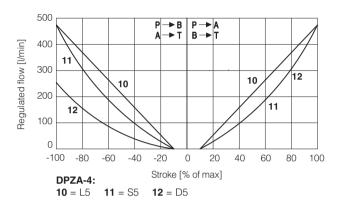
  It is available to connect pressure transducer with 4 ÷ 20 mA current output signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA.
- W = Only for valves coupled with pressure compensator type HC-011 or KC-011 (see tech table D150). It provides the hydraulic power limitation function. The driver receives the flow reference signal by the analog input INPUT+ and a pressure transducer, installed in the hydraulic system, has to be connected to the driver's analog input TR. When the actual requested hydraulic power pxQ (TR x INPUT+) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:

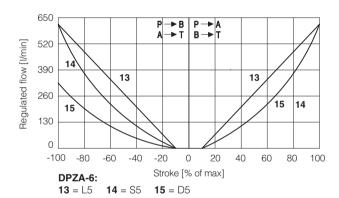
Flow regulation = Min (  $\frac{\text{PowerLimit [sw setting]}}{\text{Transducer Pressure [TR]}} ; \text{Flow Reference [INPUT+]})$ 





## 14 POSSIBLE COMBINED OPTIONS


**Hydraulic options**: all combination possible **Electronics options**: /IW, /CW, /CWI


## 15 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)


## **15.1 Regulation diagrams** (values measure at $\Delta p$ 10 bar P-T)











Note: Hydraulic configuration vs. reference signal for configuration 71 and 73 (standard and option /B)

Reference signal 
$$\begin{array}{c} 0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array}$$
  $P \rightarrow A / B \rightarrow T$ 

#### 16 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 16.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

## 16.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 16.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10$  VDC for standard and  $4 \div 20$  mA for /l option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

#### 16.4 Monitor output signals (MONITOR and MONITOR2)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is ±5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.

#### Option /W

r, he driver generates a second analog output signal (MONITOR2) proportional to the actual system pressure.

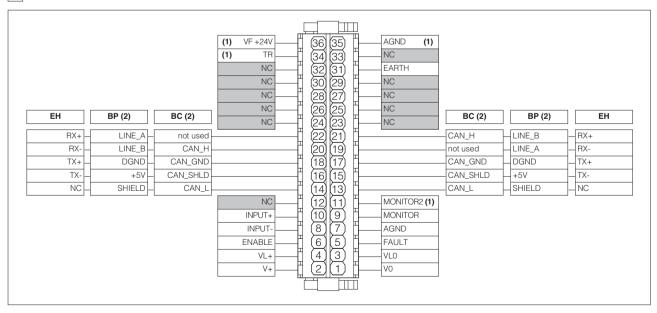
The output maximum range is ±5 VDC; default setting is 0 ÷ 5 VDC

#### 16.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849.

Enable input signal can be used as generic digital input by software selection.

#### 16.6 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for  $4 \div 20$  mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

#### 16.7 Remote Pressure Transducer Input signal (TR) - only for /W option

Analog pressure transducers can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are 0 ÷ 10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. Note: transducer feedback can be read as a digital information through fieldbus communication - software selectable.

#### 17 TERMINAL BOARD OVERVIEW



(1) Connections available only for /W option

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

# 18 ELECTRONIC CONNECTIONS

# 18.1 Main connections signals

| CABLE<br>ENTRANCE | PIN      | SIGNAL   | TECHNICAL SPECIFICATIONS                                                                                              | NOTES                                            |
|-------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                   | 1        | V0       | Power supply 0 Vpc                                                                                                    | Gnd - power supply                               |
|                   | 2        | V+       | Power supply 24 Vpc                                                                                                   | Input - power supply                             |
|                   | 3        | VL0      | Power supply 0 Vpc for driver's logic and communication                                                               | Gnd - power supply                               |
|                   | 4        | VL+      | Power supply 24 Vpc for driver's logic and communication                                                              | Input - power supply                             |
|                   | 5        | FAULT    | Fault (0 VDC) or normal working (24 VDC), referred to VL0                                                             | Output - on/off signal                           |
| _                 | 6        | ENABLE   | Enable (24 VDC) or disable (0 VDC) the driver, referred to VL0                                                        | Input - on/off signal                            |
| Д                 | 7        | AGND     | Analog ground                                                                                                         | Gnd - analog signal                              |
| <i>,</i> ,        | 8 INPUT- |          | Negative reference input signal for INPUT+                                                                            | Input - analog signal                            |
|                   | 9        | MONITOR  | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                      | Output - analog signal<br>Software selectable    |
|                   | 10       | INPUT+   | Reference input signal: ±10 Vpc / ±20 mA maximum range Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b> |
|                   | 11       | MONITOR2 | 2nd monitor output signal: ±5 Vpc maximum range, referred to AGND (1) Default is: 0 ÷ 5 Vpc                           | Output - analog signal<br>Software selectable    |
|                   | 31       | EARTH    | Internally connected to driver housing                                                                                |                                                  |

<sup>(1) 2</sup>nd monitor output signal is available only for /W option

# 18.2 USB connector - M12 - 5 pin always present

|                  |     | <u> </u> |                          |             |   |
|------------------|-----|----------|--------------------------|-------------|---|
| CABLE<br>NTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS | Driver view | B |
|                  | 1   | +5V_USB  | Power supply             |             |   |
|                  | 2   | ID       | Identification           |             |   |
| В                | 3   | GND_USB  | Signal zero data line    |             |   |
|                  | 4   | D-       | Data line -              | (famala)    |   |
|                  | 5   | D+       | Data line +              | (female)    |   |

# 18.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
| C1                | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
| (;2               | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

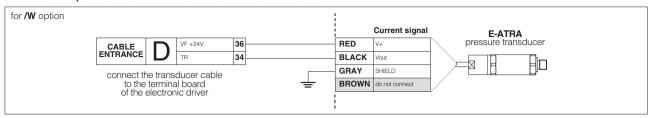
(1) pin 19 and 22 can be fed with external +5V supply of CAN interface

# 18.4 BP fieldbus execution connections

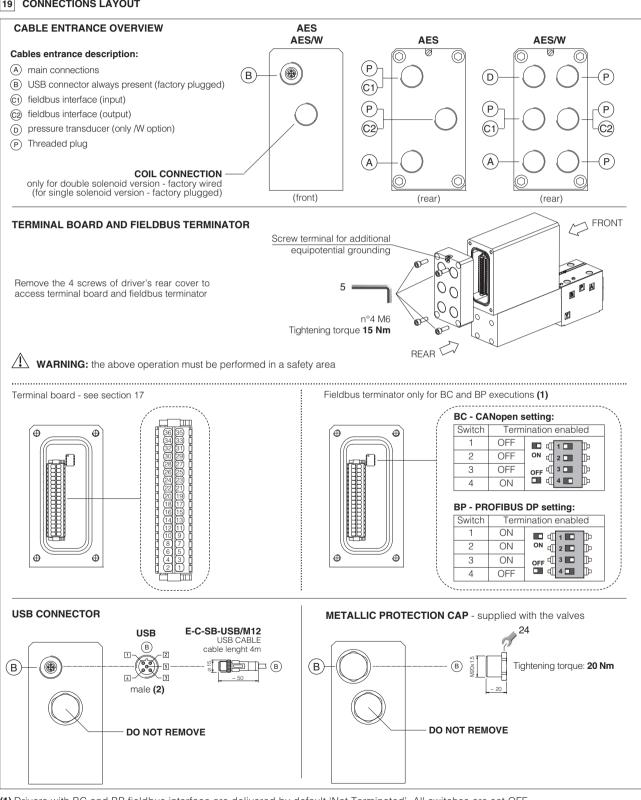
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|----------|-----|--------|---------------------------------------|
|          | 13  | SHIELD |                                       |
|          | 15  | +5V    | Power supply                          |
| (;2      | 17  | DGND   | Data line and termination signal zero |
| <u> </u> | 19  | LINE_A | Bus line (high)                       |
|          | 21  | LINE_B | Bus line (low)                        |

# 18.5 EH fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ) 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANG |    | SIGNAL | TECHNICAL SPECIFICATIONS |
|------------------|----|--------|--------------------------|
|                  | 13 | NC     | do not connect           |
|                  | 15 | TX-    | Transmitter              |
| (;/              | 17 | TX+    | Transmitter              |
|                  | 19 | RX-    | Receiver                 |
| (output)         | 21 | RX+    | Receiver                 |


# 17.6 Remote pressure transducer connector - only for /W option

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                            | NOTES                                     | Voltage | Current |
|-------------------|-----|---------|-----------------------------------------------------|-------------------------------------------|---------|---------|
|                   | 34  | TR      | Signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable | Connect | Connect |
|                   | 35  | AGND    | Common gnd for transducer power and signals         | Common gnd                                | Connect | /       |
|                   | 36  | VF +24V | Power supply +24VDC                                 | Output - power supply                     | Connect | Connect |

### E-ATRA remote pressure transducer connection - see tech table GX800



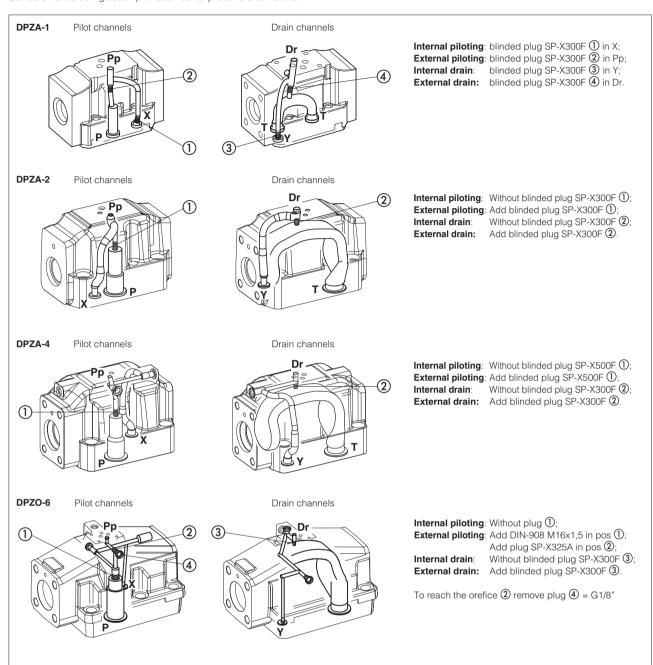
# 19 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 19.1 Cable glands and threaded plug for AES - see tech table KX800

| Communication                             | То | be ordere         | ed separat | ely                 | Cable entrance    |                                                                             |
|-------------------------------------------|----|-------------------|------------|---------------------|-------------------|-----------------------------------------------------------------------------|
| interfaces                                |    | gland<br>entrance |            | ed plug<br>entrance | overview          | Notes                                                                       |
| NP                                        | 1  | А                 | none       | none                | (P)<br>(P)<br>(A) | Cable entrance P are factory plugged Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2  | C1                | 1          | C2                  |                   | Cable entrance A, C1, C2 are open for costumers                             |
| BC, BP, EH<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none       | none                |                   | Cable entrance A, C1, C2 are open for costumers                             |


# 19.2 Cable glands and threaded plug for AES with /W option - see tech table KX800

|                                           | То | be ordere         | ed separat | ely                 | Cable entrance                          |                                                                                         |
|-------------------------------------------|----|-------------------|------------|---------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| Communication interfaces                  |    | gland             |            | ed plug<br>entrance | overview                                | Notes                                                                                   |
| NP                                        | 2  | D A               | none       | none                |                                         | Cable entrance P are factory plugged Cable entrance A, D are open for costumers         |
| BC, BP, EH<br>"via stub"<br>connection    | 3  | D<br>C1<br>A      | 1          | C2                  |                                         | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |
| BC, BP, EH<br>"daisy chain"<br>connection | 4  | D<br>C1 - C2<br>A | none       | none                | 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |

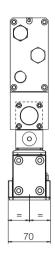
## 20 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

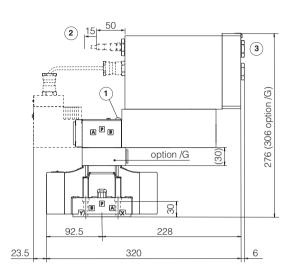
Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below.

To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain



# 21 FASTENING BOLTS AND SEALS


| Туре | Size          | Fastening bolts                                                     | Seals                                                      |  |  |
|------|---------------|---------------------------------------------------------------------|------------------------------------------------------------|--|--|
|      | <b>1</b> = 10 | 4 socket head screws M6x40 class 12.9                               | 5 OR 2050;<br>Diameter of ports A, B, P, T: Ø 11 mm (max)  |  |  |
|      | <b>I</b> = 10 | Tightening torque = 15 Nm                                           | 2 OR 108<br>Diameter of ports X, Y: Ø = 5 mm (max)         |  |  |
|      | <b>2</b> = 16 | 4 socket head screws M10x50 class 12.9<br>Tightening torque = 70 Nm | 4 OR 130;<br>Diameter of ports A, B, P, T: Ø 20 mm (max)   |  |  |
| DPZA | <b>2</b> = 10 | 2 socket head screws M6x45 class 12.9<br>Tightening torque = 15 Nm  | 2 OR 2043 Diameter of ports X, Y: $\emptyset$ = 7 mm (max) |  |  |
| DFZA | <b>4</b> = 25 | 6 socket head screws M12x60 class 12.9                              | 4 OR 4112;<br>Diameter of ports A, B, P, T: Ø 24 mm (max)  |  |  |
|      | 4 = 20        | Tightening torque = 125 Nm                                          | 2 OR 3056<br>Diameter of ports X, Y: Ø = 7 mm (max)        |  |  |
|      | <b>6</b> = 32 | 6 socket head screws M20x90 class 12.9                              | 4 OR 144;<br>Diameter of ports A, B, P, T: Ø 34 mm (max)   |  |  |
|      | 0 = 32        | Tightening torque = 600 Nm                                          | 2 OR 3056<br>Diameter of ports X, Y: Ø = 7 mm (max)        |  |  |


# **DPZA-AES-\*-1**

ISO 4401: 2005

Mounting surface: 4401-05-05-0-05 (see table P005)

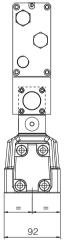
| Mass [kg]  |      |  |  |  |
|------------|------|--|--|--|
| DPZA-*-15* | 14,7 |  |  |  |
| DPZA-*-17* | 16,4 |  |  |  |
| Option /G  | +0,9 |  |  |  |





Dotted line = double solenoid version

# **DPZA-AES-\*-2**


ISO 4401: 2005

Mounting surface: 4401-07-07-0-05 (see table P005)

| 228<br>228 | option /G |
|------------|-----------|
| 6 353      | -         |

Dotted line = double solenoid version

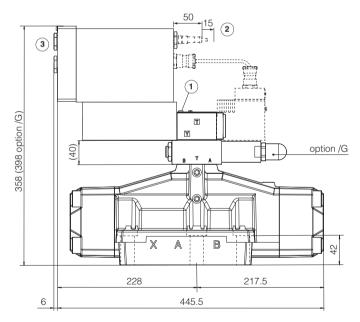
| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-25* | 18,9 |  |  |  |  |
| DPZA-*-27* | 20,6 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |



- (1) = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- $\stackrel{-}{\mathbf{3}}$  = The dimensions of cable glands must be considered (see tech table **KX800**)

# DPZA-AES-\*-4

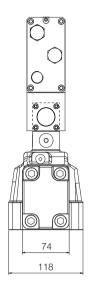
ISO 4401: 2005


Mounting surface: 4401-08-08-0-05 (see table P005)

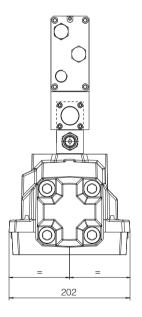


Dotted line = double solenoid version

# **DPZA-AES-\*-6**


ISO 4401: 2005 Mounting surface: 4401-10-09-0-05




Dotted line = double solenoid version

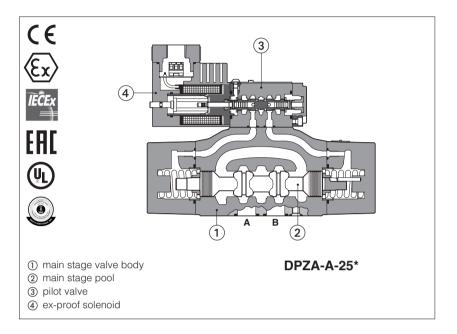
- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

| Mass [kg]       |      |  |  |  |
|-----------------|------|--|--|--|
| DPZA-*-45* 24,1 |      |  |  |  |
| DPZA-*-47*      | 25,8 |  |  |  |
| Option /G       | +0,9 |  |  |  |



| Mass [kg]  |      |  |  |  |
|------------|------|--|--|--|
| DPZA-*-65* | 49,2 |  |  |  |
| DPZA-*-67* | 50,9 |  |  |  |
| Option /G  | +0,9 |  |  |  |




# 23 RELATED DOCUMENTATION

| X010           | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and manintenance informationfor ex-proof proportional valves | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020           |                                                                                                                                                                                                       | KX800 | Cable glands for ex-proof valves              |
| FX900          |                                                                                                                                                                                                       | P005  | Mounting surfaces for electrohydraulic valves |
| GS500<br>GS510 | Programming tools Fieldbus                                                                                                                                                                            |       |                                               |



# **Ex-proof proportional directional valves**

piloted, without transducer and with positive spool overlap - ATEX, IECEx, EAC, PESO or cULus



### DPZA-A

Ex-proof proportional valves, piloted, without position transducer and with positive spool overlap, for open loop directional controls and not compensated flow regulations.

They are equipped with ex-proof proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:

- Multicertification ATEX, IECEx and EAC for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

Size: **10** ÷ **32** - ISO 4401 Max flow: **180** ÷ **1500 l/min** Max pressure: **350 bar** 

#### 1 MODEL CODE **DPZA** GK Α 2 71 L 5 Seals material, see section 6 Ex-proof proportional directional valve, piloted = NBR Series = FKM number вт = HNBR (2) Certification type: Voltage code: Multicertification ATEX, IECEx, EAC: = standard coil for 24 VDC Atos = omit for Group II 2G / 2D (1) = Group IM2 (mining) drivers = optional coil for 24 VDC low North American Certification: current drivers Options (3): **B** = solenoid at side of port A A = without transducer = internal drain = external pilot pressure = pressure reducing valve for piloting Valve size ISO 4401: = horizontal cable entrance (2) **2** = 16 4 = 25 **6** = 32 WP = \_\_ manual override protected by metallic cap Solenoid threaded connection for cable gland fitting: Configuration: Standard Option /B **GK** = GK-1/2" - not for **cULus** = M20x1,5 - not for **cULus NPT** = 1/2" NPT Spool size: 5 (L,S,D) 3 (L,S,D) DPZA-1 100 DP7A-2 160 250 53 = DPZA-4 480 DPZA-6 640 Nominal flow (I/min) at $\Delta p$ 10bar P-T Spool type, regulating characteristics: L = linear **S** = progressive **D** = differential-progressive P-A = Q, B-T = Q/2P-B = Q/2, A-T = Q

- (1) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining)
- (3) For possible combined options, see 11.1
- For valve with internal drain (option /D) the pressure at T port makes difficult the manual override operation that can be possible only if the pressure at T port is lower than 50 bar.

153

# 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A    | E-BM-AES-* /A |  |  |
|---------------|-----------------|---------------|--|--|
| Туре          | digital digital |               |  |  |
| Format        | DIN-rail panel  |               |  |  |
| Data sheet    | G030            | GS050         |  |  |

# 3 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                             |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                         |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                       |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C <b>/PE</b> option = $-20^{\circ}$ C $\div$ +70°C <b>/BT</b> option = $-40^{\circ}$ C $\div$ +70°C                         |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                               |  |  |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                    |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                              |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model       | ve model                    |                                                                                                          | DPZA-*-1 DPZA-*-2     |                    | DPZA-*-4               | DPZA-*-6 |
|-------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------------|----------|
| Pressure limits   | [bar]                       | ports <b>P</b> , <b>A</b> , <b>B</b> , <b>X</b> = 350; <b>T</b> = 250 (10 for option /D); <b>Y</b> = 10; |                       |                    |                        | ;        |
| Spool type        |                             | L5, S5, D5                                                                                               | L3, S3, D3 L5, S5, D5 |                    |                        |          |
| Nominal flow      | [l/min]                     |                                                                                                          |                       |                    |                        |          |
|                   | $\Delta p = 10 \text{ bar}$ | 100                                                                                                      | 160                   | 250                | 480                    | 640      |
| Δp P-T            | $\Delta p = 30 \text{ bar}$ | 160                                                                                                      | 270                   | 430                | 830                    | 1100     |
|                   | Max permissible flow        | 180                                                                                                      | 400                   | 550                | 900                    | 1500     |
| Δp max P-T        | [bar]                       |                                                                                                          |                       |                    |                        |          |
| Piloting pressure | [bar]                       | min. =                                                                                                   | 25; max = 350 (o      | ption /G advisable | for pilot pressure > 1 | 50 bar)  |
| Piloting volume   | [cm <sup>3</sup> ]          | 1,4                                                                                                      | 3                     | ,7                 | 9,0                    | 21,6     |
| Piloting flow (1) | [l/min]                     | 1,7                                                                                                      | 3                     | 6,8                | 14,4                   |          |
| Leakage (2)       | Main stage [I/min]          | 0,15/0,5                                                                                                 | 0,2/0,6 0,3           |                    | 0,3/1,0                | 1,0/3,0  |
| Response time (1) | [ms]                        | ≤ 90                                                                                                     | ≤ 110                 |                    | ≤ 130                  | ≤ 190    |
| Hysteresis        |                             | ≤ 5 [% of max regulation]                                                                                |                       |                    |                        |          |
| Repeatability     |                             | ± 1 [% of max regulation]                                                                                |                       |                    |                        |          |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 2

(1) 0-100% step signal and pilot pressure 100 bar

(2) at p = 100/350 bar

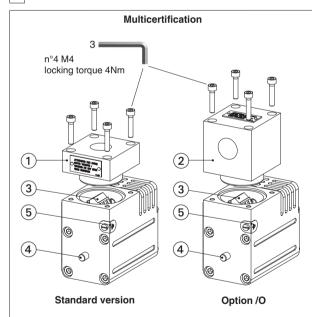
# 5 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35                                                                              | 35W                                                                                                                                              |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Insulation class                            |                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | ·                                                                                                                                                |  |  |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |  |  |
| Voltage code                                | standard                                                                        | standard option /24                                                                                                                              |  |  |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 3,2 Ω 17,6 Ω                                                                                                                                     |  |  |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 2,5 A 1,1 A                                                                                                                                      |  |  |  |  |

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                                                         |                  | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C              |                             |               |  |  |
|-------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|-----------------------------|---------------|--|--|
| Seals, recommended fluid temperature                                    |                  | FKM seals (/PE option) = -20°C ÷ +80°C                                                       |                             |               |  |  |
|                                                                         |                  | HNBR seals (/BT option) = -40°C $\div$ +60°C, with HFC hydraulic fluids = -40°C $\div$ +50°C |                             |               |  |  |
| Recommended viscosity 20 ÷ 100 mm²/s - max allowed range 15 ÷ 300 mm²/s |                  |                                                                                              |                             |               |  |  |
| Max fluid                                                               | normal operation | ISO4406 class 18/16/13 NAS1                                                                  | see also filter section at  |               |  |  |
| contamination level                                                     | longer life      | ISO4406 class 16/14/11 NAS1                                                                  | www.atos.com or KTF catalog |               |  |  |
| Hydraulic fluid                                                         |                  | Suitable seals type                                                                          | Classification              | Ref. Standard |  |  |
| Mineral oils                                                            |                  | NBR, FKM, HNBR                                                                               | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |  |
| Flame resistant without water                                           |                  | FKM                                                                                          | HFDU, HFDR                  | - ISO 12922   |  |  |
| Flame resistant with water (1)                                          |                  | NBR, HNBR                                                                                    | HFC                         |               |  |  |

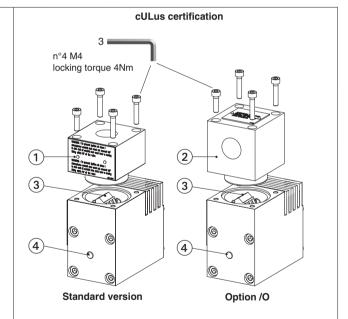
The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


## **CERTIFICATION DATA**

| Valve type                                                                        | DF                                                                                                                                                                                                                        | PZA            | DPZA <b>/M</b>                                       |                                                          | DPZ                                                                            | DPZA <b>/UL</b> |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|--|
| Certifications                                                                    |                                                                                                                                                                                                                           | ation Group II | Multicertification Group I  ATEX IECEx               |                                                          | North American<br>c <b>UL</b> us                                               |                 |  |
| Solenoid certified code                                                           | OZ                                                                                                                                                                                                                        | A-A            | OZA                                                  | M-A                                                      | OZA-A/EC                                                                       |                 |  |
| Type examination certificate (1)                                                  | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131                                                                                                                       |                | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x |                                                          | 20170324 - E366100                                                             |                 |  |
| Method of protection                                                              | ATEX , EAC     EX II 2G Ex d IIC T4/T3 Gb     EX II 2D Ex tb IIIC T135°C/T200°C Db     IECEX     EX d IIC T4/T3 Gb     EX tb IIIC T135°C/T200°C Db     PESO     EX II 2G Ex d IIC T4/T3 Gb     EX II 2G Ex d IIC T4/T3 Gb |                | ATEX Ex I M2 Ex db I Mb  IECEx Ex db I Mb            |                                                          | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |                 |  |
| Temperature class                                                                 | T4                                                                                                                                                                                                                        | Т3             |                                                      | -                                                        | T4                                                                             | Т3              |  |
| Surface temperature                                                               | ≤ 135 °C                                                                                                                                                                                                                  | ≤ 200 °C       | ≤ 15                                                 | 0 °C                                                     | ≤ 135 °C                                                                       | ≤ 200 °C        |  |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                                                                                                                                                                              | -40 ÷ +70 °C   | -20 ÷ -                                              | +60 °C                                                   | -40 ÷ +55 °C                                                                   | -40 ÷ +70 °C    |  |
| Applicable standards                                                              | EN 60079-0 IEC 60079-0<br>EN 60079-1 IEC 60079-1<br>EN 60079-31 IEC 60079-31                                                                                                                                              |                |                                                      | UL 1203 and UL429,<br>CSA 22.2 n°30<br>CSA 22.2 n°139-13 |                                                                                |                 |  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT                                                                                                                                                        |                |                                                      | 1/2" NPT                                                 |                                                                                |                 |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids Group II and cULus are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


# 8 EX PROOF SOLENOIDS WIRING



- ① cover with threaded connection for vertical cable gland fitting
- 2 cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- 2 cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- (4) standard manual override



# Pay attention to respect the polarity

- = Coil + PCB 3 poles terminal board sugge-2
- sted cable section up to 1,5 mm<sup>2</sup> (max AWG16), see section 9 note 1 = GND **3** = Coil -

alternative GND screw terminal connected to solenoid housing

# 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

# 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

## Multicertification

| Max ambient temperature [°C] | Temperature class |         | Max surface temperature [°C] |         | Min. cable temperature [°C] |         |
|------------------------------|-------------------|---------|------------------------------|---------|-----------------------------|---------|
| wax ambient temperature [ C] | Goup I            | Goup II | Goup I                       | Goup II | Goup I                      | Goup II |
| 40 °C                        | -                 | T4      | 150 °C                       | -       | 90 °C                       | -       |
| 45 °C                        | -                 | T4      | 150 °C                       | 135 °C  | -                           | 90 °C   |
| 55 °C                        | -                 | T3      | 150 °C                       | 200 °C  | -                           | 110 °C  |
| 60 °C                        | -                 | -       | 150 °C                       | -       | 110 °C                      | -       |
| 70 °C                        | N.A.              | T3      | N.A.                         | 200 °C  | N.A.                        | 120 °C  |

#### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |

## 10 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

## 11 OPTIONS

B = DPZA-\*-\*5 = solenoid and integral electronics at side of port B of the main stage.
DPZA-\*-\*7 = integral electronics at side of port B of the main stage.

**D** and **E** = Pilot and drain configuration can be modified as shown in section 13. The valve's standard configuration provides internal pilot and external drain.

For different pilot / drain configuration select:

Option /D Internal drain.

Option /E External pilot (through port X).

**G** = Pressure reducing valve installed between pilot valve and main body with fixed setting:

DPZA-1 and -2 = 28 bar DPZA-4 and -6 = 40 bar

It is advisable for valves with internal pilot in case of system pressure higher than 150 bar.

O = Horizontal cable entrance, to be selected in case of limited verical space.

**WP** = Manual override protected by metallic cap.

# 11.1 Possible combined options

/BD, /BE, /BG, /BO, /BWP

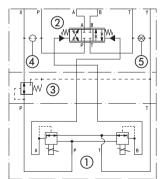
/BDE, /BDG, /BDO, /BDWP,

/BDEG, /BDEO, /BDEWP, /BDEGO, /BDEGWP, BDEGOWP

/BEG, /BEO, /BEWP, /BEGO, /BEGWP, /BEGOWP

/BGO, /BGWP, BGOWP

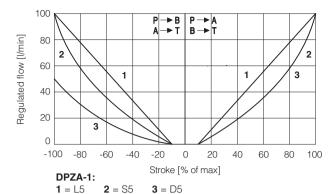
/DE, /DG, /DO, /DWP, /DEG, /DEO, /DEWP, /DEGO, /DEGWP, /DEGOWP

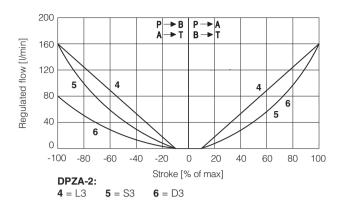

/EG, /EO, /EWP, /EGO, /EGWP, /EGOWP

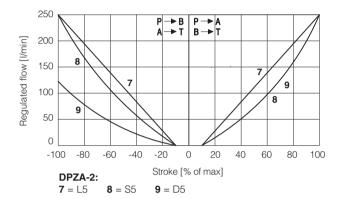
/GO, /GWP, /GOWP

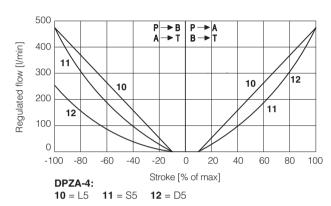
/OWP

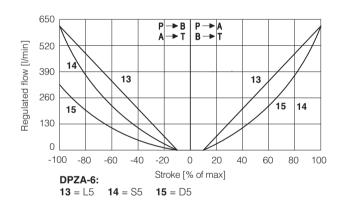
## **FUNCTIONAL SCHEME**


example of configuration 7\* 3 positions, spring centered





- (1) Pilot valve
- ② Main stage
- 3 Pressure reducing valve
- 4) Plug to be added for external pilot trough port X
- ⑤ Plug to be removed for internal drain through port T


# 12 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

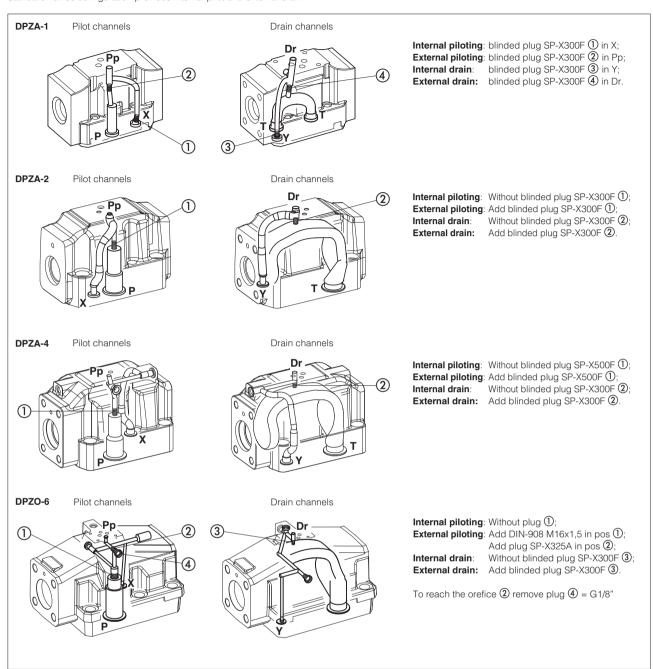

## **12.1 Regulation diagrams** (values measure at Δp 10 bar P-T)












Note: Hydraulic configuration vs. reference signal for configuration 71 and 73 (standard and option /B)

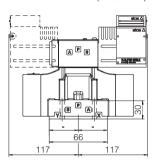
Reference signal 
$$\begin{array}{c} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array} \} P \rightarrow B / A \rightarrow 1$$

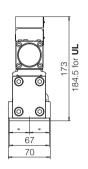
## 13 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

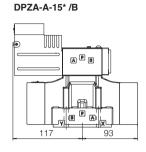
Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below. To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain



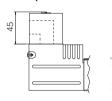
# 14 FASTENING BOLTS AND SEALS

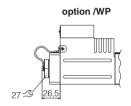

|           | DPZA-1                                                                | DPZA-2                                                                                                                                          | DPZA-4                                                                  | DPZA-6                                                                  |
|-----------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
|           | Fastening bolts:                                                      | Fastening bolts:                                                                                                                                | Fastening bolts:                                                        | Fastening bolts:                                                        |
|           | 4 socket head screws<br>M6x60 class 12.9<br>Tightening torque = 15 Nm | 4 socket head screws<br>M10x50 class 12.9<br>Tightening torque = 70 Nm<br>2 socket head screws<br>M6x45 class 12.9<br>Tightening torque = 15 Nm | 6 socket head screws<br>M12x60 class 12.9<br>Tightening torque = 125 Nm | 6 socket head screws<br>M20x90 class 12.9<br>Tightening torque = 600 Nm |
|           | Seals:                                                                | Seals:                                                                                                                                          | Seals:                                                                  | Seals:                                                                  |
| $\bigcap$ | 5 OR 2050<br>Diameter of ports A, B, P, T:<br>Ø 11 mm (max)           | 4 OR 130<br>Diameter of ports A, B, P, T:<br>Ø 20 mm (max)                                                                                      | 4 OR 4112<br>Diameter of ports A, B, P, T:<br>Ø 24 mm (max)             | 4 OR 144<br>Diameter of ports A, B, P, T:<br>Ø 34 mm (max)              |
|           | 2 OR 108<br>Diameter of ports X, Y:<br>Ø 5 mm (max)                   | 2 OR 2043<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                                                                                            | 2 OR 3056<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                    | 2 OR 3056<br>Diameter of ports X, Y:<br>Ø 7 mm (max)                    |

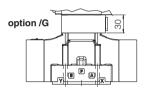

DPZA-1


**ISO 4401: 2005** (see table P005) Mounting surface: 4401-05-05-0-05

| Mass [kg]  |       |  |  |  |  |  |
|------------|-------|--|--|--|--|--|
| DPZA-*-15* | 8,5   |  |  |  |  |  |
| DPZA-*-17* | 10,2  |  |  |  |  |  |
| Option /G  | +0,9  |  |  |  |  |  |
| Option /O  | +0,35 |  |  |  |  |  |
| Option /WP | +0,25 |  |  |  |  |  |


**DPZA-A-15\* DPZA-A-17\*** (dotted line)



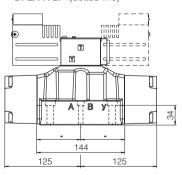



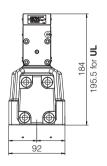


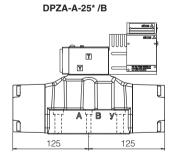

option /O





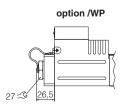


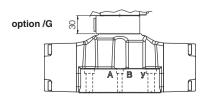


# DPZA-2

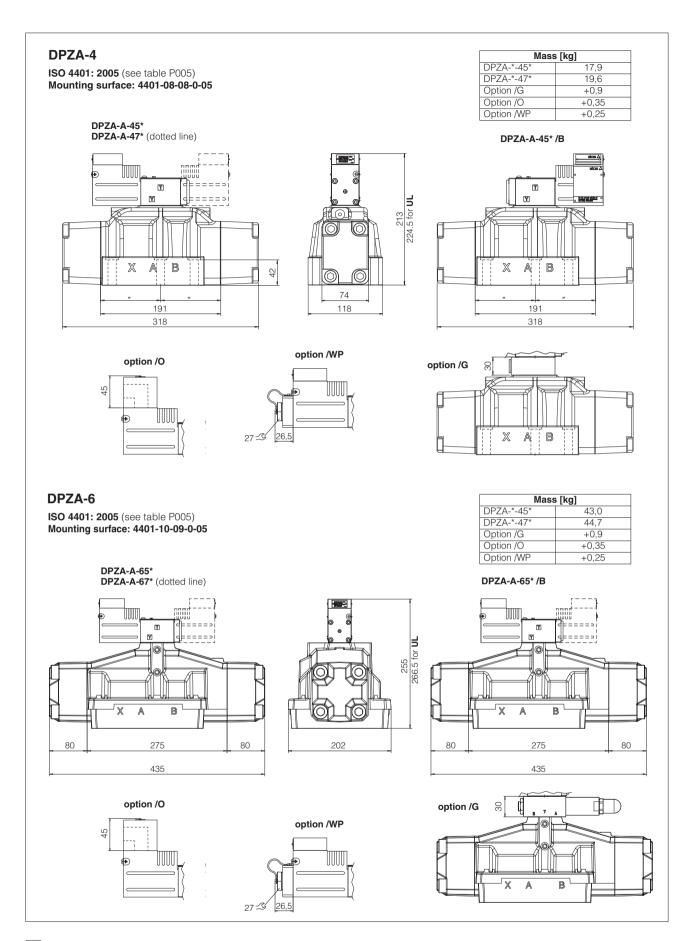

ISO 4401: 2005 (see table P005) Mounting surface: 4401-07-07-0-05

| Mass [kg]  |       |  |  |  |  |
|------------|-------|--|--|--|--|
| DPZA-*-25* | 12,7  |  |  |  |  |
| DPZA-*-27* | 14,4  |  |  |  |  |
| Option /G  | +0,9  |  |  |  |  |
| Option /O  | +0,35 |  |  |  |  |
| Option /WP | +0,25 |  |  |  |  |

DPZA-A-25\* DPZA-A-27\* (dotted line)




option /O









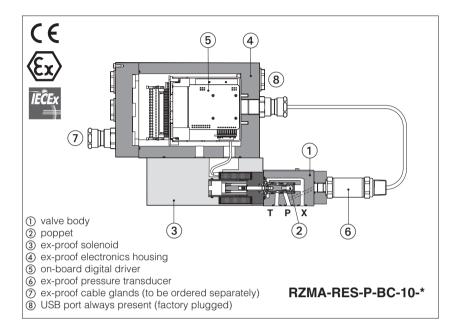
# 16 RELATED DOCUMENTATION

| X010 | Basics for electrohydraulics in hazardous environments     |
|------|------------------------------------------------------------|
| X020 | Summary of Atos ex-proof components certified to ATEX, IEC |

CEX, EAC, PESO

X030 Summary of Atos ex-proof components certified to cULus

FX900 Operating and manintenance information for ex-proof proportional valves


KX800 Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves



# Ex-proof digital proportional relief valves high performance

direct or piloted, with on board driver and pressure transducer - ATEX and IECEx



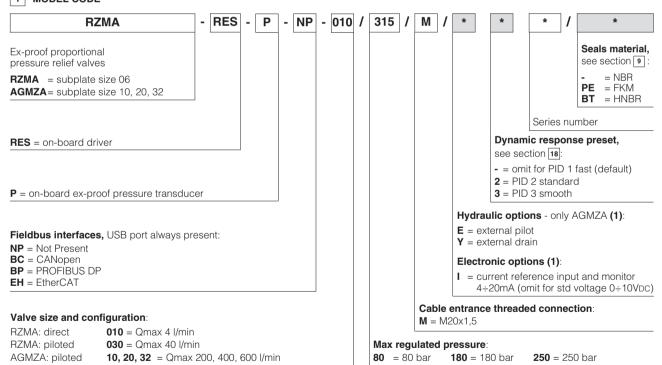
### **RZMA-RES, AGMZA-RES**

Ex-proof high performance digital proportional relief valves direct or piloted with pressure transducer for pressure closed loop controls.

They are equipped with ex-proof on-board digital driver, pressure transducer and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

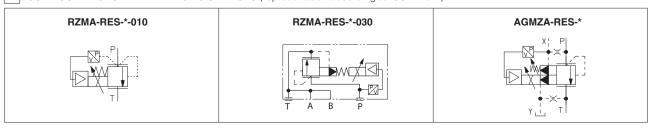
## Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.


The driver and solenoid are also designed to limit the surface temperature within the classified limits.

RZMA, direct or piloted: Size: 06 - ISO 4401 Max flow: 4 and 40 l/min

**AGMZA**, piloted: Size: **10**, **20** and **32** - ISO 6264 Max flow: **200**, **400** and **600** I/min


Max pressure: 250 bar

# 1 MODEL CODE



(1) Possible combined options: /EY, /EI, /YI

## 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



# 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

## 4 VALVE SETTINGS AND PROGRAMMING TOOLS

WARNING: The below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

**E-SW-BASIC** support: NP (USB) PS (Serial) IR (Infrared) **E-SW-FIELDBUS** support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

E-SW-\*/PQ EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

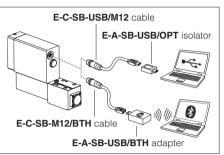


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

# 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 6 GENERAL CHARACTERISTICS


| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | RZMA-010 150 years, RZMA-030 and AGZMA 75 years, see technical table P007                                                                                                                |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /PE option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /BT option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C                         |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spay test (EN ISO 9227) > 200 h                                                                                                               |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |

# 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                      |         | RZMA AGMZA                                                   |    |       |       |       |
|------------------------------------------------------------------|---------|--------------------------------------------------------------|----|-------|-------|-------|
| Size code                                                        |         | 010 030 10 20 3                                              |    |       |       | 32    |
| Valve size                                                       |         | 06 10 20                                                     |    |       |       | 32    |
| Max regulated pressure                                           | [bar]   | 80 180 250                                                   |    |       |       |       |
| Min regulated pressure                                           | [bar]   | see min. pressure / flow diagrams at sections [20] [21] [22] |    |       |       |       |
| Max pressure at port P, A, B, X                                  | [bar]   | 315                                                          |    |       |       |       |
| Max pressure at port T, Y                                        | [bar]   | 210                                                          |    |       |       |       |
| Max flow                                                         | [l/min] | 4                                                            | 40 | 200   | 400   | 600   |
| Response time 0-100% step signal (depending on installation) (1) | [ms]    | ≤                                                            | 60 | ≤90   | ≤ 110 | ≤ 125 |
| Hysteresis[% of the max pressure]                                |         | ≤0,3                                                         |    |       |       |       |
| Linearity[% of the max pressure]                                 |         | ≤1,0                                                         |    |       |       |       |
| Repeatability[% of the max pressur                               | re]     |                                                              |    | ≤ 0,2 |       |       |

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

# **USB** or Bluetooth connection



# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                         |                                            |                             |                                              |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                         |                                            |                             |                                              |  |  |  |
| Analog input signals                | Current: range ±20 m                                                                                                                                                         | Voltage: range ±10 VDC (24 VMAX tollerant) |                             |                                              |  |  |  |
| Insulation class                    | ISÒ 13732-1 and EN98                                                                                                                                                         | 32 must be taken into a                    |                             | ils, the European standards                  |  |  |  |
| Monitor outputs                     | Voltage: range 0 ÷ 10<br>Current: range 0 ÷ 20                                                                                                                               |                                            | ad resistance               |                                              |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF                                                                                                                                                        | state), 15 ÷ 24 VDC (ON :                  | state), 9 ÷ 15 VDC (not acc | cepted); Input impedance: Ri > 87 k $\Omega$ |  |  |  |
| Fault output                        | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                            |                             |                                              |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 m                                                                                                                                                           | nA (E-ATRA-7 see tech                      | table GX800)                |                                              |  |  |  |
| Alarms                              | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, power supplies level, pressure transducer failure                   |                                            |                             |                                              |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant c                                                                                                                                                      | able gland                                 |                             |                                              |  |  |  |
| Duty factor                         | Continuous rating (ED=                                                                                                                                                       | =100%)                                     |                             |                                              |  |  |  |
| Tropicalization                     | Tropical coating on ele                                                                                                                                                      | ectronics PCB                              |                             |                                              |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply            |                                            |                             |                                              |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                           |                                            |                             |                                              |  |  |  |
| Communication interface             | USB                                                                                                                                                                          |                                            |                             |                                              |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                           | optical insulated<br>CAN ISO11898          | optical insulated<br>RS485  | Fast Ethernet, insulated<br>100 Base TX      |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid        | temperature                                     | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                             |                            |  |  |
|---------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|--|--|
| Recommended viscosity           | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                                                                                                                                                                                                                                                                                                               |                             |                            |  |  |
| Max fluid                       | normal operation                                | ISO4406 class 18/16/13 NAS1638 class 7                                                                                                                                                                                                                                                                        |                             | see also filter section at |  |  |
| contamination level longer life |                                                 | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                   | www.atos.com or KTF catalog |                            |  |  |
| Hydraulic fluid                 |                                                 | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification              | Ref. Standard              |  |  |
| Mineral oils                    |                                                 | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524                  |  |  |
| Flame resistant without water   |                                                 | FKM                                                                                                                                                                                                                                                                                                           | HFDU, HFDR                  | ISO 12922                  |  |  |
| Flame resistant with water      | (1)                                             | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                         | 130 12922                  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

## (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          | RZMA, AGMZA                                                                                                                                                   |                                         |              |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--|--|--|
| Certifications                      |                                                                                                                                                               | Multicertification Group II  ATEX IECEx |              |  |  |  |
| Solenoid certified code             |                                                                                                                                                               | OZA-RES                                 |              |  |  |  |
| Type examination certificate (1)    | • ATEX: TUV IT 18 ATEX 068 X • IECEx: IECEx TPS 19.0004X                                                                                                      |                                         |              |  |  |  |
| Method of protection                | • ATEX 2014/34/EU  Ex II 2G Ex db IIC T6/T5/T4 Gb Ex II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX Ex db IIC T6/T5/T4 Gb Ex tb IIIC T85°C/T100°C/T135°C Db |                                         |              |  |  |  |
| Temperature class                   | Т6                                                                                                                                                            | T5                                      | T4           |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                       | ≤ 100 °C                                | ≤ 135 °C     |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                  |                                         | -40 ÷ +70 °C |  |  |  |
| Applicable standards                | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1 IEC 60079-1                                                                                        |                                         |              |  |  |  |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5                                                                                                                                            |                                         |              |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C.

in case the complete valve must wisthstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

163

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

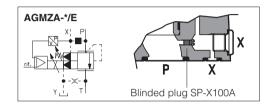
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

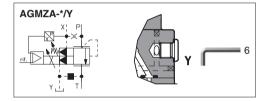
## 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

## 13 HYDRAULIC OPTIONS - only for AGMZA

E = External pilot option to be selected when the pilot pressure is supplied from a different line respect to the P main line.


With option E the internal connection between port P and X of the valve is plugged. The pilot pressure must be connected to the X port available on the valve's mounting surface or on main body (threaded pipe connection G ¼").


Y = The external drain is mandatory in case the main line T is subjected to pressure peaks or it is pressurized.

The Y drain port has a threaded connection G 1/4" available on the pilot stage body.

## 14 ELECTRONIC OPTIONS

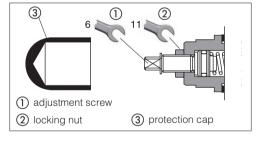
I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA.It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.





# 15 POSSIBLE COMBINED OPTIONS

EY, /EI, /YI


## 16 MECHANICAL PRESSURE LIMITER - only for AGMZA

The AGMZA are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

For the pressure setting of the mechanical pressure limiter, proceed according to following steps:

- apply the max reference input signal to the valve's driver. The system pressure will not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw (1) of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.



# 17 REMOTE PRESSURE UNLOADING - only for AGMZA

The  ${\bf P}$  main line can be remotely unloaded by connecting the valve X port to a solenoid valve as shown in the below scheme (venting valve).

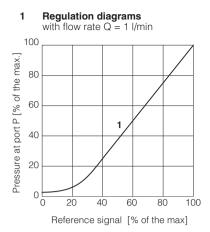
This function can be used in emergency to unload the system pressure by-passing the proportional control.

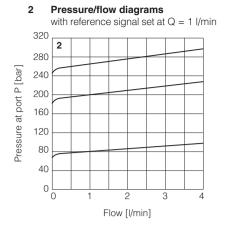
# P X

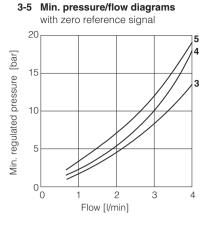
## 18 DYNAMIC RESPONSE - 4 pressure PIDs

The valve is provided with 4 PIDs configurations to match different hydraulic conditions. The required PID configuration can be selected before the valve commissioning, through Atos E-SW software via USB port. Only for **RES** the PID can be also selected in real time, through PLC via fieldbus.

(1) interchangeable with previous TERS version


| PID | Dynamic response   |  |  |  |  |
|-----|--------------------|--|--|--|--|
| 1   | Fast - default (1) |  |  |  |  |
| 2   | Standard           |  |  |  |  |
| 3   | Smooth             |  |  |  |  |
| 4   | Open Loop          |  |  |  |  |


# 19 PRESSURE TRANSDUCER FAILURE


In case of pressure transducer failure, the valve's reaction can be configured through Atos E-SW software to:

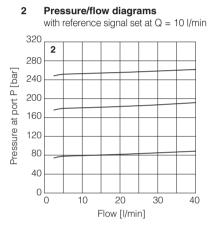
- cut off the current to solenoid, therefore the regulated pressure will be reduced to minimum value (default setting)
- automatically switch the pressure control from closed loop (PID1,2,3) to open loop (PID4), to let the valve to temporarily operate with reduced regulation accuracy

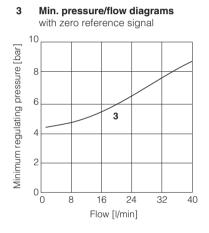
# 20 DIAGRAMS RZMA-010 (based on mineral oil ISO VG 46 at 50 °C)







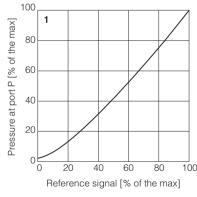

**3 =** RZMA/80

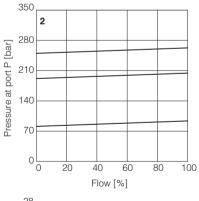

**4** = RZMA/180 **5** = RZMA/250

**Note**: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure

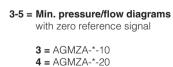
# 21 DIAGRAMS RZMA-030 (based on mineral oil ISO VG 46 at 50 °C)



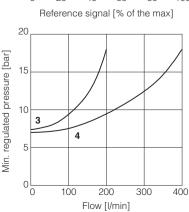


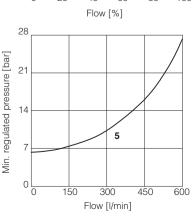




Note: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure


# 22 DIAGRAMS AGMZA (based on mineral oil ISO VG 46 at 50 °C)

1 = Regulation diagrams with flow rate Q = 50 l/min




2 = Pressure/flow diagrams with reference signal set at Q = 50 l/min



**5 =** AGMZA-\*-32





### 23 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 23.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

# 23.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

## 23.3 Pressure reference input signal (P\_INPUT+)

The driver controls in closed loop the current to the valve pressure proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  Vpc for standard and  $4 \div 20$  mA for /l option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  Vpc or  $\pm 20$  mA.

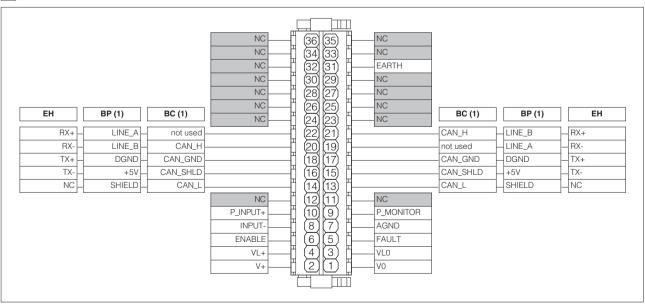
Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference).

Analog reference input signal can be used as on-off commands with input range 0 ÷ 24Vpc.

#### 23.4 Pressure monitor output signal (P\_MONITOR)

The driver generates an analog output signal proportional to the actual pressure of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, defaults settings are  $0 \div 10$  Vpc for standard and  $4 \div 20$  mA for /l option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $0 \div 10$  Vpc or  $0 \div 20$  mA.


#### 23.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

# 23.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for  $4 \div 20$  mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

# 24 TERMINAL BOARD OVERVIEW



(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

# 25 ELECTRONIC CONNECTIONS

# 25.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL                                                                                                                                      | TECHNICAL SPECIFICATIONS                                                                                                             | NOTES                                             |
|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0                                                                                                                                          | Power supply 0 Vpc                                                                                                                   | Gnd - power supply                                |
|                   | 2   | V+                                                                                                                                          | Power supply 24 Vpc                                                                                                                  | Input - power supply                              |
|                   | 3   | VL0                                                                                                                                         | Power supply 0 Vpc for driver's logic and communication                                                                              | Gnd - power supply                                |
|                   | 4   | VL+                                                                                                                                         | Power supply 24 Vpc for driver's logic and communication                                                                             | Input - power supply                              |
|                   | 5   | FAULT                                                                                                                                       | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                            | Output - on/off signal                            |
| Ι Δ Ι             | 6   | ENABLE                                                                                                                                      | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                       | Input - on/off signal                             |
|                   | 7   | AGND                                                                                                                                        | Analog ground                                                                                                                        | Gnd - analog signal                               |
|                   | 8   | INPUT-                                                                                                                                      | Negative pressure reference input signal for INPUT+                                                                                  | Input - analog signal                             |
|                   | 9   | 9 <b>P_MONITOR</b> Pressure monitor output signal: 0 ÷10 Vpc / 0 ÷ 20 mA maximum range, referred to AGND Default is: 0 ÷10 Vpc or 4 ÷ 20 mA |                                                                                                                                      | Output - analog signal <b>Software selectable</b> |
|                   | 10  | P_INPUT+                                                                                                                                    | Pressure reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |
|                   | 31  | EARTH                                                                                                                                       | Internally connected to driver housing                                                                                               |                                                   |

# 25.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 2         |   |
|                   | 2   | ID      | Identification           | ( )   S     |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (famala)    |   |
|                   | 5   | D+      | Data line +              | (female)    |   |

# 25.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|-------------------|-----|----------|-----------------------------|--|
|                   | 14  | CAN_L    | Bus line (low)              |  |
|                   | 16  | CAN_SHLD | Shield                      |  |
| (C1               | 18  | CAN_GND  | Signal zero data line       |  |
| 0 1               | 20  | CAN_H    | Bus line (high)             |  |
|                   | 22  | not used | Pass-through connection (1) |  |

|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|--|-------------------|-----|----------|-----------------------------|
|  | C2                | 13  | CAN_L    | Bus line (low)              |
|  |                   | 15  | CAN_SHLD | Shield                      |
|  |                   | 17  | CAN_GND  | Signal zero data line       |
|  |                   | 19  | not used | Pass-through connection (1) |
|  |                   | 21  | CAN_H    | Bus line (high)             |

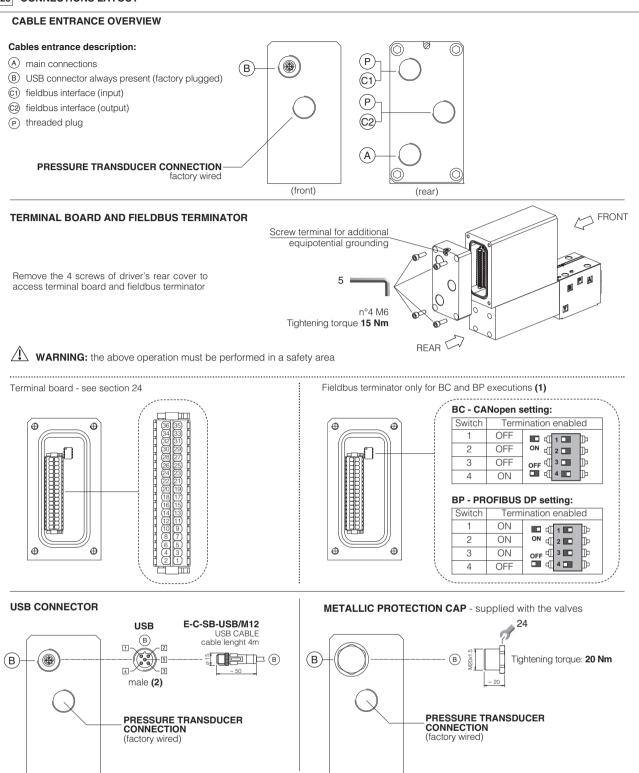
<sup>(1)</sup> pin 19 and 22 can be fed with external +5V supply of CAN interface

# 25.4 BP fieldbus execution connections

| PIN | SIGNAL               | TECHNICAL SPECIFICATIONS              |
|-----|----------------------|---------------------------------------|
| 14  | SHIELD               |                                       |
| 16  | +5V                  | Power supply                          |
| 18  | DGND                 | Data line and termination signal zero |
| 20  | LINE_B               | Bus line (low)                        |
| 22  | LINE_A               | Bus line (high)                       |
|     | 14<br>16<br>18<br>20 | 14 SHIELD  16 +5V  18 DGND  20 LINE_B |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
|                   | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 25.5 EH fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (2)               | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

FX030 PROPORTIONAL VALVES

167

## 26 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 26.1 Cable glands and threaded plug - see tech table KX800

| Communication                             | То | be ordere         | ed separat | ely     | Cable entrance |                                                                              |
|-------------------------------------------|----|-------------------|------------|---------|----------------|------------------------------------------------------------------------------|
| interfaces                                |    | gland<br>entrance |            | ed plug | overview       | Notes                                                                        |
| NP                                        | 1  | А                 | none       | none    | P<br>A         | Cable entrance P are factory plugged  Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2  | C1                | 1          | C2      |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP, EH<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none       | none    |                | Cable entrance A, C1, C2 are open for costumers                              |

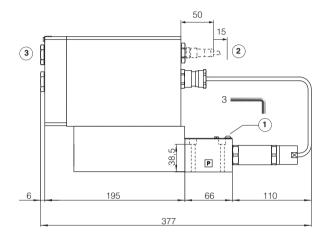
# 27 FASTENING BOLTS AND SEALS

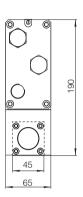
# 27.1 RZMA valves

| RZMA-RES-*-010                             | RZMA-RES-*-030                                                                                   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                            |                                                                                                  |
| Fastening bolts:                           | Fastening bolts:                                                                                 |
| 4 socket head screws M5x50 class 12.9      | 4 socket head screws M5x50 class 12.9                                                            |
| Tightening torque = 8 Nm                   | Tightening torque = 8 Nm                                                                         |
|                                            |                                                                                                  |
| Seals:                                     | Seals:                                                                                           |
| 2 OR 108<br>Diameter of ports P, T: Ø 5 mm | 4 OR 108<br>Diameter of ports P, T: Ø 7,5 mm                                                     |
|                                            | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm  Seals: 2 OR 108 |

# 27.2 AGMZA valves

|     | AGMZA-RES-*-10                         | AGMZA-RES-*-20                         | AGMZA-RES-*-32                         |
|-----|----------------------------------------|----------------------------------------|----------------------------------------|
|     |                                        |                                        |                                        |
| W   | Fastening bolts:                       | Fastening bolts:                       | Fastening bolts:                       |
|     | 4 socket head screws M12x35 class 12.9 | 4 socket head screws M16x50 class 12.9 | 4 socket head screws M20x60 class 12.9 |
|     | Tightening torque = 125 Nm             | Tightening torque = 300 Nm             | Tightening torque = 600 Nm             |
|     |                                        |                                        |                                        |
|     |                                        |                                        |                                        |
|     | Seals:                                 | Seals:                                 | Seals:                                 |
|     | 2 OR 123                               | 2 OR 4112                              | 2 OR 4131                              |
| ( ) | Diameter of ports P, T: Ø 14 mm        | Diameter of ports P, T: Ø 24 mm        | Diameter of ports P, T: Ø 28 mm        |
|     | 1 OR 109/70                            | 1 OR 109/70                            | 1 OR 109/70                            |
|     | Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           |
|     |                                        |                                        |                                        |


FX030 PROPORTIONAL VALVES


# RZMA-RES-\*-010

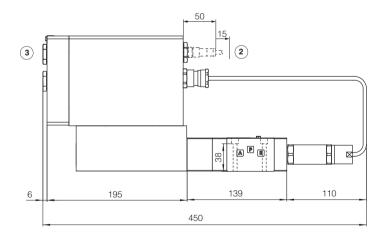
ISO 4401: 2005

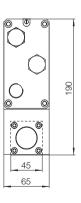
Mounting surface: 4401-03-02-0-05 (see table P005) (without ports A and B)

| Mass [kg]      |     |  |  |  |  |
|----------------|-----|--|--|--|--|
| RZMA-RES-*-010 | 8.5 |  |  |  |  |



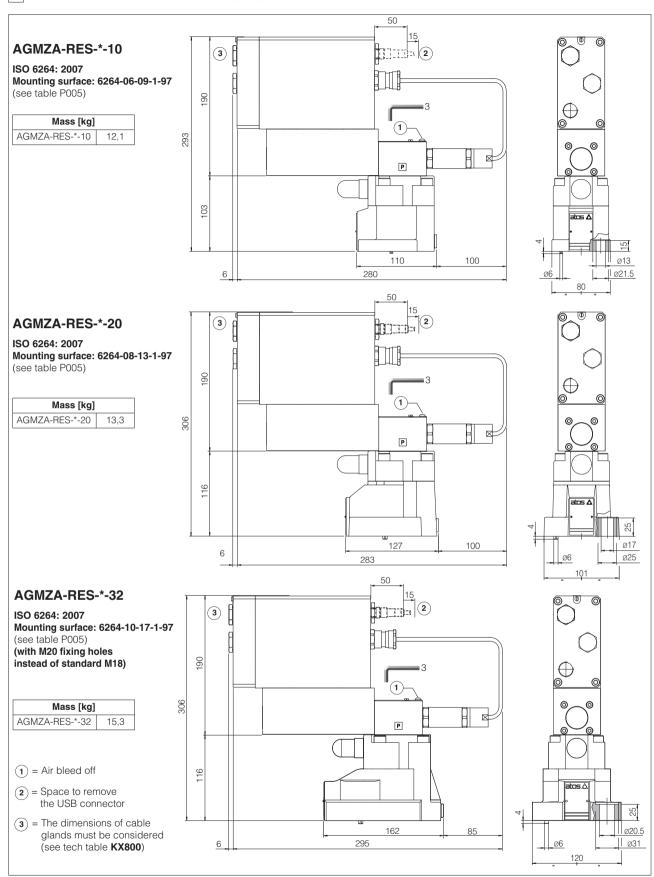



# RZMA-RES-\*-030


ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see table P005)

(ports A and B connected to port T)


| Mass [kg]      |     |  |  |  |  |
|----------------|-----|--|--|--|--|
| RZMA-RES-*-030 | 9,5 |  |  |  |  |

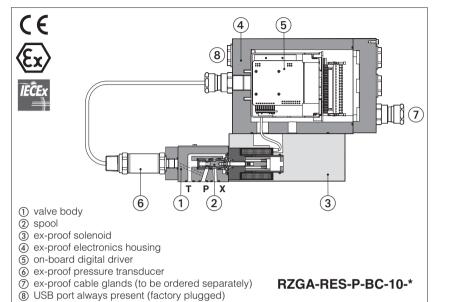




- $\bigcirc$  = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)






# 30 RELATED DOCUMENTATION

| X010<br>X020<br>FX900<br>GS500<br>GS510 | Basics for electrohydraulics in hazardous environments<br>Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO<br>Operating and manintenance informationfor ex-proof proportional valves<br>Programming tools<br>Fieldbus | GX800<br>KX800<br>P005 | Ex-proof pressure transducer type E-ATRA-7<br>Cable glands for ex-proof valves<br>Mounting surfaces for electrohydraulic valves |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|



# Ex-proof digital proportional reducing valves high performance

direct or piloted, with on-board driver and pressure transducer - ATEX and IECEx



## **RZGA-RES, AGRCZA-RES**

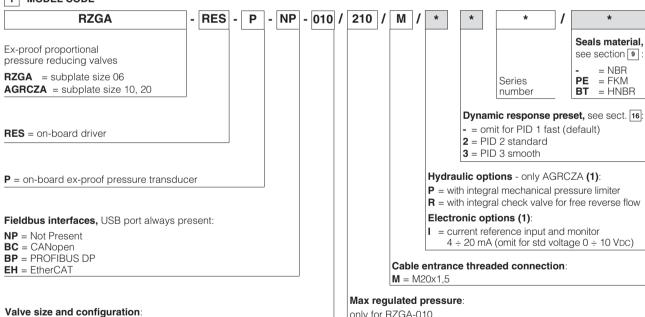
Ex-proof digital, high performance proportional reducing valves, direct or piloted, with pressure transducer for pressure closed loop controls

They are equipped with ex-proof on-board digital driver, pressure transducer and proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

Multicertification ATEX and IECEx

for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.


The driver and solenoid are also designed to limit the surface temperature within the classified limits.

RZGA, direct or piloted: Size: **06** - ISO 4401 Max flow: 12 and 40 l/min

AGRCZA, piloted: Size: 10 and 20 - ISO 5871 Max flow: 160 and 300 l/min

Max pressure: 250 bar

# 1 MODEL CODE



# RZGA: direct

**010** = Qmax 12 l/min RZGA: piloted 033 = Qmax 40 I/min **10, 20** = Qmax 160, 300 l/min AGRCZA: piloted

(1) Possible combined options: /IP, /IR, /PR

## 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



only for RZGA-010

only for RZGA-033 and AGRCZA

**100** = 100 bar

**180** = 180 bar

**32** = 32 bar

**80** = 80 bar

210 = 210 bar

**250** = 250 bar

# 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

## 4 VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: The below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table **GS500**):

E-SW-BASICsupport:NP (USB)PS (Serial)IR (Infrared)E-SW-FIELDBUSsupport:BC (CANopen)BP (PROFIBUS DP)EH (EtherCAT)

E-SW-\*/PQ EV (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

 $\triangle$ 

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

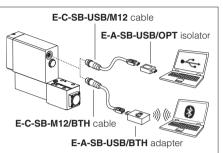


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

# 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 6 GENERAL CHARACTERISTICS


| Assembly position                      | Any position                                                                                                                                                             |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | RZGA-010 150 years, RZGA-033 and AGRCZA 75 years see technical table P007                                                                                                |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C                                                                                                                 |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                              |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                   |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                 |  |  |  |  |

# 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                   |                                       |           | RZGA AGRCZA |                     |  | AGRCZA |     |     |     |
|-------------------------------|---------------------------------------|-----------|-------------|---------------------|--|--------|-----|-----|-----|
| Size code                     |                                       |           |             | 010                 |  | 033    |     | 10  | 20  |
| Valve size                    |                                       |           |             | 06                  |  | 06     |     | 10  | 20  |
| Max regulated p               | oressure                              | [bar]     | 32          | 32 100 210 80 180 2 |  |        | 250 |     |     |
| Max pressure at               | t port P, A, B, X                     | [bar]     |             |                     |  |        | 315 |     |     |
| Max pressure at               | t port T, Y                           | [bar]     | 210         |                     |  |        |     |     |     |
| Min regulated p               | ressure                               | [bar]     |             | 0,8                 |  | 2,5    |     |     | 1,0 |
| Max flow                      |                                       | [l/min]   |             | 12                  |  | 40     |     | 160 | 300 |
| Response time (depending on i | 0-100% step signa<br>nstallation) (1) | l [ms]    | ≤ 50 ≤ 60   |                     |  | 60     |     |     |     |
| Hysteresis                    | [% of the max                         | oressure] | ≤0,3        |                     |  |        |     |     |     |
| Linearity                     | [% of the max                         | oressure] | ≤1,0        |                     |  |        |     |     |     |
| Repeatability                 | [% of the max                         | pressure] |             | ≤0,2                |  |        |     |     |     |

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

# **USB** or Bluetooth connection



# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                         |                                     |                                    |                                             |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                         |                                     |                                    |                                             |  |  |  |
| Analog input signals                | Voltage: range ±10 VDC<br>Current: range ±20 mA                                                                                                                              | (24 VMAX tollerant)                 | Input impedance<br>Input impedance | E: Ri > 50 kΩ<br>E: Ri = 500 Ω              |  |  |  |
| Insulation class                    | ISÒ 13732-1 and EN982 i                                                                                                                                                      | must be taken into a                |                                    | ls, the European standards                  |  |  |  |
| Monitor outputs                     | Voltage: range 0 ÷ 10 Vi<br>Current: range 0 ÷ 20 m                                                                                                                          | DC @ max 5 mA<br>nA @ max 500 Ω loa | d resistance                       |                                             |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF sta                                                                                                                                                    | ate), 15 ÷ 24 VDC (ON s             | tate), 9 ÷ 15 VDC (not acc         | epted); Input impedance: Ri > 87 k $\Omega$ |  |  |  |
| Fault output                        | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                     |                                    |                                             |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 mA                                                                                                                                                          | (E-ATRA-7 see tech                  | table <b>GX800</b> )               |                                             |  |  |  |
| Alarms                              | Solenoid not connected/s power supplies level, pre-                                                                                                                          |                                     |                                    | nce signal, over/under temperature,         |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant cab                                                                                                                                                    | ole gland                           |                                    |                                             |  |  |  |
| Duty factor                         | Continuous rating (ED=10                                                                                                                                                     | 00%)                                |                                    |                                             |  |  |  |
| Tropicalization                     | Tropical coating on electr                                                                                                                                                   | ronics PCB                          |                                    |                                             |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply            |                                     |                                    |                                             |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 610006-3)                                                                                            |                                     |                                    |                                             |  |  |  |
| Communication interface             | Atos ASCII coding EN                                                                                                                                                         | ANopen<br>N50325-4 + DS408          | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT,<br>EC 61158                       |  |  |  |
| Communication physical layer        | not insulated op USB 2.0 + USB OTG CA                                                                                                                                        | otical insulated<br>AN ISO11898     | optical insulated<br>RS485         | Fast Ethernet, insulated<br>100 Base TX     |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | I temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                             |               |  |  |
|----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed ra                                                                                                                                                                                                                                                       | ange 15 ÷ 500 mm²/s         |               |  |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | see also filter section at  |               |  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | www.atos.com or KTF catalog |               |  |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification              | Ref. Standard |  |  |
| Mineral oils               |                  | NBR, FKM, HNBR HL, HLP, HLPD, HVLP, HVLPD                                                                                                                                                                                                                                            |                             | DIN 51524     |  |  |
| Flame resistant without wa | iter             | FKM HFDU, HFDR                                                                                                                                                                                                                                                                       |                             | ISO 12922     |  |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                         | 130 12922     |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          |                                                            | RZMA, AGMZA                                                                                                                                                      |        |              |  |  |  |
|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--|--|--|
| Certifications                      |                                                            | Multicertification Group II  ATEX IECEX                                                                                                                          |        |              |  |  |  |
| Solenoid certified code             |                                                            | OZ                                                                                                                                                               | A-RES  |              |  |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068                                   | • ATEX: TUV IT 18 ATEX 068 X • IECEx: IECEx TPS 19.0004X                                                                                                         |        |              |  |  |  |
| Method of protection                |                                                            | • ATEX 2014/34/EU  EX II 2G Ex db IIC T6/T5/T4 Gb  EX II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX  Ex db IIC T6/T5/T4 Gb  Ex tb IIIC T85°C/T100°C/T135°C Db |        |              |  |  |  |
| Temperature class                   | Т6                                                         |                                                                                                                                                                  | T5     | T4           |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                    | ≤ 1                                                                                                                                                              | 00 °C  | ≤ 135 °C     |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                               | -40 ÷                                                                                                                                                            | +55 °C | -40 ÷ +70 °C |  |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1 |                                                                                                                                                                  |        |              |  |  |  |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5                                         |                                                                                                                                                                  |        |              |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

175

Power supply and signals: section of wire = 1,0 mm<sup>2</sup>

**Grounding:** section of external ground wire = 4 mm<sup>2</sup>

### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

# 12 CABLE GLANDS

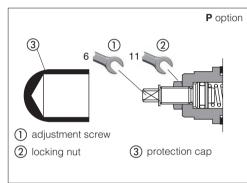
Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX600 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

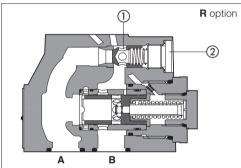
# 13 HYDRAULIC OPTIONS - only for AGRCZA

P = The AGRCZA are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

For the pressure setting of the mechanical pressure limiter, proceed according to following steps:


- apply the max reference input signal to the valve's driver. The system pressure will not increase until the mechanical pressure limiter remains unloaded
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal
- turn clockwise the adjustment screw ① of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working
- valve working


  L

  R = The AGRCZA are provided with integral check valve for free reverse flow A→B
  - ① Check valve cracking pressure = 0,5 bar ② Plug

# 14 ELECTRONIC OPTIONS

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vbc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vbc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.





## 15 POSSIBLE COMBINED OPTIONS

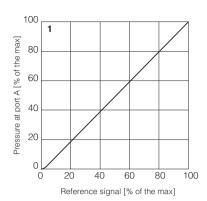
/IP, /IR, /PR

# **DYNAMIC RESPONSE** - 4 pressure PIDs

The valve is provided with 4 PIDs configurations to match different hydraulic conditions. The required PID configuration can be selected before the valve commissioning, through Atos E-SW software via USB port. Only for **RES** the PID can be also selected in real time, through PLC via fieldbus.

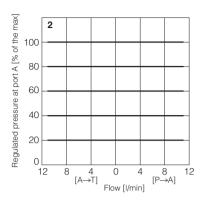
(1) interchangeable with previous TERS version

| PID | Dynamic response   |  |  |  |  |
|-----|--------------------|--|--|--|--|
| 1   | Fast - default (1) |  |  |  |  |
| 2   | Standard           |  |  |  |  |
| 3   | Smooth             |  |  |  |  |
| 4   | Open Loop          |  |  |  |  |

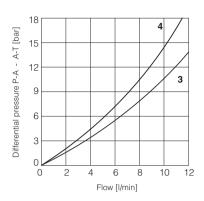

# 17 PRESSURE TRANSDUCER FAILURE

In case of pressure transducer failure, the valve's reaction can be configured through Atos E-SW software to:

- cut off the current to solenoid, therefore the regulated pressure will be reduced to minimum value (default setting)
- automatically switch the pressure control from closed loop (PID1,2,3) to open loop (PID4), to let the valve to temporarily operate with reduced regulation accuracy

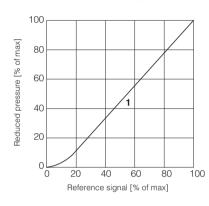

# 18 DIAGRAMS RZGA-010 (based on mineral oil ISO VG 46 at 50 °C)

**Regulation diagrams** with flow rate Q = 1 l/min



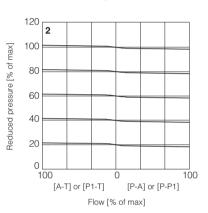

Pressure/flow diagrams

with reference signal set at Q = 1 l/min

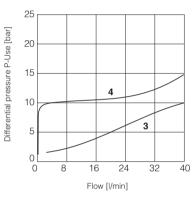



## 3-4 Min. pressure/flow diagrams with zero reference signal




- 3 = Pressure drops vs. flow P→A
- **4** = Pressure drops vs. flow  $A \rightarrow T$

- DIAGRAMS RZGA-033 (based on mineral oil ISO VG 46 at 50 °C)
- **Regulation diagrams** with flow rate Q = 10 l/min

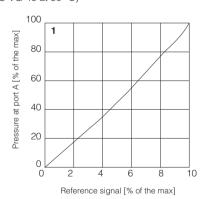



Pressure/flow diagrams

with reference pressure set with Q = 10 l/min



3-4 Pressure drop/flow diagram




- **3** = A-T or P1-T (dotted line /350) **4** = P-P1 or P-A

DIAGRAMS AGRCZA (based on mineral oil ISO VG 46 at 50 °C)

Note: the presence of counter pressure at port T can affect the effective pressure regulation

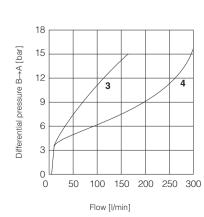
- **Regulation diagrams** with flow rate Q = 10 l/min
- Pressure/flow diagrams 2 with reference pressure set with Q = 10 l/min

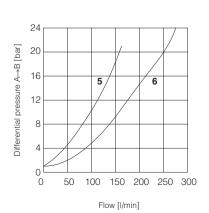


350 Regulated pressure at port A [bar] 280 210 140 80 Flow [% of the max]

Pressure drop/flow diagrams with zero reference signal

Differential pressure B→A


**3** = AGRCZA-\*-10


4 = AGRCZA-\*-20

Differential pressure A→B (through check valve)

**5** = AGRCZA-\*-10/\*/R

6 = AGRCZA-\*-20/\*/R





### 21 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 21.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

# 21.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 21.3 Pressure reference input signal (P INPUT+)

The driver controls in closed loop the current to the valve pressure proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  Vpc for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  Vpc or  $\pm 20$  mA.

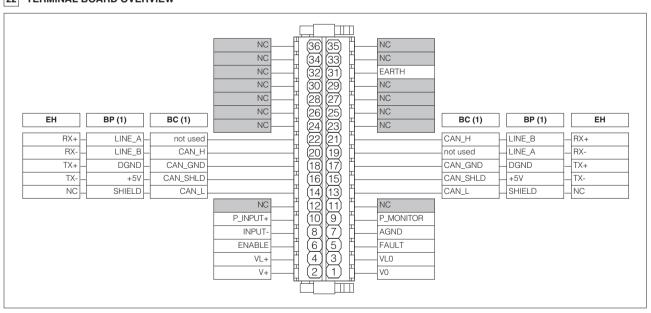
Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24Vpc.

# 21.4 Pressure monitor output signal (P\_MONITOR)

The driver generates an analog output signal proportional to the actual pressure of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, defaults settings are 0 ÷10 Vpc for standard and 4 ÷ 20 mA for /l option.

# Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of 0 ÷10 Vpc or 0 ÷ 20 mA.


## 21.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 21.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

# 22 TERMINAL BOARD OVERVIEW



(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

# 23 ELECTRONIC CONNECTIONS

# 23.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                       | NOTES                                        |
|-------------------|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                             | Gnd - power supply                           |
|                   | 2   | V+        | Power supply 24 Vpc                                                                                                                            | Input - power supply                         |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                        | Gnd - power supply                           |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                       | Input - power supply                         |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                      | Output - on/off signal                       |
| Δ                 | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                 | Input - on/off signal                        |
| $\overline{}$     | 7   | AGND      | Analog ground                                                                                                                                  | Gnd - analog signal                          |
|                   | 8   | INPUT-    | Negative pressure reference input signal for INPUT+                                                                                            | Input - analog signal                        |
|                   | 9   | P_MONITOR | Pressure monitor output signal: 0 $\div$ 10 Vpc / 0 $\div$ 20 mA maximum range, referred to AGND Default is: 0 $\div$ 10 Vpc or 4 $\div$ 20 mA | Output - analog signal Software selectable   |
|                   | 10  | P_INPUT+  | Pressure reference input signal: ±10 Vpc / ±20 mA maximum range Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option              | Input - analog signal<br>Software selectable |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                         |                                              |

# 23.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |  |
|-------------------|-----|---------|--------------------------|-------------|---|--|
|                   | 1   | +5V_USB | Power supply             | 1-2         |   |  |
|                   | 2   | ID      | Identification           | 5           |   |  |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |             |   |  |
|                   | 4   | D-      | Data line -              | (female)    |   |  |
|                   | 5   | D+      | Data line +              | (lemale)    |   |  |

# 23.3 BC fieldbus execution connections

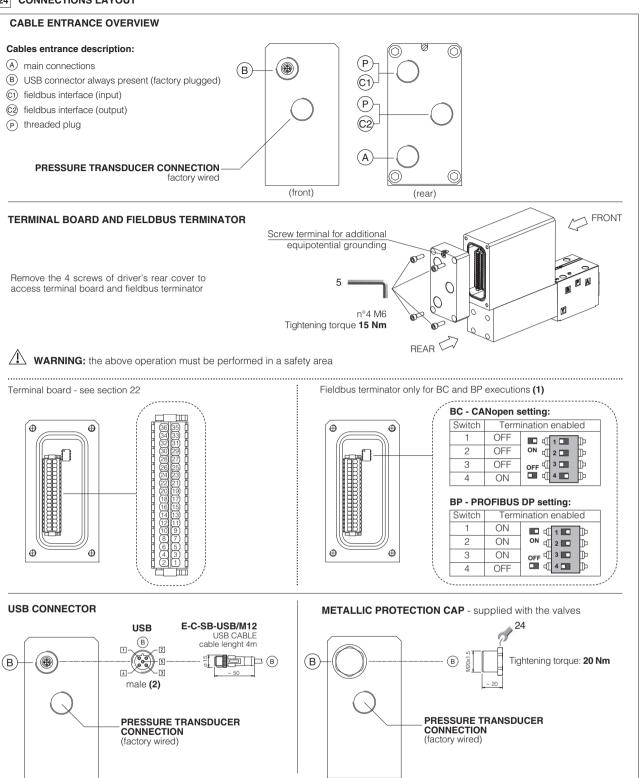
|   | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|---|-------------------|-----|----------|-----------------------------|
| Γ |                   | 14  | CAN_L    | Bus line (low)              |
|   | <b>~</b> 4        | 16  | CAN_SHLD | Shield                      |
|   | (;1]              | 18  | CAN_GND  | Signal zero data line       |
|   |                   | 20  | CAN_H    | Bus line (high)             |
|   |                   | 22  | not used | Pass-through connection (1) |

| ; | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|---|-------------------|-----|----------|-----------------------------|
|   |                   | 13  | CAN_L    | Bus line (low)              |
|   |                   | 15  | CAN_SHLD | Shield                      |
|   | C2                | 17  | CAN_GND  | Signal zero data line       |
|   |                   | 19  | not used | Pass-through connection (1) |
|   |                   | 21  | CAN_H    | Bus line (high)             |

<sup>(1)</sup> pin 19 and 22 can be fed with external +5V supply of CAN interface

# 23.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |


| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|----------|-----|--------|---------------------------------------|
|          | 13  | SHIELD |                                       |
|          | 15  | +5V    | Power supply                          |
| $C_{2}$  | 17  | DGND   | Data line and termination signal zero |
| <u> </u> | 19  | LINE_A | Bus line (high)                       |
|          | 21  | LINE_B | Bus line (low)                        |

# 23.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>•</b>          | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
|                   | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

## 24 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 24.1 Cable glands and threaded plug - see tech table KX800

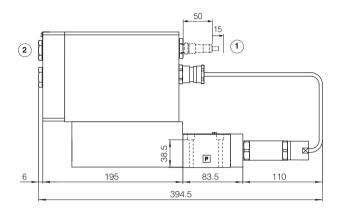
| Communication                             | То | be ordere         | d separat | ely                 | Cable entrance |                                                                             |
|-------------------------------------------|----|-------------------|-----------|---------------------|----------------|-----------------------------------------------------------------------------|
| interfaces                                |    | gland<br>entrance |           | ed plug<br>entrance | overview       | Notes                                                                       |
| NP                                        | 1  | А                 | none      | none                | (P)<br>(A)     | Cable entrance P are factory plugged Cable entrance A is open for costumers |
| BC, BP, EH "via stub" connection          | 2  | C1                | 1         | C2                  |                | Cable entrance A, C1, C2 are open for costumers                             |
| BC, BP, EH<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none      | none                |                | Cable entrance A, C1, C2 are open for costumers                             |

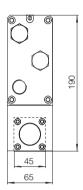
# 25 FASTENING BOLTS AND SEALS

# 25.1 RZGA valves

|   | RZGA-RES-*-010                                                                  | RZGA-RES-*-033                                                                  |
|---|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm |
| 0 | Seals: 4 OR 108 Diameter of ports P, A, T: Ø 5 mm                               | Seals: 4 OR 108 Diameter of ports P, A, T: Ø 7,5 mm                             |

# 25.2 AGRCZA valves

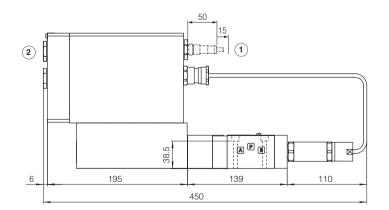

|   | AGRCZA-RES-*-10                                                                            | AGRCZA-RES-*-20                                                                            |
|---|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M10x45 class 12.9 Tightening torque = 70 Nm          | Fastening bolts: 4 socket head screws M10x45 class 12.9 Tightening torque = 70 Nm          |
| 0 | Seals: 2 OR 3068 Diameter of ports A, B: Ø 14 mm 2 OR 109/70 Diameter of port X, Y: Ø 5 mm | Seals: 2 OR 4100 Diameter of ports A, B: Ø 22 mm 2 OR 109/70 Diameter of port X, Y: Ø 5 mm |

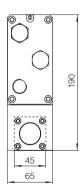

FX060

# RZGA-RES-\*-010

ISO 4401: 2005 Mounting surface: 4401-03-02-0-05 (see table P005) (port B not used)

| Mass [kg]      |     |  |  |  |  |
|----------------|-----|--|--|--|--|
| RZGA-RES-*-010 | 8,5 |  |  |  |  |



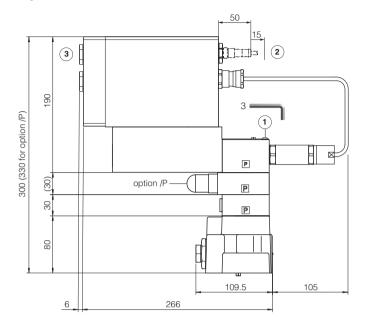



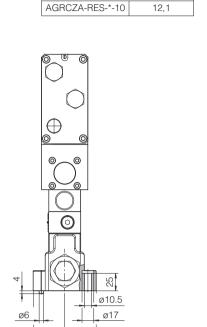

# RZGA-RES-\*-033

ISO 4401: 2005 Mounting surface: 4401-03-02-0-05 (see table P005) (ports A and B connected to port T)

| Mass [kg]      |     |  |  |  |  |
|----------------|-----|--|--|--|--|
| RZGA-RES-*-033 | 9,5 |  |  |  |  |





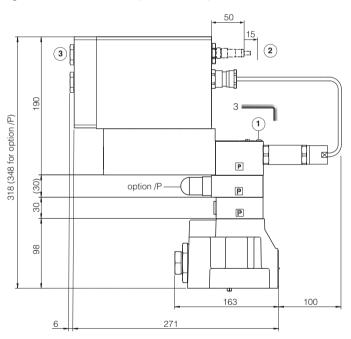


- 1 = Space to remove the USB connector
- 2 = The dimensions of cable glands must be considered (see tech table **KX800**)

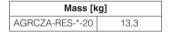
# AGRCZA-RES-\*-10

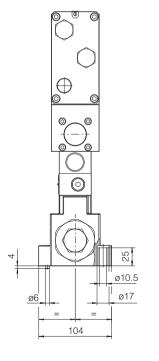
ISO 5781: 2000

Mounting surface: 5781-06-07-0-00 (see table P005)







Mass [kg]


# AGRCZA-RES-\*-20

ISO 5781: 2000

**Mounting surface: 5781-08-10-0-00** (see table P005)

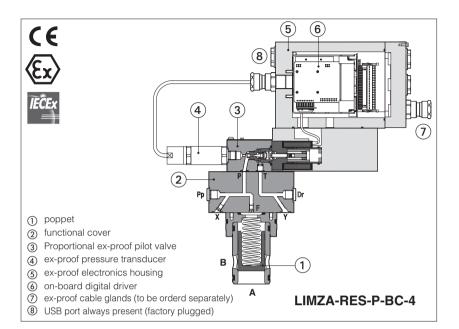






90

- (1) = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table KX800)


# 28 RELATED DOCUMENTATION

| X010<br>X020<br>FX900<br>GS500<br>GS510 | Basics for electrohydraulics in hazardous environments<br>Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO<br>Operating and manintenance informationfor ex-proof proportional valves<br>Programming tools<br>Fieldbus | GX800<br>KX800<br>P005 | Ex-proof pressure transducer type E-ATRA-7<br>Cable glands for ex-proof valves<br>Mounting surfaces for electrohydraulic valves |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|



# Ex-proof digital proportional pressure cartridges high performance

with on-board driver and pressure transducer - ATEX and IECEx



#### LICZA-RES, LIMZA-RES, LIRZA-RES

2-way ex-proof digital proportional pressure cartridges, high performance with pressure transducer, respectively performing: pressure compensator, relief or reducing functions.

They are equipped with ex-proof on-board digital driver, pressure transducer and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

# Multicertification ATEX and IECEx

for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

Size:  $16 \div 80$  -ISO7368 Max flow: up to 4500 l/min Max pressure: 250 bar

# Ex-proof proportional pressure cartridges LICZA = pressure compensator LIMZA = pressure relief LIRZA = pressure reducing

**RES** = on-board driver

**P** = on-board ex-proof pressure transducer

1 MODEL CODE FOR COVERS

Fieldbus interfaces, USB port always present:

**NP** = Not present

BC = CANopen

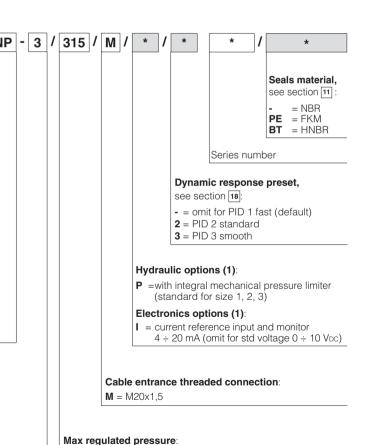
**BP** = PROFIBUS DP

**EH** = EtherCAT

#### Valve size ISO 7368:

**1** = 16

**2** = 25


**3** = 32

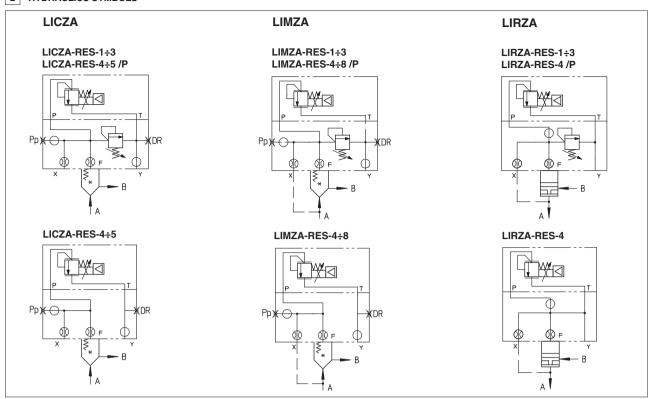
5 = 50 (not for LIRZA)

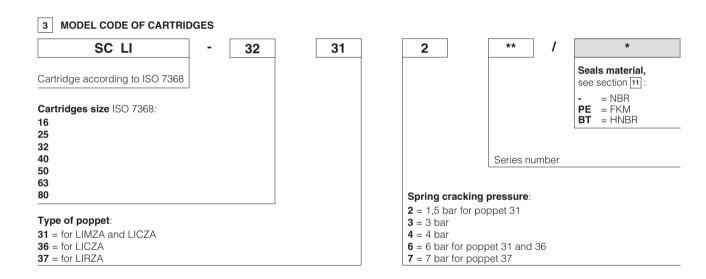
6 = 63 (only for LIMZA)

8 = 80; (only for LIMZA)

(1) Possible combined options: /IP




80 = 80 bar


**180** = 180 bar

**250** = 250 bar

FX320

# 2 HYDRAULICS SYMBOLS





# 4 TYPE OF POPPET

| Type of poppet                          | 31   | 36           | 37           |
|-----------------------------------------|------|--------------|--------------|
| Functional sketch<br>(Hydraulic symbol) | AP B | AP<br>B<br>B | AP<br>B<br>A |
| Typical section                         |      |              |              |
| Area ratio A: AP                        | 1:1  | 1:1          | 1:1          |

#### 5 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

USB or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

#### 6 VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET IRT)

 E-SW-\*/PQ
 support
 valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

### 7 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

#### 8 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                     |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                 |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                               |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /PE option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /BT option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C /PE option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C /BT option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                      |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 12 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                           |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                         |  |  |  |  |  |

#### 9 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                              | LICZA                |         |                                                    | LIMZA          |          |      |      |     | LIRZA |       |          |      |      |      |              |     |     |     |
|------------------------------------------|----------------------|---------|----------------------------------------------------|----------------|----------|------|------|-----|-------|-------|----------|------|------|------|--------------|-----|-----|-----|
| Valve size                               |                      | [l/min] | 1                                                  | 2              | 3        | 4    | 5    | 1   | 2     | 3     | 4        | 5    | 6    | 8    | 1            | 2   | 3   | 4   |
| Max flow                                 |                      | [bar]   | 200                                                | 400            | 750      | 1000 | 2000 | 200 | 400   | 750   | 1000     | 2000 | 3000 | 4500 | 160          | 300 | 550 | 800 |
| Min regulated pr                         | ressure              |         |                                                    | see section 20 |          |      |      |     |       |       |          |      |      |      |              |     |     |     |
| Max regulated pres. at port A [bar]      |                      |         |                                                    | 80             | ; 180; 2 | 250  |      |     |       | 80    | ; 180; 2 | 250  |      |      | 80; 180; 250 |     |     |     |
| Max pressure                             | Marriage             |         | Ports: T, Y = 210                                  |                |          |      |      |     |       |       |          |      |      |      |              |     |     |     |
| Max pressure                             |                      | [bar]   | Ports: P, A, B, X = 350                            |                |          |      |      |     |       |       |          |      |      |      |              |     |     |     |
| Response time (                          | 0-100% step signal ( |         |                                                    |                |          |      |      |     |       |       |          |      |      |      | 050          |     |     |     |
| (depending on in                         | stallation)          | [ms]    | $\leq 100 \div 350$ $\leq 100 \div 350$ $\leq 100$ |                |          |      |      |     | ≤ 100 | ÷ 250 |          |      |      |      |              |     |     |     |
| Hysteresis [% of regulated max pres.]    |                      |         | ≤0,5                                               |                |          |      |      |     |       |       |          |      |      |      |              |     |     |     |
| Linearity [% of regulated max pres.]     |                      | ≤1,0    |                                                    |                |          |      |      |     |       |       |          |      |      |      |              |     |     |     |
| Repeatibility [% of regulated max pres.] |                      |         | ≤0,2                                               |                |          |      |      |     |       |       |          |      |      |      |              |     |     |     |

(1) Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

FX320 PROPORTIONAL VALVES

# 10 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal :<br>Rectified and filtered :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +24 VDC<br>VRMS = 20 ÷ 32 VMAX                                                                                                                   | (ripple max 10 % VPP)              |                                             |  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--|--|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                    |                                             |  |  |  |  |  |
| Analog input signals                | Voltage: range ±10 VD0<br>Current: range ±20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C (24 VMAX tollerant)                                                                                                                            | Input impedance<br>Input impedance | Ri > 50 kΩ  Ri = 500 Ω                      |  |  |  |  |  |
| Insulation class                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |                                    |                                             |  |  |  |  |  |
| Monitor outputs                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voltage: range 0 ÷ 10 VDC @ max 5 mA<br>Current: range 0 ÷ 20 mA @ max 500 Ω load resistance                                                     |                                    |                                             |  |  |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tate), 15 ÷ 24 VDC (ON s                                                                                                                         | state), 9 ÷ 15 VDC (not acc        | epted); Input impedance: Ri > 87 k $\Omega$ |  |  |  |  |  |
| Fault output                        | Output range: 0 ÷ 24 VDC (ON state = VL+ [logic power supply]; OFF state = 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                    |                                             |  |  |  |  |  |
| Pressure transducer power supply    | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                    |                                             |  |  |  |  |  |
| Alarms                              | Solenoid not connected valve spool transducer r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  | reak with current refere           | nce signal, over/under temperature,         |  |  |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble gland                                                                                                                                        |                                    |                                             |  |  |  |  |  |
| Duty factor                         | Continuous rating (ED=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100%)                                                                                                                                            |                                    |                                             |  |  |  |  |  |
| Tropicalization                     | Tropical coating on elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tronics PCB                                                                                                                                      |                                    |                                             |  |  |  |  |  |
| Additional characteristics          | Short circuit protection of protection against revers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                  |                                    | P.I.D. with rapid solenoid switching;       |  |  |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2014/30/UE (Immunity:                                                                                                                            | EN 61000-6-2; Emission             | n: EN 61000-6-3)                            |  |  |  |  |  |
| Communication interface             | Atos ASCII coding E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CANopen<br>EN50325-4 + DS408                                                                                                                     | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT,<br>EC 61158                       |  |  |  |  |  |
| Communication physical layer        | not insulated outside | ptical insulated<br>CAN ISO11898                                                                                                                 | optical insulated<br>RS485         | Fast Ethernet, insulated<br>100 Base TX     |  |  |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 11 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                            |                             |  |  |  |
|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed ra                                                                                                                                                                                                                                                                                | ange 15 ÷ 500 mm²/s        |                             |  |  |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                   | see also filter section at |                             |  |  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1638 class 5                                                                                                                                                                                                                                                                        |                            | www.atos.com or KTF catalog |  |  |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification             | Ref. Standard               |  |  |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |  |  |
| Flame resistant without wa | ter              | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                |                            | ISO 12922                   |  |  |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                        | 130 12922                   |  |  |  |

extstyle ext

(1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

# 12 CERTIFICATION DATA

| Valve type                          | LICZA, LIMZA, LIRZA                                                       |         |                                        |                                     |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------|---------|----------------------------------------|-------------------------------------|--|--|--|
| Certifications                      | Multicertification Group II  ATEX IECEx                                   |         |                                        |                                     |  |  |  |
| Solenoid certified code OZA-RES     |                                                                           |         |                                        |                                     |  |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068                                                  | 3 X     | • IECEx: IEC                           | Ex TPS 19.0004X                     |  |  |  |
| Method of protection                | • ATEX 2014/34/EU Ex II 2G Ex db IIC T6/T5/T4 Ex II 2D Ex tb IIIC T85°C/T |         | • IECEx<br>Ex db IIC T<br>Ex tb IIIC T | 6/T5/T4 Gb<br>85°C/T100°C/T135°C Db |  |  |  |
| Temperature class                   | Т6                                                                        | T       | 5                                      | T4                                  |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                                   | ≤ 100   | ) °C                                   | ≤ 135 °C                            |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                              | -40 ÷ + | .55 °C                                 | -40 ÷ +70 °C                        |  |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 EN 60079-1                                         |         | IEC 60079-0 IEC 60079-31 IEC 60079-1   |                                     |  |  |  |
| Cable entrance: threaded connection | le entrance: threaded connection M = M20x1,5                              |         |                                        |                                     |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

13 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> Grounding: section of external ground wire = 4 mm<sup>2</sup>

#### 13.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

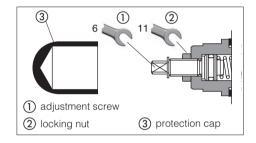
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

#### 14 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table KX600

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

#### 15 HYDRAULIC OPTIONS


P = Integral mechanical pressure limiter (standard for size 1, 2 and 3)

The LICZA, LIMZA and LIRZA standard size 1, 2, 3 and option /P are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

For the pressure setting of the mechanical pressure limiter, proceed according to following steps:

- apply the max reference input signal to the valve's driver. The system pressure will
  not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw ① of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.



#### 16 ELECTRONIC OPTIONS

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

#### 17 POSSIBLE COMBINED OPTIONS

/IP

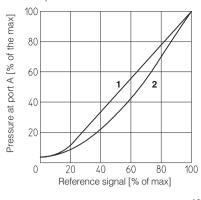
# 18 DYNAMIC RESPONSE - 4 pressure PIDs

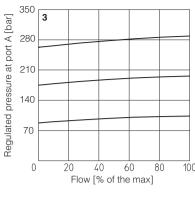
The valve is provided with 4 PIDs configurations to match different hydraulic conditions. The required PID configuration can be selected before the valve commissioning, through Atos E-SW software via USB port. Only for **RES** the PID can be also selected in real time, through PLC via fieldbus.

(1) interchangeable with previous TERS version

| PID | Dynamic response   |
|-----|--------------------|
| 1   | Fast - default (1) |
| 2   | Standard           |
| 3   | Smooth             |
| 4   | Open Loop          |

189


#### 19 PRESSURE TRANSDUCER FAILURE


In case of pressure transducer failure, the valve's reaction can be configured through Atos E-SW software to:

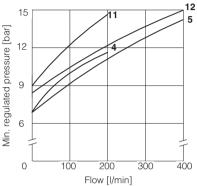
- cut off the current to solenoid, therefore the regulated pressure will be reduced to minimum value (default setting)
- automatically switch the pressure control from closed loop (PID1,2,3) to open loop (PID4), to let the valve to temporarily operate with reduced regulation accuracy

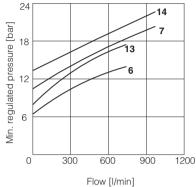
- Regulation diagrams LIMZA
- **Regulation diagrams LICZA**

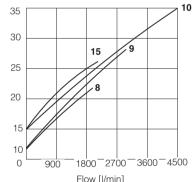
# Pressure/flow diagrams LICZA, LIMZA

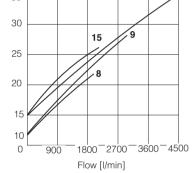





#### 4-14 Min. pressure/flow diagrams with zero reference signal


 = LIMZA-\*-1 = LICZA-\*-1 = LIMZA-\*-2 = LICZA-\*-2 


= LIMZA-\*-3 = LICZA-\*-3 = LIMZA-\*-4 = LICZA-\*-4


 = LIMZA-\*-5 = LICZA-\*-5 = LIMZA-\*-6

= LIMZA-\*-8



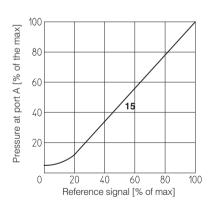


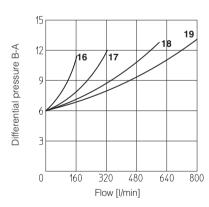




# Regulation diagrams LIRZA

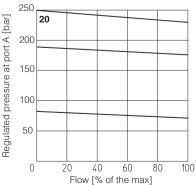
= LIRZA-A


#### 16-19 Min. pressure/flow diagrams with reference signal "null"


= LIRZA-\*-1

= LIRZA-\*-2

= LIRZA-\*-3


= LIRZA-\*-4





# Pressure/flow diagrams

= LIRZA-A



#### 21 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 21.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 21.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 21.3 Pressure reference input signal (P INPUT+)

The driver controls in closed loop the current to the valve pressure proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  Vpc for standard and  $4 \div 20$  mA for /l option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  Vpc or  $\pm 20$  mA.

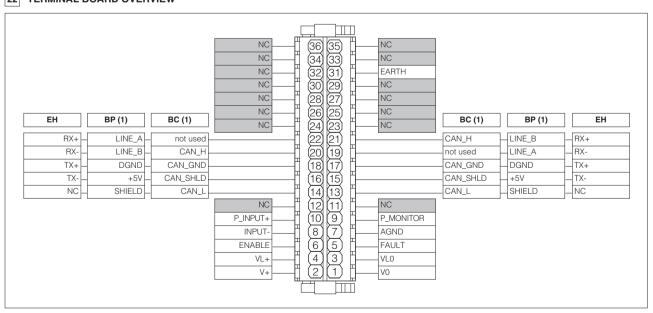
Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference).

Analog reference input signal can be used as on-off commands with input range  $0 \div 24 \text{Vpc}$ .

#### 21.4 Pressure monitor output signal (P\_MONITOR)

The driver generates an analog output signal proportional to the actual pressure of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, defaults settings are  $0 \div 10$  Vpc for standard and  $4 \div 20$  mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $0 \div 10$  Vpc or  $0 \div 20$  mA.


#### 21.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

#### 21.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

# 22 TERMINAL BOARD OVERVIEW



FX320

(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

191

# 23 ELECTRONIC CONNECTIONS

# 23.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                     | NOTES                                             |
|-------------------|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                           | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Vpc                                                                                                                                                          | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                      | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                     | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vbc) or normal working (24 Vbc), referred to VL0                                                                                                                    | Output - on/off signal                            |
| Δ                 | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                               | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                | Gnd - analog signal                               |
|                   | 8   | INPUT-    | Negative pressure reference input signal for INPUT+                                                                                                                          | Input - analog signal                             |
|                   | 9   | P_MONITOR | Pressure monitor output signal: $0 \div 10 \text{ Vpc} / 0 \div 20 \text{ mA}$ maximum range, referred to AGND Default is: $0 \div 10 \text{ Vpc}$ or $4 \div 20 \text{ mA}$ | Output - analog signal <b>Software selectable</b> |
|                   | 10  | P_INPUT+  | Pressure reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option                                         | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                       |                                                   |

# 23.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             |             |   |
|                   | 2   | ID      | Identification           | [           |   |
| B                 | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (famels)    |   |
|                   | 5   | D+      | Data line +              | (female)    |   |

# 23.3 BC fieldbus execution connections

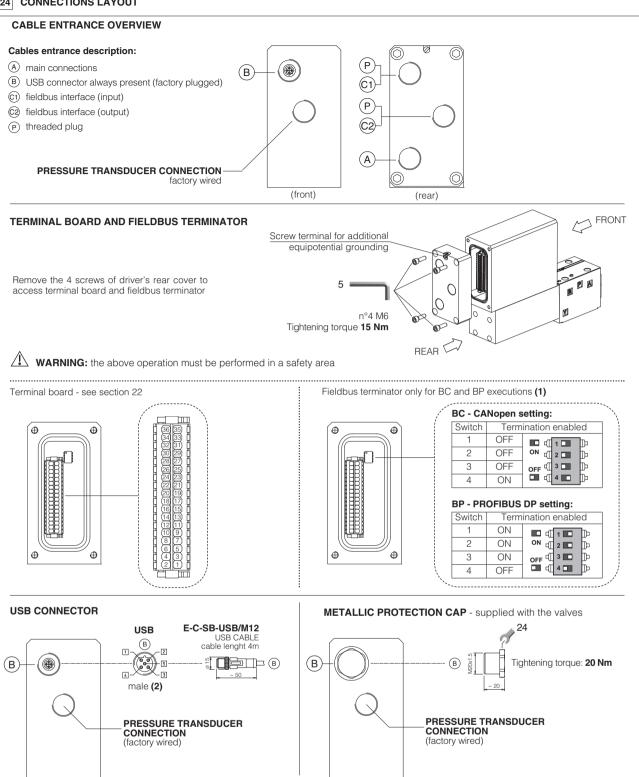
|   | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|---|-------------------|-----|----------|-----------------------------|--|
| ſ |                   | 14  | CAN_L    | Bus line (low)              |  |
|   | <b>~</b> 4        | 16  | CAN_SHLD | Shield                      |  |
|   | (;1]              | 18  | CAN_GND  | Signal zero data line       |  |
|   | <b>O</b> 1        | 20  | CAN_H    | Bus line (high)             |  |
|   |                   | 22  | not used | Pass-through connection (1) |  |

| CABLE<br>ENTRANCE                            | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|----------------------------------------------|-----|----------|-----------------------------|--|
|                                              | 13  | CAN_L    | Bus line (low)              |  |
|                                              | 15  | CAN_SHLD | Shield                      |  |
| C2                                           | 17  | CAN_GND  | Signal zero data line       |  |
| <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | 19  | not used | Pass-through connection (1) |  |
|                                              | 21  | CAN_H    | Bus line (high)             |  |

<sup>(1)</sup> pin 19 and 22 can be fed with external +5V supply of CAN interface

# 23.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |  |
|-------------------|-----|--------|---------------------------------------|--|
|                   | 14  | SHIELD |                                       |  |
|                   | 16  | +5V    | Power supply                          |  |
| ( ; 1             | 18  | DGND   | Data line and termination signal zero |  |
| •                 | 20  | LINE_B | Bus line (low)                        |  |
|                   | 22  | LINE_A | Bus line (high)                       |  |


| CABLE<br>ENTRANCE |    |        | TECHNICAL SPECIFICATIONS              |  |
|-------------------|----|--------|---------------------------------------|--|
|                   | 13 | SHIELD |                                       |  |
|                   | 15 | +5V    | Power supply                          |  |
| C2                | 17 | DGND   | Data line and termination signal zero |  |
| <u> </u>          | 19 | LINE_A | Bus line (high)                       |  |
|                   | 21 | LINE_B | Bus line (low)                        |  |

# 23.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ; 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

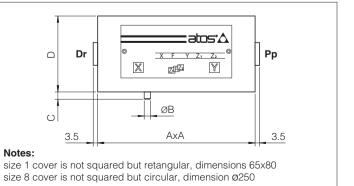
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |  |
|-------------------|-----|--------|--------------------------|--|
|                   | 13  | NC     | do not connect           |  |
|                   | 15  | TX-    | Transmitter              |  |
| (;2               | 17  | TX+    | Transmitter              |  |
| <u> </u>          | 19  | RX-    | Receiver                 |  |
| (output)          | 21  | RX+    | Receiver                 |  |

#### 24 CONNECTIONS LAYOUT

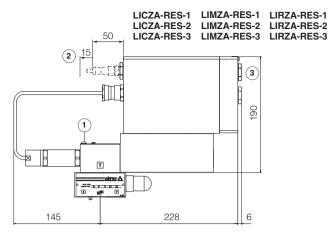


- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 24.1 Cable glands and threaded plug - see tech table KX800

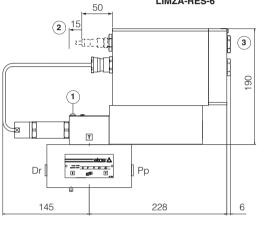

| Communication                             | То                | be ordere     | d separat | ely                 | Cable entrance |                                                                              |
|-------------------------------------------|-------------------|---------------|-----------|---------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                | Cable gland Threa |               |           | ed plug<br>entrance | overview       | Notes                                                                        |
| NP                                        | 1                 | А             | none      | none                | P<br>A         | Cable entrance P are factory plugged  Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2                 | C1            | 1         | C2                  |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP, EH<br>"daisy chain"<br>connection | 3                 | C1<br>C2<br>A | none      | none                |                | Cable entrance A, C1, C2 are open for costumers                              |

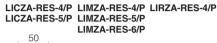
# 25 FASTENING BOLTS AND SEALS

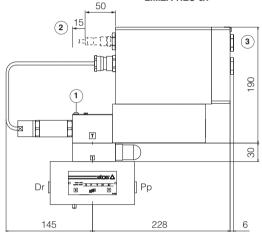

| Туре           | Size                                                                            | Fastening bolts                                                       | Seals     |  |
|----------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|--|
|                | <b>1</b> = 16                                                                   | 4 socket head screws M8x45 class 12.9<br>Tightening torque = 35 Nm    | 2 OR 108  |  |
| LIMZA<br>LICZA | <b>2</b> = 25                                                                   | 4 socket head screws M12x45 class 12.9<br>Tightening torque = 125 Nm  | 2 OR 108  |  |
| LIRZA          | <b>3</b> = 32 4 socket head screws M16x55 class 12.9 Tightening torque = 300 Nm |                                                                       | 2 OR 2043 |  |
|                | <b>4</b> = 40                                                                   | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |  |
| LIMZA<br>LICZA | <b>5</b> = 50                                                                   | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |  |
| LIMZA          | <b>6</b> = 63                                                                   | 4 socket head screws M30x90 class 12.9<br>Tightening torque = 2100 Nm | 2 OR 3050 |  |
| LIMZA          | <b>8</b> = 80                                                                   | 8 socket head screws M24x90 class 12.9<br>Tightening torque = 1000 Nm | 2 OR 4075 |  |

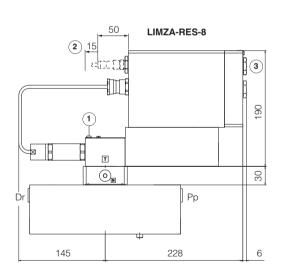
# 26 COVERS DIMENSIONS [mm]

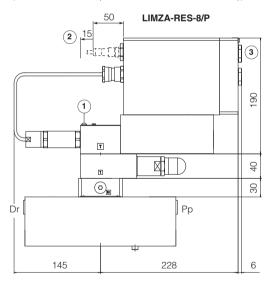
| Size          | AxA     | øВ | С | D  | Port<br>Pp - Dr |
|---------------|---------|----|---|----|-----------------|
| <b>1</b> = 16 | 65x80   | 3  | 4 | 40 | -               |
| <b>2</b> = 25 | 85x85   | 5  | 6 | 40 | -               |
| <b>3</b> = 32 | 100x100 | 5  | 6 | 50 | -               |
| <b>4</b> = 40 | 125x125 | 5  | 6 | 60 | G 1/4"          |
| <b>5</b> = 50 | 140x140 | 6  | 4 | 70 | G 1/4"          |
| <b>6</b> = 63 | 180x180 | 6  | 4 | 80 | G 3/8"          |
| <b>8</b> = 80 | ø250    | 8  | 6 | 80 | G 3/8"          |





# 27 INSTALLATION DIMENSIONS [mm]





| Mass [kg]     |               |       |           |  |  |  |
|---------------|---------------|-------|-----------|--|--|--|
|               | LICZA, LIMZA, | LIRZA | Cartridge |  |  |  |
| Size          | Standard      | SC LI |           |  |  |  |
| <b>1</b> = 16 | 11            | -     | 0,2       |  |  |  |
| <b>2</b> = 25 | 11,5          | -     | 0,5       |  |  |  |
| <b>3</b> = 32 | 12,8          | -     | 0,9       |  |  |  |
| <b>4</b> = 40 | 18,2          | 12,5  | 1,7       |  |  |  |
| <b>5</b> = 50 | 21,7          | 16    | 2,9       |  |  |  |
| <b>6</b> = 63 | 31,2          | 25,5  | 6,7       |  |  |  |
| <b>8</b> = 80 | 39,8          | 34,1  | 13,1      |  |  |  |


# LICZA-RES-4 LIMZA-RES-4 LIRZA-RES-4 LIMZA-RES-5 LIMZA-RES-6





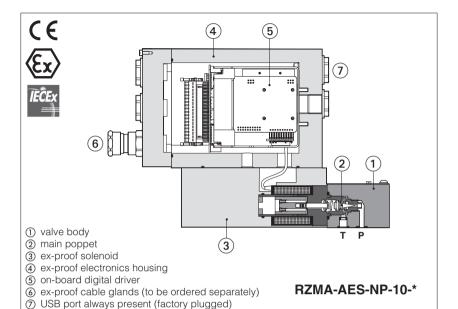






Note: for ISO 7368 mounting surface and cavity dimensions, see tech. table P006

- (1) = Screw for air bleeding: at the first valve commissioning the air eventually trapped inside the solenoid must be bled-off though the screw
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# 28 RELATED DOCUMENTATION

| X010<br>X020<br>FX900 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and manintenance informationfor ex-proof proportional valves | GX800<br>KX800<br>P006 | Ex-proof pressure transducer type E-ATRA-7<br>Cable glands for ex-proof valves<br>Mounting surfaces and cavities for cartridge valves |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| GS500                 | Programming tools                                                                                                                                                                                     |                        |                                                                                                                                       |
| GS510                 | Fieldbus                                                                                                                                                                                              |                        |                                                                                                                                       |



# Ex-proof digital proportional relief valves

direct or piloted, with on-board driver and without transducer - ATEX and IECEx



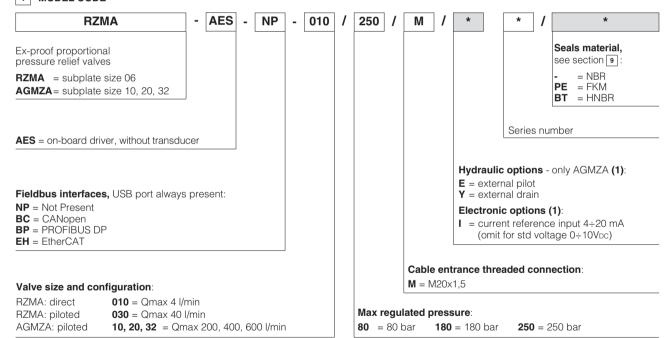
# **RZMA-AES, AGMZA-AES**

Ex-proof digital proportional relief valves direct or piloted without transducer for pressure open loop controls.

They are equipped with ex-proof on-board digital driver and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

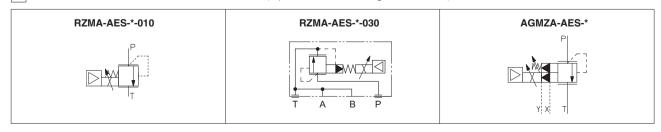
Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver and solenoid, prevents the propagation of accidental internal sparks or fire to the external environment


The driver and solenoid are also designed to limit the surface temperature within the classified limits

RZMA, direct or piloted: Size: 06 -ISO 4401 Max flow: 4 and 40 I/min

**AGMZA**, piloted: Size: **10**, **20** and **32** -ISO 6264 Max flow: 200, 400 and 600 I/min


Max pressure: 250 bar

# **MODEL CODE**



(1) Possible combined options: /EY, /EI, /YI

# 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



# 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

#### 4 VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared)
E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
FW (POWERI INK) FL (EtherNet/IP) FP (PROFINET)

E-SW-\*/PQ EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

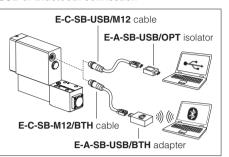


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

#### 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

#### 6 GENERAL CHARACTERISTICS


| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | RZMA-010 150 years, RZMA-030 and AGMZA 75 years, see technical table P007                                                                                                                |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C                                                                                                                                 |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                 |  |  |  |  |  |

#### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                      |         | RZMA                                                         |            |     | AGMZA |       |       |
|------------------------------------------------------------------|---------|--------------------------------------------------------------|------------|-----|-------|-------|-------|
| Size code                                                        |         | 010                                                          | 010 030    |     | 10    | 20    | 32    |
| Valve size                                                       |         | 06 10 20                                                     |            |     |       | 32    |       |
| Max regulated pressure                                           | [bar]   |                                                              | 80 180 250 |     |       |       |       |
| Min regulated pressure                                           | [bar]   | see min. pressure / flow diagrams at sections [18] [19] [20] |            |     |       |       |       |
| Max pressure at port P, A, B, X                                  | [bar]   | 315                                                          |            |     |       |       |       |
| Max pressure at port T, Y                                        | [bar]   |                                                              |            | 210 |       |       |       |
| Max flow                                                         | [l/min] | 4                                                            | 40         |     | 200   | 400   | 600   |
| Response time 0-100% step signal (depending on installation) (1) | [ms]    | ≤                                                            | ≤80        |     | ≤ 130 | ≤ 145 | ≤ 160 |
| Hysteresis [% of the max pressure]                               |         | ≤ 1,5                                                        |            |     |       |       |       |
| Linearity [% of the max pressure]                                |         | ≤3                                                           |            |     |       |       |       |
| Repeatability [% of the max pressur                              | e]      |                                                              |            | ≤2  |       |       |       |

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

#### USB or Bluetooth connection



# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal<br>Rectified and filtered                                                                                                                                 | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                         |                                   |                                            |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                              | 35 W                                                                                                                                                                         |                                   |                                            |  |  |  |
| Analog input signals                |                                                                                                                                                                   | Voltage: range ±10 VDC (24 VMAX tollerant)                                                                                                                                   |                                   |                                            |  |  |  |
| Insulation class                    |                                                                                                                                                                   | ccuring surface tempera<br>82 must be taken into a                                                                                                                           |                                   | ils, the European standards                |  |  |  |
| Monitor outputs                     | Voltage: maximum ra                                                                                                                                               | nge ± 5 Vpc @ max                                                                                                                                                            | 5 mA                              |                                            |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF                                                                                                                                             | state), 15 ÷ 24 VDC (ON                                                                                                                                                      | state), 9 ÷ 15 VDC (not ac        | cepted); Input impedance: Ri > $87k\Omega$ |  |  |  |
| Fault output                        | Output range: 0 ÷ 24 external negative volta                                                                                                                      | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                   |                                            |  |  |  |
| Alarms                              |                                                                                                                                                                   | ed/short circuit, cable be<br>ring, power supplies lev                                                                                                                       |                                   | ce signal, over/under temperature,         |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                             | cable gland                                                                                                                                                                  |                                   |                                            |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                             | =100%)                                                                                                                                                                       |                                   |                                            |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                            | ectronics PCB                                                                                                                                                                |                                   |                                            |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                                                                                                              |                                   |                                            |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                |                                                                                                                                                                              |                                   |                                            |  |  |  |
| Communication interface             | USB<br>Atos ASCII coding                                                                                                                                          | CANopen<br>EN50325-4 + DS408                                                                                                                                                 | PROFIBUS DP<br>EN50170-2/IEC61158 | EtherCAT<br>EC 61158                       |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                | optical insulated<br>CAN ISO11898                                                                                                                                            | optical insulated<br>RS485        | Fast Ethernet, insulated<br>100 Base TX    |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                             |               |  |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|
| Recommended viscosity      |                  | 20 ÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                                                       |                             |               |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | see also filter section at  |               |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | www.atos.com or KTF catalog |               |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification              | Ref. Standard |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |
| Flame resistant without wa | ter              | FKM                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                  | ISO 12922     |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                              | HFC                         | 1 100 12922   |  |

1 The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar

-max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          | RZMA, AGMZA                                                                                                                                                  |                             |      |          |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|----------|--|--|--|
| Certifications                      |                                                                                                                                                              | Multicertification Group II |      |          |  |  |  |
| Solenoid certified code             |                                                                                                                                                              | ATEX IECEX OZA-AES          |      |          |  |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X                                                                                                     |                             |      |          |  |  |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |                             |      |          |  |  |  |
| Temperature class                   | Т6                                                                                                                                                           | T5                          | i    | T4       |  |  |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                      | ≤ 100                       | ) °C | ≤ 135 °C |  |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                 | -40 ÷ +70 °C                |      |          |  |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 IEC 60079-0 IE<br>EN 60079-1 IEC 60079-1                                                                                              |                             |      |          |  |  |  |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5                                                                                                                                           |                             |      |          |  |  |  |

(1) The type examinator certificates can be downloaded from www.atos.com

(2) The driver and solenoids are certified for minimum ambient temperature -40°C.

In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

Power supply and signals: section of wire = 1,0 mm<sup>2</sup>

**Grounding:** section of external ground wire = 4 mm<sup>2</sup>

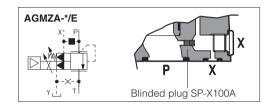
#### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

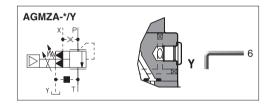
#### 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX600 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads


# 13 HYDRAULIC OPTIONS - only for AGMZA

E = External pilot option to be selected when the pilot pressure is supplied from a different line respect to the P main line.

With option E the internal connection between port P and X of the valve is plugged. The pilot pressure must be connected to the X port available on the valve's mounting surface or on main body (threaded pipe connection G ¼").


Y = The external drain is mandatory in case the main line T is subjected to pressure peaks or it is pressurized.

The Y drain port has a threaded connection G 1/4" available on the pilot stage body.



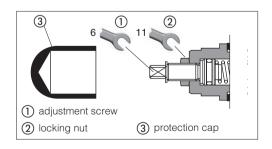
#### 14 ELECTRONIC OPTIONS

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vbc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vbc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.



#### 15 POSSIBLE COMBINED OPTIONS

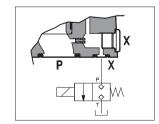
/EY, /EI, /YI


# 16 MECHANICAL PRESSURE LIMITER - only for AGMZA

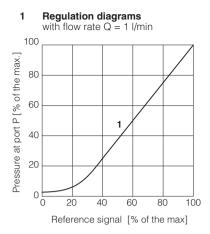
The AGMZA are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

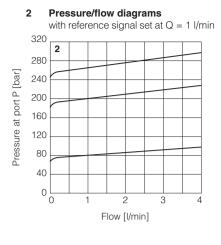
At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

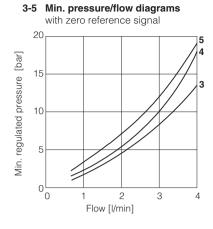
For the pressure setting of the mechanical pressure limiter, proceed according to following steps:


- apply the max reference input signal to the valve's driver. The system pressure will not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw (1) of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.




# 17 REMOTE PRESSURE UNLOADING - only for AGMZA


The **P** main line can be remotely unloaded by connecting the valve X port to a solenoid valve as shown in the below scheme (venting valve).

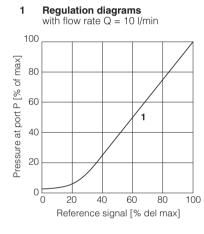

This function can be used in emergency to unload the system pressure by-passing the proportional control.

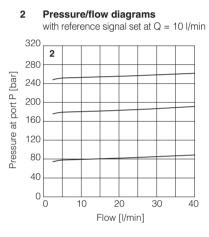


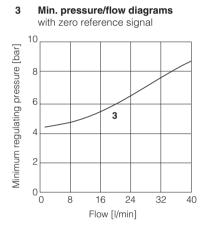
# 18 DIAGRAMS RZMA-010 (based on mineral oil ISO VG 46 at 50 °C)







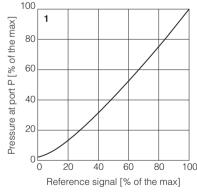


**3** = RZMA/80

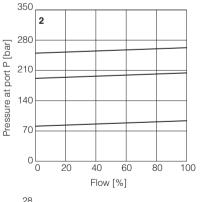

**4** = RZMA/180 **5** = RZMA/250

**Note**: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure

# 19 DIAGRAMS RZMA-030 (based on mineral oil ISO VG 46 at 50 °C)



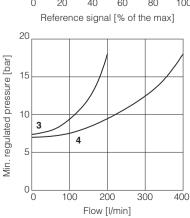


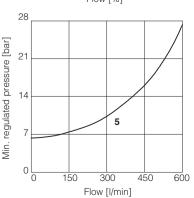




Note: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure

#### 20 DIAGRAMS AGMZA (based on mineral oil ISO VG 46 at 50 °C)






2 = Pressure/flow diagrams with reference signal set at Q = 50 l/min









#### 21 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 21.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 21.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 21.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

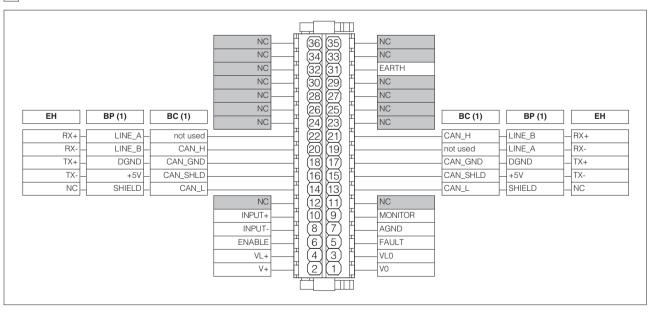
Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

#### 21.4 Monitor output signal (MONITOR)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is 0 ÷ 5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.


#### 21.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 Vpc on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

#### 21.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

#### 22 TERMINAL BOARD OVERVIEW



# 23 ELECTRONIC CONNECTIONS

# 23.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                                                                                                 | NOTES                                             |
|-------------------|-----|---------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0      | Power supply 0 Vpc                                                                                                       | Gnd - power supply                                |
|                   | 2   | V+      | Power supply 24 Vpc                                                                                                      | Input - power supply                              |
|                   | 3   | VL0     | Power supply 0 Vpc for driver's logic and communication                                                                  | Gnd - power supply                                |
|                   | 4   | VL+     | Power supply 24 Vpc for driver's logic and communication                                                                 | Input - power supply                              |
|                   | 5   | FAULT   | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                | Output - on/off signal                            |
| Λ                 | 6   | ENABLE  | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                           | Input - on/off signal                             |
|                   | 7   | AGND    | Analog ground                                                                                                            | Gnd - analog signal                               |
|                   | 8   | INPUT-  | Negative reference input signal for INPUT+                                                                               | Input - analog signal                             |
|                   | 9   | MONITOR | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                         | Output - analog signal <b>Software selectable</b> |
|                   | 10  | INPUT+  | Reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |
|                   | 31  | EARTH   | Internally connected to driver housing                                                                                   |                                                   |

# 23.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             |             |   |
|                   | 2   | ID      | Identification           |             |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (female)    |   |
|                   | 5   | D+      | Data line +              | (Ternale)   |   |

#### 23.3 BC fieldbus execution connections

| CABLE<br>ENTRANC | E PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|------------------|-------|----------|-----------------------------|
|                  | 14    | CAN_L    | Bus line (low)              |
|                  | 16    | CAN_SHLD | Shield                      |
| (;1              | 18    | CAN_GND  | Signal zero data line       |
|                  | 20    | CAN_H    | Bus line (high)             |
|                  | 22    | not used | Pass-through connection (1) |

| IONS | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|------|-------------------|-----|----------|-----------------------------|
|      |                   | 13  | CAN_L    | Bus line (low)              |
|      |                   | 15  | CAN_SHLD | Shield                      |
|      | C2                | 17  | CAN_GND  | Signal zero data line       |
|      |                   | 19  | not used | Pass-through connection (1) |
| )    |                   | 21  | CAN_H    | Bus line (high)             |

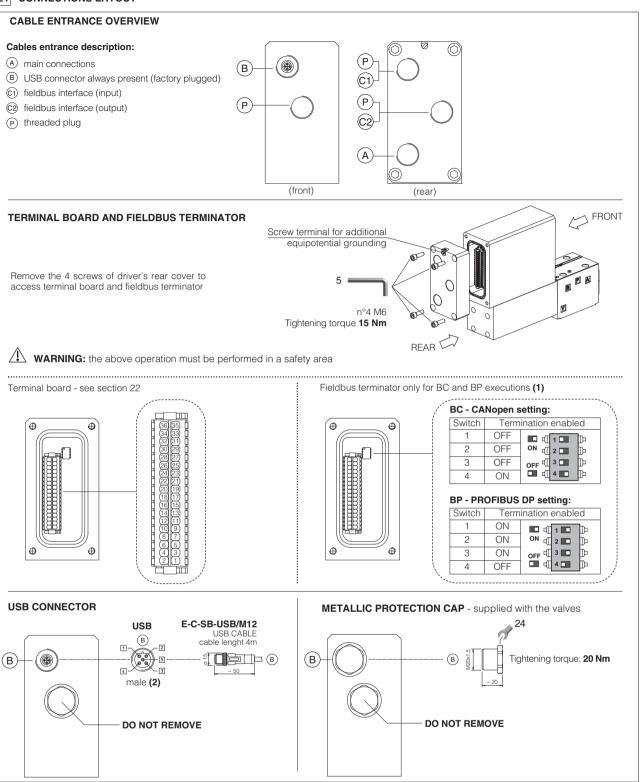
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 23.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| <b>(</b> ;1       | 18  | DGND   | Data line and termination signal zero |
|                   | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|----------|-----|--------|---------------------------------------|
|          | 13  | SHIELD |                                       |
|          | 15  | +5V    | Power supply                          |
| (;2      | 17  | DGND   | Data line and termination signal zero |
| <u> </u> | 19  | LINE_A | Bus line (high)                       |
|          | 21  | LINE_B | Bus line (low)                        |

# 23.5 EH fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| •                 | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
|                   | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

FX020 PROPORTIONAL VALVES

203

#### 24 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# ${\bf 24.1~Cable~glands~and~threaded~plug}$ - see tech table ${\bf KX800}$

| Communication                             | To be ordered separately |                   |      | ely                 | Cable entrance                                 |                                                                             |
|-------------------------------------------|--------------------------|-------------------|------|---------------------|------------------------------------------------|-----------------------------------------------------------------------------|
| interfaces                                |                          | gland<br>entrance |      | ed plug<br>entrance | overview                                       | Notes                                                                       |
| NP                                        | 1                        | А                 | none | none                | (P) (P) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | Cable entrance P are factory plugged Cable entrance A is open for costumers |
| BC, BP, EH "via stub" connection          | 2                        | C1                | 1    | C2                  |                                                | Cable entrance A, C1, C2 are open for costumers                             |
| BC, BP, EH<br>"daisy chain"<br>connection | 3                        | C1<br>C2<br>A     | none | none                |                                                | Cable entrance A, C1, C2 are open for costumers                             |

# 25 FASTENING BOLTS AND SEALS

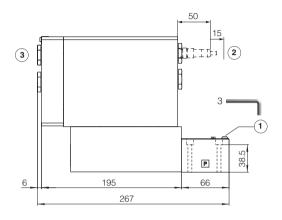
# 25.1 RZMA valves

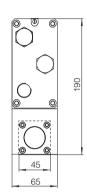
| RZMA-AES-*-010                             | RZMA-AES-*-030                                                                                   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                            |                                                                                                  |
| Fastening bolts:                           | Fastening bolts:                                                                                 |
| 4 socket head screws M5x50 class 12.9      | 4 socket head screws M5x50 class 12.9                                                            |
| Tightening torque = 8 Nm                   | Tightening torque = 8 Nm                                                                         |
|                                            |                                                                                                  |
| Seals:                                     | Seals:                                                                                           |
| 2 OR 108<br>Diameter of ports P, T: Ø 5 mm | 4 OR 108<br>Diameter of ports P, T: Ø 7,5 mm                                                     |
|                                            | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm  Seals: 2 OR 108 |

# 25.2 AGMZA valves

|     | AGMZA-AES-*-10                         | AGMZA-AES-*-20                         | AGMZA-AES-*-32                         |
|-----|----------------------------------------|----------------------------------------|----------------------------------------|
|     |                                        |                                        |                                        |
| W   | Fastening bolts:                       | Fastening bolts:                       | Fastening bolts:                       |
|     | 4 socket head screws M12x35 class 12.9 | 4 socket head screws M16x50 class 12.9 | 4 socket head screws M20x60 class 12.9 |
|     | Tightening torque = 125 Nm             | Tightening torque = 300 Nm             | Tightening torque = 600 Nm             |
|     |                                        |                                        |                                        |
|     |                                        |                                        |                                        |
|     | Seals:                                 | Seals:                                 | Seals:                                 |
|     | 2 OR 123                               | 2 OR 4112                              | 2 OR 4131                              |
| ( ) | Diameter of ports P, T: Ø 14 mm        | Diameter of ports P, T: Ø 24 mm        | Diameter of ports P, T: Ø 28 mm        |
|     | 1 OR 109/70                            | 1 OR 109/70                            | 1 OR 109/70                            |
|     | Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           |
|     |                                        |                                        |                                        |

FX020

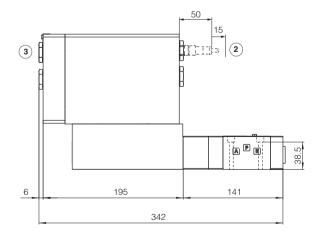

PROPORTIONAL VALVES 205

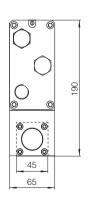

# RZMA-AES-\*-010

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see table P005) (without ports A and B)

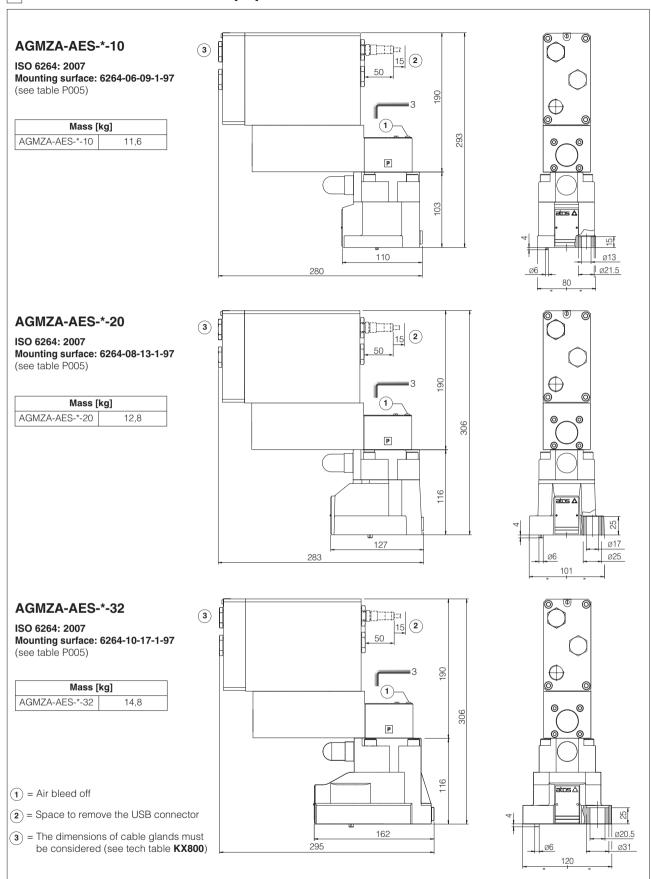
| Mass [kg]      |   |  |  |  |
|----------------|---|--|--|--|
| RZMA-AES-*-010 | 8 |  |  |  |




# RZMA-AES-\*-030

ISO 4401: 2005 Mounting surface: 4401-03-02-0-05 (see table P005) (ports A and B connected to port T)


| Mass [kg]      |   |  |  |  |
|----------------|---|--|--|--|
| RZMA-AES-*-030 | 9 |  |  |  |

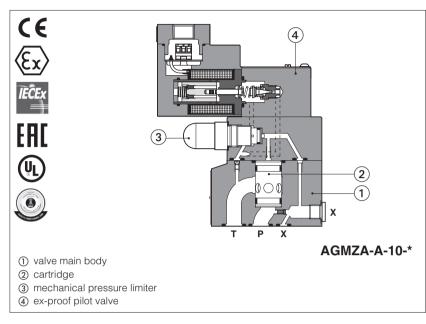




- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

# 27 INSTALLATION DIMENSIONS FOR AGMZA [mm]




#### 28 RELATED DOCUMENTATION

| <b>X010</b> Ba  | asics for electrohydraulics in hazardous environments                                                                                                         | GS510         | Fieldbus                                                                          |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------|--|
| <b>FX900</b> Op | ummary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO perating and manintenance informationfor ex-proof proportional valves rogramming tools | KX800<br>P005 | Cable glands for ex-proof valves<br>Mounting surfaces for electrohydraulic valves |  |



# **Ex-proof proportional relief valves**

direct or piloted, without transducer - ATEX, IECEx, EAC, PESO or cULus



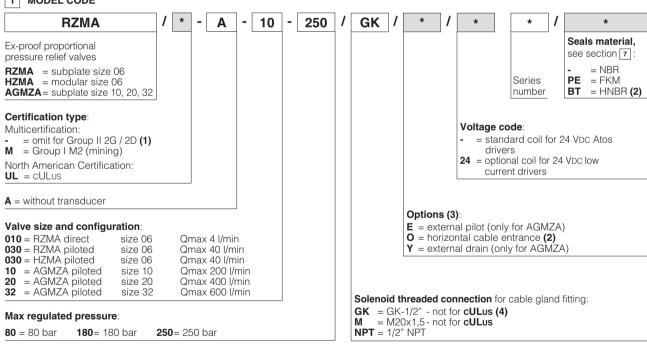
#### RZMA-A, HZMA-A, AGMZA-A

Ex-proof proportional relief valves direct or piloted, without transducer for open loop pressure controls.

They are equipped with ex-proof proportional solenoid, certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:

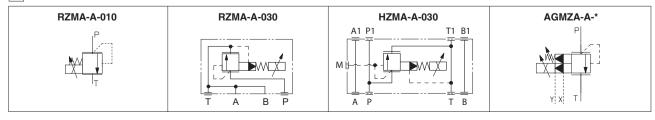
- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D


RZMA, direct or piloted: Size: 06 - ISO 4401 Max flow: 4 and 40 l/min HZMA, direct or piloted: Size: 06 - ISO 4401

Max flow: 40 I/min

**AGMZA**, piloted: Size: **10**, **20** and **32** - ISO 6264 Max flow: **200**, **400** and **600** I/min

Max pressure: 250 bar


# 1 MODEL CODE



- (1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining) (3) Possible combined options: /EO, /EY, /OY (4) Approved only for the Italian market

🗥 The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

#### 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



# 3 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A E-BM-AES-* /A |         |  |  |
|---------------|----------------------------|---------|--|--|
| Туре          | digital                    | digital |  |  |
| Format        | DIN-rail panel             |         |  |  |
| Data sheet    | G030 GS050                 |         |  |  |

# 4 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                   |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years; 150 years only for RZMA-010, see technical table P007                                                                                                                |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C <b>/PE</b> option = $-20^{\circ}$ C $\div$ +70°C <b>/BT</b> option = $-40^{\circ}$ C $\div$ +70°C                               |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                     |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 8 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                                    |  |  |  |  |

# 5 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                      |         | RZI                                                    | MA     | HZMA |       | AGMZA |       |
|------------------------------------------------------------------|---------|--------------------------------------------------------|--------|------|-------|-------|-------|
| Size code                                                        | 010     | 030                                                    | 030    | 10   | 20    | 32    |       |
| Valve size                                                       |         |                                                        | 06     |      | 10    | 20    | 32    |
| Max regulated pressure                                           | [bar]   |                                                        | 80 180 |      |       |       |       |
| Min regulated pressure                                           | [bar]   | see min. pressure / flow diagrams at sections 15 16 17 |        |      |       |       |       |
| Max pressure at port P, A, B, X                                  | [bar]   | 315                                                    |        |      |       |       |       |
| Max pressure at port T, Y                                        | [bar]   | 210                                                    |        |      |       |       |       |
| Max flow                                                         | [l/min] | 4                                                      | 40     | 40   | 200   | 400   | 600   |
| Response time 0-100% step signal (depending on installation) (1) | [ms]    |                                                        | ≤80    |      | ≤ 130 | ≤ 145 | ≤ 160 |
| Hysteresis[% of the max pressure]                                |         | ≤ 1,5                                                  |        |      |       |       |       |
| Linearity[% of the max pressure]                                 |         | ≤3                                                     |        |      |       |       |       |
| Repeatability[% of the max pressur                               | e]      | ≤2                                                     |        |      |       |       |       |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 3

# 6 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35                                                                              | 35W                                                                                                                                              |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insulation class                            | , , ,                                                                           | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | ·                                                                                                                                                |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |
| Voltage code                                | standard                                                                        | option /24                                                                                                                                       |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 17,6 Ω                                                                                                                                           |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 1,1 A                                                                                                                                            |  |  |

# 7 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

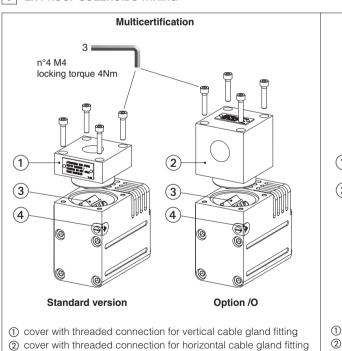
| Seals, recommended fluid temperature                       |  | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                                                   |                             |  |
|------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--|
| Recommended viscosity                                      |  | 20 ÷ 100 mm²/s - max allowed r                                                                                                                                                                                                                                                                                                         | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                             |  |
| Max fluid normal operation contamination level longer life |  | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | 638 class 7                                       | see also filter section at  |  |
|                                                            |  | ISO4406 class 16/14/11 NAS1638 class 5                                                                                                                                                                                                                                                                                                 |                                                   | www.atos.com or KTF catalog |  |
| Hydraulic fluid                                            |  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification                                    | Ref. Standard               |  |
| Mineral oils                                               |  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD                        | DIN 51524                   |  |
| Flame resistant without water                              |  | FKM                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                                        | ISO 12922                   |  |
| Flame resistant with water (1)                             |  | NBR, HNBR                                                                                                                                                                                                                                                                                                                              | HFC                                               | 130 12922                   |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

-max operating pressure = 210 bar -max fluid temperature = 50°C

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

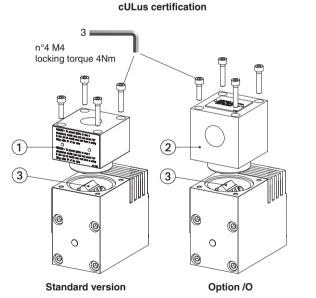
<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:


# 8 CERTIFICATION DATA

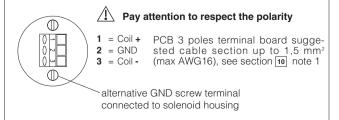
| Valve type                                                                        | RZMA, HZN                                                                    | MA, AGMZA                     | RZMA <b>/M</b> , HZM            | A/M, AGMZA/M  | RZMA <b>/UL</b> , HZM                              | A/UL, AGMZA/UL                   |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|---------------------------------|---------------|----------------------------------------------------|----------------------------------|
| Certifications                                                                    | Multicertifica ATEX IECEx                                                    | ation Group II  EAC PESO      |                                 | ation Group I |                                                    | merican<br><b>Lus</b>            |
| Solenoid certified code                                                           | MZ                                                                           | A-A                           | MZA                             | AM-A          | OZA                                                | -A/EC                            |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO: P33813             | ES 10.0010x<br>IT. 08.B.01784 | ATEX: CESI 03<br>IECEx: IECEx 0 |               | 20170324                                           | - E366100                        |
| Method of protection                                                              | ATEX, EAC<br>Ex II 2G Ex d II<br>Ex II 2D Ex tb IIIC                         | C T4/T3 Gb<br>T135°C/T200°C   | • ATEX 2014/34<br>Ex I M2 Ex db | /EU<br>I Mb   | UL 1203     Class I, Div.I, G     Class I, Zone I, | Groups C & D<br>Groups IIA & IIB |
|                                                                                   | • IECEX<br>Ex d IIC T4/T3<br>Ex tb IIIC T135                                 |                               | Ex db I Mb                      |               |                                                    |                                  |
|                                                                                   | • PESO<br>Ex II 2G Ex d II                                                   | C T4/T3 Gb                    |                                 |               |                                                    |                                  |
| Temperature class                                                                 | T4                                                                           | Т3                            |                                 | -             | T4                                                 | Т3                               |
| Surface temperature                                                               | ≤ 135 °C                                                                     | ≤ 200 °C                      | ≤ 15                            | 50 °C         | ≤ 135 °C                                           | ≤ 200 °C                         |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                                 | -40 ÷ +70 °C                  | -20 ÷                           | +60 °C        | -40 ÷ +55 °C                                       | -40 ÷ +70 °C                     |
| Applicable standards                                                              | EN 60079-0 IEC 60079-0<br>EN 60079-1 IEC 60079-1<br>EN 60079-31 IEC 60079-31 |                               |                                 | CSA 22.2      | and UL429,<br>n°30-1986<br>2 n°139-13              |                                  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = GK<br><b>M</b> = M20<br><b>NPT</b> = 1,                          |                               |                                 |               | 1/2"                                               | NPT                              |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


#### 9 EX PROOF SOLENOIDS WIRING




- 3 terminal board for cables wiring
- 4 screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- (3) terminal board for cables wiring



#### 10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

#### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| Max ambient temperature [°C] | Tempera | ture class | Max surface te | mperature [°C] | Min. cable ten | nperature [°C] |
|------------------------------|---------|------------|----------------|----------------|----------------|----------------|
| max ambient temperature [ C] | Goup I  | Goup II    | Goup I         | Goup II        | Goup I         | Goup II        |
| 40 °C                        | -       | T4         | 150 °C         | -              | 90 °C          | -              |
| 45 °C                        | -       | T4         | 150 °C         | 135 °C         | -              | 90 °C          |
| 55 °C                        | -       | T3         | 150 °C         | 200 °C         | -              | 110 °C         |
| 60 °C                        | -       | -          | 150 °C         | -              | 110 °C         | -              |
| 70 °C                        | N.A.    | T3         | N.A.           | 200 °C         | N.A.           | 120 °C         |

#### cULus certification

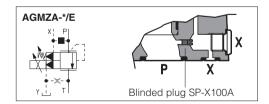
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |

# 11 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX600** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

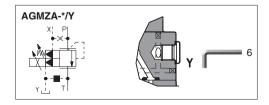
#### 12 OPTIONS


For alla valves:

**O** = Horizontal cable entrance to be selected in case of limited vertical space.

#### Only for AGMZA:

**E** = External pilot option to be selected when the pilot pressure is supplied from a different line respect to the P main line.


With option E the internal connection between port P and X of the valve is plugged. The pilot pressure must be connected to the X port available on the valve's mounting surface or on main body (threaded pipe connection G  $\frac{1}{4}$ ").

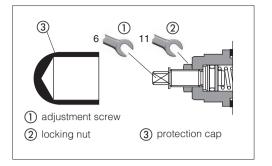


#### Only for AGMZA:

Y = The external drain is mandatory in case the main line T is subjected to pressure peaks or it is pressurized.

The Y drain port has a threaded connection G 1/4" available on the pilot stage body.

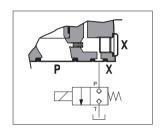



#### 13 MECHANICAL PRESSURE LIMITER - only for AGMZA

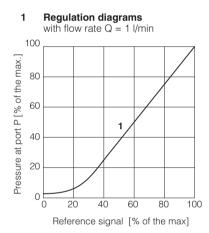
The AGMZA are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

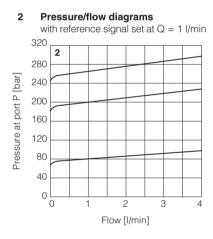
At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

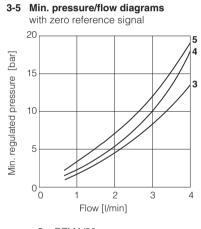
For the pressure setting of the mechanical pressure limiter, proceed according to following steps:


- apply the max reference input signal to the valve's driver. The system pressure will not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw (1) until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw (1) of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.




# **REMOTE PRESSURE UNLOADING** - only for AGMZA


The P main line can be remotely unloaded by connecting the valve X port to a solenoid valve as shown in the below scheme (venting valve).

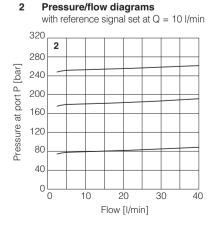

This function can be used in emergency to unload the system pressure by-passing the proportional control.



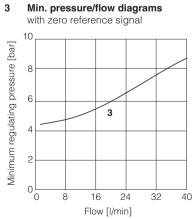
#### 15 DIAGRAMS RZMA-010 (based on mineral oil ISO VG 46 at 50 °C)








Note: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure


**3** = RZMA/80 4 = RZMA/180 5 = RZMA/250

#### DIAGRAMS RZMA-030, HZMA-030 (based on mineral oil ISO VG 46 at 50 °C)

# Regulation diagrams with flow rate Q = 10 l/min 100 Pressure at port P [% of max] 80 60 40 20 40 60 80 100 Reference signal [% del max]

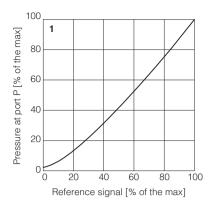


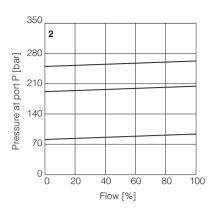
FX010



213

Note: the presence of counter pressure at port T can affect the pressure regulation and the minimum pressure


PROPORTIONAL VALVES


# 17 DIAGRAMS AGMZA (based on mineral oil ISO VG 46 at 50 °C)

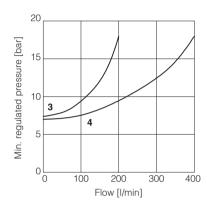
# 1 = Regulation diagrams with flow rate Q = 50 l/min

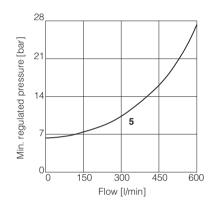
# 2 = Pressure/flow diagrams

with reference signal set at Q = 50 l/min






# 3-5 = Min. pressure/flow diagrams


with zero reference signal

**3 =** AGMZA-\*-10

**4 =** AGMZA-\*-20

**5 =** AGMZA-\*-32



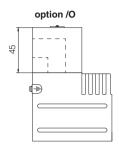


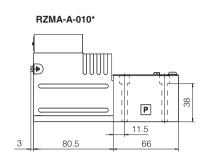
# 18 FASTENING BOLTS AND SEALS

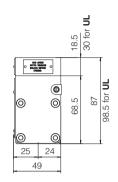
#### 18.1 RZMA and HZMA valves

|     | RZMA-A-010                            | RZMA-A-030                            | HZMA-A-030                             |
|-----|---------------------------------------|---------------------------------------|----------------------------------------|
|     |                                       |                                       |                                        |
| W   | Fastening bolts:                      | Fastening bolts:                      | Fastening bolts:                       |
|     | 4 socket head screws M5x50 class 12.9 | 4 socket head screws M5x50 class 12.9 | 4 socket head screws M5 class 12.9     |
|     | Tightening torque = 8 Nm              | Tightening torque = 8 Nm              | Tightening torque = 8 Nm               |
|     |                                       |                                       |                                        |
|     |                                       |                                       |                                        |
|     | Seals:                                | Seals:                                | Seals:                                 |
| ( ) | 2 OR 108                              | 4 OR 108                              | 4 OR 108                               |
|     | Diameter of ports P, T: Ø 5 mm        | Diameter of ports P, T: Ø 7,5 mm      | Diameter of ports P, A, B, T: Ø 6,5 mm |
|     |                                       |                                       |                                        |
|     |                                       |                                       |                                        |

# 18.2 AGMZA valves


| AGMZA-A-10                             | AGMZA-A-20                             | AGMZA-A-32                             |
|----------------------------------------|----------------------------------------|----------------------------------------|
|                                        |                                        |                                        |
| Fastening bolts:                       | Fastening bolts:                       | Fastening bolts:                       |
| 4 socket head screws M12x35 class 12.9 | 4 socket head screws M16x50 class 12.9 | 4 socket head screws M20x60 class 12.9 |
| Tightening torque = 125 Nm             | Tightening torque = 300 Nm             | Tightening torque = 600 Nm             |
|                                        |                                        |                                        |
| Seals:                                 | Seals:                                 | Seals:                                 |
| 2 OR 123                               | 2 OR 4112                              | 2 OR 4131                              |
| Diameter of ports P, T: Ø 14 mm        | Diameter of ports P, T: Ø 24 mm        | Diameter of ports P, T: Ø 28 mm        |
| 1 OR 109/70                            | 1 OR 109/70                            | 1 OR 109/70                            |
| Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           | Diameter of port X: Ø 3,2 mm           |
|                                        |                                        |                                        |

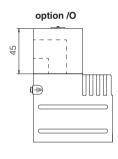

# **RZMA-A-010**

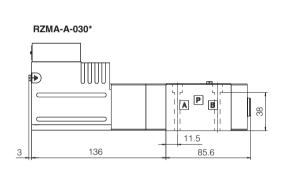

**ISO 4401: 2005** (see table P005) Mounting surface: 4401-03-02-0-05

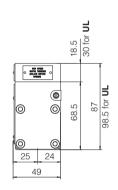
(without ports A and B)

| Mass [kg]  |       |  |
|------------|-------|--|
| RZMA-A-010 | 2,7   |  |
| Option /O  | +0,35 |  |





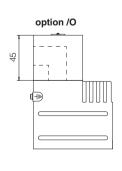



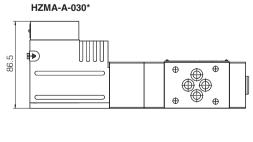


# **RZMA-A-030**

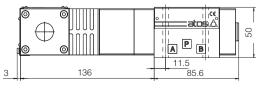
ISO 4401: 2005 (see table P005) Mounting surface: 4401-03-02-0-05 (ports A and B connected to port T)

| Mass [kg]      |       |  |
|----------------|-------|--|
| RZMA-A-030 3,7 |       |  |
| Option /O      | +0,35 |  |





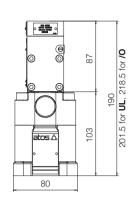





# **HZMA-A-030**

ISO 4401: 2005 (see table P005) Mounting surface: 4401-03-02-0-05

|   | Mass [kg]      |       |  |
|---|----------------|-------|--|
| H | HZMA-A-030 3,7 |       |  |
| ( | Option /O      | +0,35 |  |





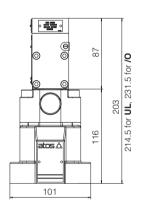



# AGMZA-A-10

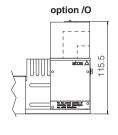
ISO 6264: 2007 (see table P005) Mounting surface: 6264-06-09-1-97

| Mass [kg]  |       |
|------------|-------|
| AGMZA-A-10 | 6,3   |
| Option /O  | +0,35 |







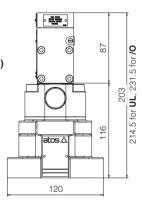


# AGMZA-A-20

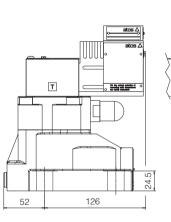
ISO 6264: 2007 (see table P005) Mounting surface: 6264-08-13-1-97

| Mass [kg]  |       |  |
|------------|-------|--|
| AGMZA-A-20 | 7,5   |  |
| Option /O  | +0,35 |  |









# AGMZA-A-32

ISO 6264: 2007 (see table P005) Mounting surface: 6264-10-17-1-97

(with M20 fixing holes instead of standard M18)

| Mass [kg]  |       |  |  |  |  |  |
|------------|-------|--|--|--|--|--|
| AGMZA-A-32 | 8,9   |  |  |  |  |  |
| Option /O  | +0,35 |  |  |  |  |  |







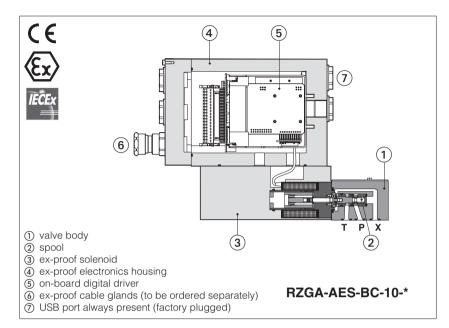
# 21 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments

X020 Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

X030 Summary of Atos ex-proof components certified to cULus

FX900 Operating and manintenance information for ex-proof proportional valves


KX800 Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves



# Ex-proof digital proportional reducing valves

direct or piloted, with on-board driver and without pressure transducer - ATEX and IECEx



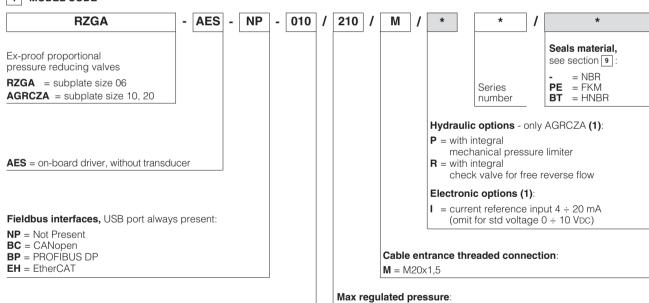
#### **RZGA-AES, AGRCZA-AES**

Ex-proof digital proportional reducing valves, direct or piloted, whithout transducer for pressure open loop controls.

They are equipped with ex-proof on-board digital driver and proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of integral digital driver and solenoid prevents the propagation of accidental internal sparks or fire to the external environment.


The driver and solenoid are also designed to limit the surface temperature within the classified limits.

RZGA, direct or piloted: Size: 06 - ISO 4401 Max flow: 12 and 40 I/min

AGRCZA, piloted: Size: 10 and 20 - ISO 5781 Max flow: 160 and 300 I/min

Max pressure: 250 bar

# 1 MODEL CODE



only for RZGA-010 **32** = 32 bar **1** 

80 = 80 bar

only for RZGA-033 and AGRCZA

**100** = 100 bar

**180** = 180 bar

210 = 210 bar

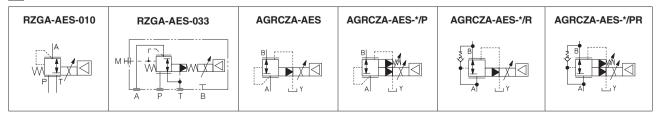
**250** = 250 bar

(1) Possible combined options: /IP, /IR, /PR

010 = Qmax 12 I/min

033 = Omax 40 I/min

**10, 20** = Qmax 160, 300 l/min


Valve size and configuration:

RZGA: direct

RZGA: piloted

AGRCZA: piloted

# **2** CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



# 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

#### 4 VALVE SETTINGS AND PROGRAMMING TOOLS

WARNING: The below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table **GS500**):

E-SW-BASICsupport:NP (USB)PS (Serial)IR (Infrared)E-SW-FIELDBUSsupport:BC (CANopen)BP (PROFIBUS DP)EH (EtherCAT)

E-SW-\*/PQ EV (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

Support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

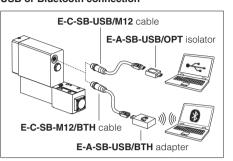


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

# 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 6 GENERAL CHARACTERISTICS


| Assembly position                      | Any position                                                                                                                                                                                           |  |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | RZGA-010 150 years, RZGA-033 and AGRCZA 75 years, see technical table P007                                                                                                                             |  |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$               |  |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                                            |  |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                 |  |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                               |  |  |  |  |  |  |

#### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

|         | RZGA                                                   |                                |     | GA       | AGRCZA                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                               |  |
|---------|--------------------------------------------------------|--------------------------------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | 010                                                    |                                |     | 033      | 10                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                            |  |
|         |                                                        | 06                             |     | 06       | 10                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                            |  |
| [bar]   | 32                                                     | 100                            | 210 | 80       | 180                                                                                                                                                                                                                                                                                  | 250                                                                                                                                                                                                                                                                                           |  |
| [bar]   | see min. pressure / flow diagrams at sections 16 17 18 |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
| [bar]   | 315                                                    |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
| [bar]   | 210                                                    |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
| [l/min] |                                                        | 12                             |     | 40       | 160                                                                                                                                                                                                                                                                                  | 300                                                                                                                                                                                                                                                                                           |  |
| [ms]    | ≤ 55                                                   |                                |     |          | ≤70                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |  |
|         | ≤1,5                                                   |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
|         | ≤3                                                     |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
| e]      | ≤2                                                     |                                |     |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |  |
|         | [bar] [bar] [bar] [l/min] [ms]                         | [bar] [bar] [bar] [l/min] [ms] | 06  | 010   06 | 010         033           06         06           [bar]         32         100         210         80           [bar]         see min. pressure / flow diag           [bar]         31           [bar]         21           [l/min]         12         40           [ms]         ≤55 | 010     033     10       06     06     10       [bar]     32     100     210     80     180       [bar]     see min. pressure / flow diagrams at sections [16] [1]       [bar]     315       [bar]     210       [l/min]     12     40     160       [ms]     ≤55     ≤       ≤ 1,5       ≤ 3 |  |

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

#### USB or Bluetooth connection



## 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                        |                                                    |                                    |                                            |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------------|--|--|
| Max power consumption               | 35 W                                                                                                                                                                        |                                                    |                                    |                                            |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r                                                                                                                                   | /DC (24 VMAX tollerant)<br>nA                      | Input impedance<br>Input impedance |                                            |  |  |
| Insulation class                    |                                                                                                                                                                             | ccuring surface tempera<br>82 must be taken into a |                                    | ils, the European standards                |  |  |
| Monitor outputs                     | Voltage: maximum ra                                                                                                                                                         | nge ± 5 Vpc @ max                                  | 5 mA                               |                                            |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF                                                                                                                                                       | state), 15 ÷ 24 VDC (ON                            | state), 9 ÷ 15 VDC (not ac         | cepted); Input impedance: Ri > $87k\Omega$ |  |  |
| Fault output                        | Output range: 0 ÷ 24 Vpc (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA external negative voltage not allowed (e.g. due to inductive loads) |                                                    |                                    |                                            |  |  |
| Alarms                              |                                                                                                                                                                             | ed/short circuit, cable bring, power supplies lev  |                                    | ce signal, over/under temperature,         |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                                       | cable gland                                        |                                    |                                            |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                                       | =100%)                                             |                                    |                                            |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                                      | ectronics PCB                                      |                                    |                                            |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply           |                                                    |                                    |                                            |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                          |                                                    |                                    |                                            |  |  |
| Communication interface             | USB<br>Atos ASCII coding                                                                                                                                                    | CANopen<br>EN50325-4 + DS408                       | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT<br>EC 61158                       |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                          | optical insulated<br>CAN ISO11898                  | optical insulated<br>RS485         | Fast Ethernet, insulated<br>100 Base TX    |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

#### 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                             |               |  |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|
| Recommended viscosity      |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                                                      |                             |               |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | see also filter section at  |               |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | www.atos.com or KTF catalog |               |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification              | Ref. Standard |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |
| Flame resistant without wa | ter              | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                                         |                             | ISO 12922     |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                              | HFC                         | 130 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

## (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar

-max fluid temperature = 50°C

#### 10 CERTIFICATION DATA

| Valve type                          | RZMA, AGMZA                                                                      |            |      |                                       |  |
|-------------------------------------|----------------------------------------------------------------------------------|------------|------|---------------------------------------|--|
| Certifications                      | Multicertification Group II                                                      |            |      |                                       |  |
|                                     |                                                                                  | ATEX IECEx |      |                                       |  |
| Solenoid certified code             |                                                                                  | OZA        | -AES |                                       |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X                         |            |      |                                       |  |
| Method of protection                | • ATEX 2014/34/EU<br>EX II 2G EX db IIC T6/T5/T4<br>EX II 2D EX tb IIIC T85°C/T1 |            |      | T6/T5/T4 Gb<br>T85°C/T100°C/T135°C Db |  |
| Temperature class                   | Т6                                                                               | T5         |      | T4                                    |  |
| Surface temperature                 | ≤ 85 °C                                                                          | ≤ 100 °C   | 0    | ≤ 135 °C                              |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                     |            | °C   | -40 ÷ +70 °C                          |  |
| Applicable standards                | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 6007<br>EN 60079-1 IEC 60079-1            |            |      |                                       |  |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5                                                               |            |      |                                       |  |

(1) The type examinator certificates can be downloaded from www.atos.com

(2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

#### 19 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 19.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 19.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 19.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

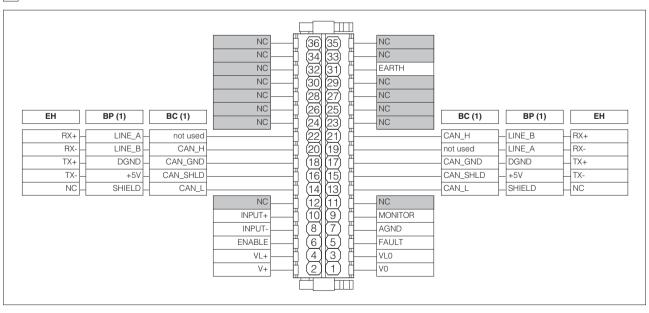
Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10 \text{VDC}$  for standard and  $4 \div 20 \text{ mA}$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10 \text{ VDC}$  or  $\pm 20 \text{ mA}$ . Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24 \text{VDC}$ .

#### 19.4 Monitor output signal (MONITOR)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is 0 ÷ 10VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.


#### 19.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

#### 19.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

#### 20 TERMINAL BOARD OVERVIEW



## 21 ELECTRONIC CONNECTIONS

## 21.1 Main connections signals

| CABLE<br>ENTRANCE | PIN                               | SIGNAL | TECHNICAL SPECIFICATIONS                                                                                                 | NOTES                                             |  |  |  |
|-------------------|-----------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|                   | 1                                 | V0     | Power supply 0 Vpc                                                                                                       | Gnd - power supply                                |  |  |  |
|                   | 2                                 | V+     | Power supply 24 Vpc                                                                                                      | Input - power supply                              |  |  |  |
|                   | 3                                 | VL0    | Power supply 0 Vpc for driver's logic and communication                                                                  |                                                   |  |  |  |
|                   | 4                                 | VL+    | Power supply 24 Vpc for driver's logic and communication                                                                 | Input - power supply                              |  |  |  |
|                   | 5                                 | FAULT  | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                | Output - on/off signal                            |  |  |  |
| Λ                 | 6                                 | ENABLE | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                           | Input - on/off signal                             |  |  |  |
|                   | 7                                 | AGND   | Analog ground                                                                                                            | Gnd - analog signal                               |  |  |  |
|                   | 8                                 | INPUT- | Negative reference input signal for INPUT+                                                                               | Input - analog signal                             |  |  |  |
|                   | 9 <b>MONITOR</b> 10 <b>INPUT+</b> |        | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                         | Output - analog signal <b>Software selectable</b> |  |  |  |
|                   |                                   |        | Reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |  |  |  |
|                   | 31                                | EARTH  | Internally connected to driver housing                                                                                   |                                                   |  |  |  |

## 21.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 2         |   |
|                   | 2   | ID      | Identification           | 5           |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (famala)    |   |
|                   | 5   | D+      | Data line +              | (female)    |   |

#### 21.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
| C1                | 14  | CAN_L    | Bus line (low)              |
|                   | 16  | CAN_SHLD | Shield                      |
|                   | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|--|-------------------|-----|----------|-----------------------------|
|  | C2                | 13  | CAN_L    | Bus line (low)              |
|  |                   | 15  | CAN_SHLD | Shield                      |
|  |                   | 17  | CAN_GND  | Signal zero data line       |
|  |                   | 19  | not used | Pass-through connection (1) |
|  |                   | 21  | CAN_H    | Bus line (high)             |

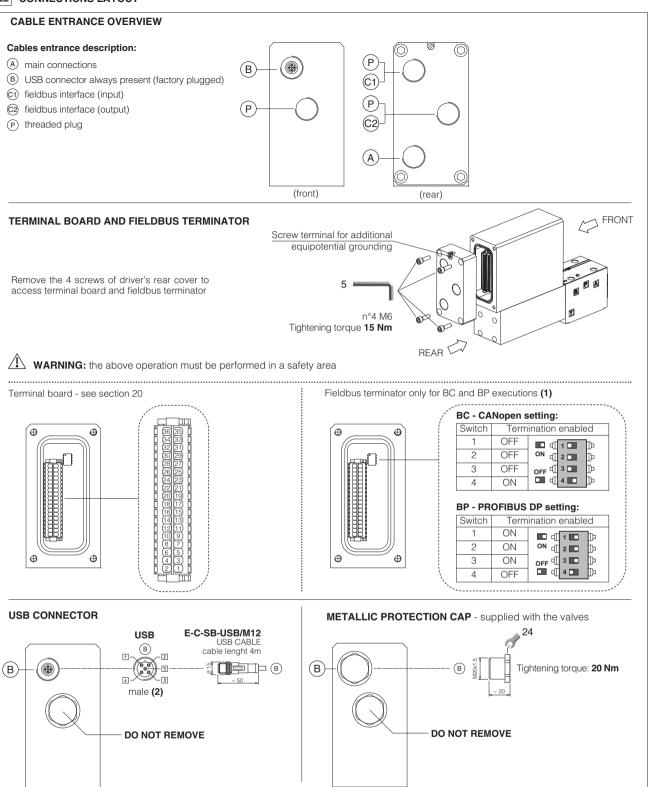
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

## 21.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>A</b>          | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

## 21.5 EH fieldbus execution connections


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ) 1             | 18  | TX+    | Transmitter              |
| <b>O</b> .        | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (2)               | 17  | TX+    | Transmitter              |
| <b>U</b>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

FX050 PROPORTIONAL VALVES

221

## 22 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

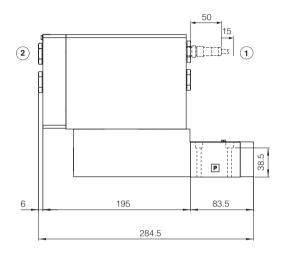
## 22.1 Cable glands and threaded plug - see tech table KX800

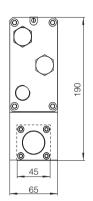
| Communication interfaces                  | Cable | be ordere     | Thread | ed plug | Cable entrance overview | Notes                                                                        |
|-------------------------------------------|-------|---------------|--------|---------|-------------------------|------------------------------------------------------------------------------|
| NP                                        | 1     | entrance<br>A | none   | none    | (P)<br>(A)              | Cable entrance P are factory plugged  Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2     | C1            | 1      | C2      |                         | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP, EH<br>"daisy chain"<br>connection | 3     | C1<br>C2<br>A | none   | none    |                         | Cable entrance A, C1, C2 are open for costumers                              |

## 23 FASTENING BOLTS AND SEALS

#### 23.1 RZGA valves

|   | RZGA-AES-*-010                                                                  | RZGA-AES-*-033                                                                  |
|---|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm |
| 0 | Seals: 4 OR 108 Diameter of ports P, A, T: Ø 5 mm                               | Seals: 4 OR 108 Diameter of ports P, A, T: Ø 7,5 mm                             |


## 23.2 AGRCZA valves


|   | AGRCZA-AES-*-10                                                                            | AGRCZA-AES-*-20                                                                            |
|---|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M10x45 class 12.9 Tightening torque = 70 Nm          | Fastening bolts: 4 socket head screws M10x45 class 12.9 Tightening torque = 70 Nm          |
| 0 | Seals: 2 OR 3068 Diameter of ports A, B: Ø 14 mm 2 OR 109/70 Diameter of port X, Y: Ø 5 mm | Seals: 2 OR 4100 Diameter of ports A, B: Ø 22 mm 2 OR 109/70 Diameter of port X, Y: Ø 5 mm |

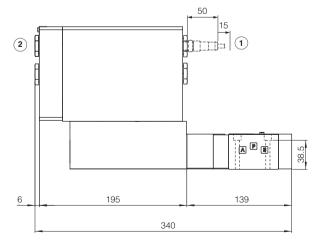
## RZGA-AES-\*-010

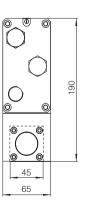
ISO 4401: 2005 Mounting surface: 4401-03-02-0-05 (see table P005) (port B not used)

| Mass [kg]      |     |  |  |  |  |
|----------------|-----|--|--|--|--|
| RZGA-AES-*-010 | 8,2 |  |  |  |  |






## RZGA-AES-\*-033

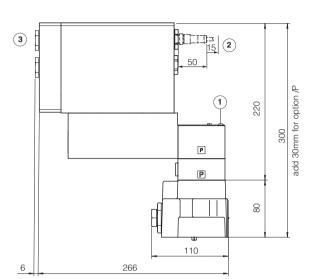

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see table P005)

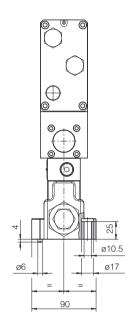
(ports A and B connected to port T)

| Mass [kg]      |   |  |  |  |
|----------------|---|--|--|--|
| RZGA-AES-*-033 | 9 |  |  |  |






- 1 = Space to remove the USB connector
- (2) = The dimensions of cable glands must be considered (see tech table **KX800**)

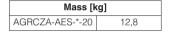

## AGRCZA-AES-\*-10

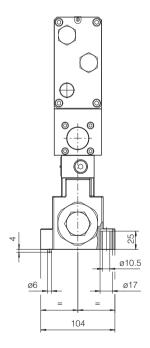
ISO 5781: 2000

Mounting surface: 5781-06-07-0-00 (see table P005)



| Mass [k         | [g]  |
|-----------------|------|
| AGRCZA-AES-*-10 | 11,6 |





## AGRCZA-AES-\*-20

ISO 5781: 2000

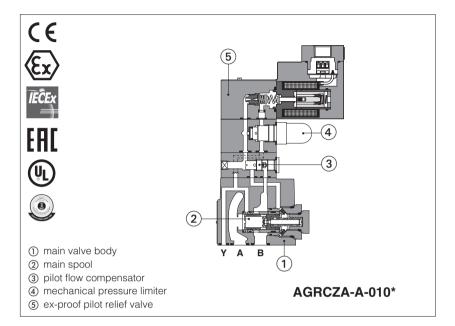
Mounting surface: 5781-08-10-0-00 (see table P005)

| 3 | 1 163 | 98 220 | 318 |
|---|-------|--------|-----|
|   | 283   |        |     |





- $\bigcirc$  = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


## 26 RELATED DOCUMENTATION

| X010           | Basics for electrohydraulics in hazardous environments                                   | GS510 | Fieldbus Cable glands for ex-proof valves     |
|----------------|------------------------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020           | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO                  | KX800 |                                               |
| FX900<br>GS500 | Operating and manintenance informationfor ex-proof proportional valves Programming tools | P005  | Mounting surfaces for electrohydraulic valves |



## **Ex-proof proportional reducing valves**

direct or piloted, without transducer - ATEX, IECEx, EAC, PESO or cULus

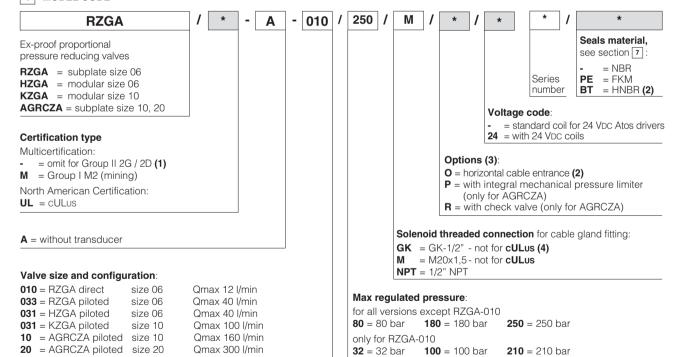


#### RZGA-A, HZGA-A KZGA-A, AGRCZA-A

Ex-proof proportional reducing valves direct or piloted, for open loop pressure controls.

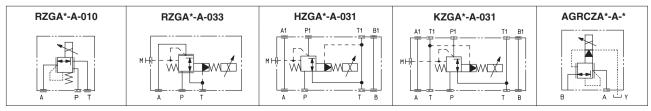
They are equipped with ex-proof proportional solenoid, certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:


- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

RZGA, HZGA, direct or piloted: Size: 06 - ISO 4401 Max flow: 12 and 40 l/min

KZGA, piloted: Size: 10 - ISO 4401 Max flow: 100 I/min


AGRCZA, piloted: Size: 10 and 20 - ISO 5781 Max flow: 160 and 300 l/min Max pressure: 250 bar

#### 1 MODEL CODE



- (1) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining) (3) Possible combined options: /OP, /OR, /PR, /OPR (4) Approved only for the Italian market

#### 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



#### 3 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves. Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A E-BM-AES-* /A |  |  |  |
|---------------|----------------------------|--|--|--|
| Туре          | digital digital            |  |  |  |
| Format        | DIN-rail panel             |  |  |  |
| Data sheet    | G030 GS050                 |  |  |  |

## 4 GENERAL CHARACTERISTICS

| Assembly position                                                                             | Any position                                                                                                                                                                                                  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Subplate surface finishing to ISO 4401                                                        | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                              |  |  |  |
| MTTFd valves according to EN ISO 13849                                                        | 75 years; 150 years only for RZGA-010, see technical table P007                                                                                                                                               |  |  |  |
| Ambient temperature range                                                                     | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                                      |  |  |  |
| Storage temperature range                                                                     | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C                                |  |  |  |
| Surface protection Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h |                                                                                                                                                                                                               |  |  |  |
| Compliance                                                                                    | Explosion proof protection, see section  -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |  |  |  |

#### 5 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                           |         | RZGA              |     | HZGA | KZGA | AGI | RCZA |
|-----------------------------------------------------------------------|---------|-------------------|-----|------|------|-----|------|
| Size code                                                             |         | 010               | 033 | 031  |      | 10  | 20   |
| Valve size                                                            |         | 06                |     | 10   |      |     | 20   |
| Max regulated pressure                                                | [bar]   | 32; 100; 210      |     | 80   | 180  | 250 |      |
| Max pressure at port P, A, B, X                                       | [bar]   | 315               |     |      |      |     |      |
| Max pressure at port T, Y                                             | [bar]   | 210               |     |      |      |     |      |
| Min regulated pressure                                                | [bar]   | ar] 0,8 2,5 2,5 3 |     | 1    | 1,0  |     |      |
| Max flow                                                              | [l/min] | 12                | 40  | 40   | 100  | 160 | 300  |
| Response time 0-100% step signal (depending on installation) (1) [ms] |         | ≤ 55 ≤ 70         |     |      |      |     |      |
| Hysteresis[% of the max pressure]                                     |         | ≤ 1,5             |     |      |      |     |      |
| Linearity[% of the max pressure]                                      | ≤3      |                   |     |      |      |     |      |
| Repeatability[% of the max pressu                                     | ≤2      |                   |     |      |      |     |      |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 3

## 6 ELECTRICAL CHARACTERISTICS

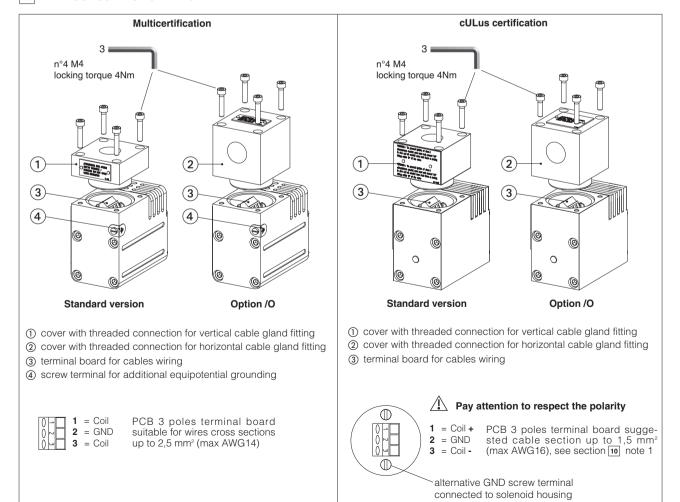
| Max. power                                  | 35                                                                              | 35W                                                                                                                                              |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insulation class                            |                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | ·                                                                                                                                                |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |
| Voltage code                                | standard                                                                        | standard option /24                                                                                                                              |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 3,2 Ω 17,6 Ω                                                                                                                                     |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 2,5 A 1,1 A                                                                                                                                      |  |  |

## 7 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | I temperature    | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |                             |  |  |  |
|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                    |                            |                             |  |  |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | 638 class 7                | see also filter section at  |  |  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                          | 638 class 5                | www.atos.com or KTF catalog |  |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard               |  |  |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |  |  |
| Flame resistant without water |                  | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922                   |  |  |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 130 12922                   |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response


#### 8 CERTIFICATION DATA

| Valve type                                                                        | RZGA, HZGA, I                                                      | KZGA, AGRCZA                    | 1 '                                                  | HZGA <b>/M</b> ,<br>AGRCZA <b>/M</b> | RZGA <b>/UL</b> , HZGA <b>/UL</b> ,<br>KZGA <b>/UL</b> , AGRCZA <b>/UL</b> |                                                                                |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Certifications                                                                    |                                                                    | ation Group II                  |                                                      | ation Group I                        | North American                                                             |                                                                                |  |  |  |
|                                                                                   | ATEX IECEX                                                         | EAC PESO                        | ATEX                                                 | IECEx                                | cU                                                                         | Lus                                                                            |  |  |  |
| Solenoid certified code                                                           | MZ                                                                 | A-A                             | MZA                                                  | M-A                                  | OZA-                                                                       | A/EC                                                                           |  |  |  |
| Type examination certificate (1)                                                  |                                                                    |                                 | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x |                                      | 20170324 - E366100                                                         |                                                                                |  |  |  |
| Method of protection                                                              | • ATEX, EAC<br>Ex II 2G Ex d IIC T4/T3 Gb                          |                                 |                                                      | Ex I M2 Ex db I Mb • IECEx           |                                                                            | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |  |  |  |
|                                                                                   | Ex d IIC T4/T3<br>Ex tb IIIC T135                                  |                                 | EX do 1 Mb                                           |                                      |                                                                            |                                                                                |  |  |  |
|                                                                                   | • PESO<br>Ex II 2G Ex d II                                         | C T4/T3 Gb                      |                                                      |                                      |                                                                            |                                                                                |  |  |  |
| Temperature class                                                                 | T4                                                                 | Т3                              |                                                      | -                                    | T4                                                                         | Т3                                                                             |  |  |  |
| Surface temperature                                                               | ≤ 135 °C                                                           | ≤ 200 °C                        | ≤ 15                                                 | 60 °C                                | ≤ 135 °C                                                                   | ≤ 200 °C                                                                       |  |  |  |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                       | -40 ÷ +70 °C                    | -20 ÷                                                | +60 °C                               | -40 ÷ +55 °C                                                               | -40 ÷ +70 °C                                                                   |  |  |  |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                            | -1 IEC 60079-1 CSA 22.2 n°30-19 |                                                      | n°30-1986                            |                                                                            |                                                                                |  |  |  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT |                                 |                                                      |                                      | 1/2"                                                                       | NPT                                                                            |  |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

#### 9 EX PROOF SOLENOIDS WIRING



## 10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

#### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- · Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| Max ambient temperature [°C] | Tempera | ture class | Max surface te | mperature [°C] | Min. cable temperature [°C] |         |  |
|------------------------------|---------|------------|----------------|----------------|-----------------------------|---------|--|
| wax ambient temperature [ C] | Goup I  | Goup II    | Goup I         | Goup II        | Goup I                      | Goup II |  |
| 40 °C                        | -       | T4         | 150 °C         | -              | 90 °C                       | -       |  |
| 45 °C                        | -       | T4         | 150 °C         | 135 °C         | -                           | 90 °C   |  |
| 55 °C                        | -       | T3         | 150 °C         | 200 °C         | -                           | 110 °C  |  |
| 60 °C                        | -       | -          | 150 °C         | -              | 110 °C                      | -       |  |
| 70 °C                        | N.A.    | T3         | N.A.           | 200 °C         | N.A.                        | 120 °C  |  |

#### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |  |  |
|------------------------------|-------------------|------------------------------|------------------------|--|--|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |  |  |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |  |  |

#### 11 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

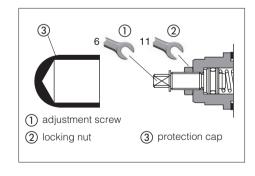
#### 12 OPTIONS

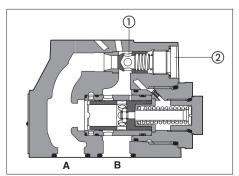
**O** = Horizontal cable entrance, to be selected in case of limited vertical space.

#### P = Integral mechanical pressure limiter

The AGRCZA-\*/P are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

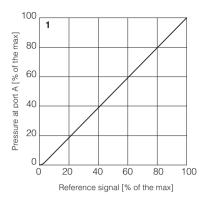
At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.


For the pressure setting of the mechanical pressure limiter, proceed according to following steps:

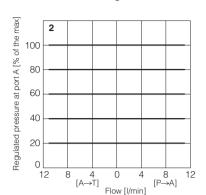

- apply the max reference input signal to the valve's driver. The system pressure will
  not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw ① of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.

#### **R** = Integral check valve for free reverse flow

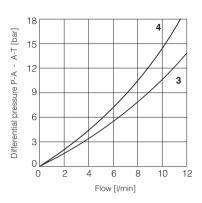
The AGRCZA-\*/ $\mathbf{R}$  are provided with integral check valve for free reverse flow  $A \rightarrow B$ 


- ① Check valve cracking pressure = 0,5 bar
- 2 Plug
- 12.1 Possible combined options: /OP, /OR, /PR, /OPR






## 13 DIAGRAMS RZGA-010 (based on mineral oil ISO VG 46 at 50 °C)


**Regulation diagrams** with flow rate Q = 1 l/min



Pressure/flow diagrams with reference signal set at Q = 1 l/min



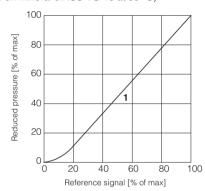
3-4 Min. pressure/flow diagrams with zero reference signal

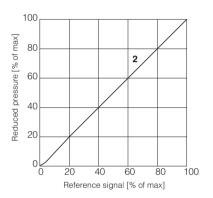


- $3 = Pressure drops vs. flow P \rightarrow A$
- **4** = Pressure drops vs. flow  $A \rightarrow T$

## 14 DIAGRAMS RZGA-033, HZGA, KZGA (based on mineral oil ISO VG 46 at 50 °C)

#### 14.1 Regulation diagrams

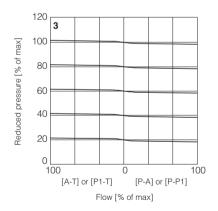

with flow rate Q = 10 l/min


1 = RZGA, HZGA

**2** = KZGA

#### Note

The presence of counter pressure at port T can affect the effective pressure regulation.



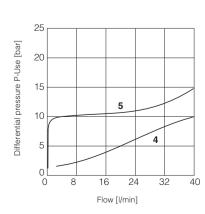


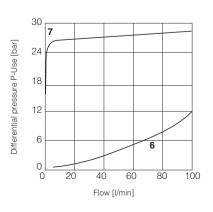

## 14.2 Pressure/flow diagrams

with reference pressure set with Q = 10 l/min

3 = RZGA, KZGA




#### 14.3 Pressure drop/flow diagram


RZGA, HZGA

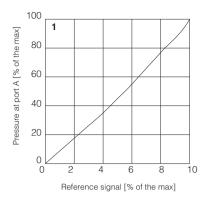
**4** = A-T or P1-T **5** = P-P1 or P-A

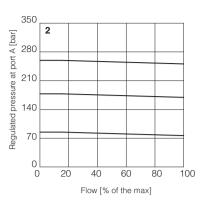
KZGA

**6** = P1-T **7** = P-P1






## 15 DIAGRAMS AGRCZA (based on mineral oil ISO VG 46 at 50 °C)


## **Regulation diagrams**

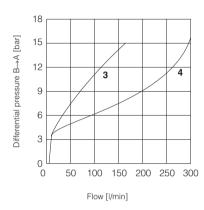
with flow rate Q = 10 l/min

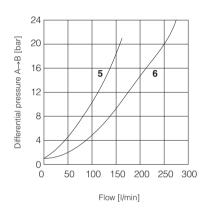
#### Pressure/flow diagrams 2

with reference pressure set with Q = 10 l/min






#### 3-6 Pressure drop/flow diagrams


with zero reference signal

Differential pressure B→A
3 = AGRCZA-\*-10
4 = AGRCZA-\*-20

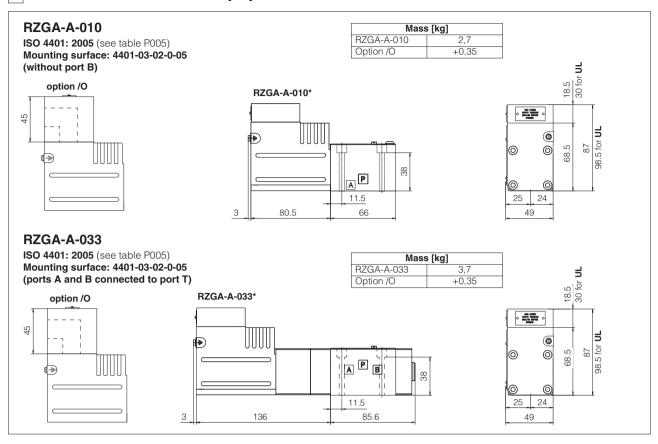
Differential pressure  $A \rightarrow B$  (through check valve) **5** = AGRCZA-\*-10/\*/R

6 = AGRCZA-\*-20/\*/R

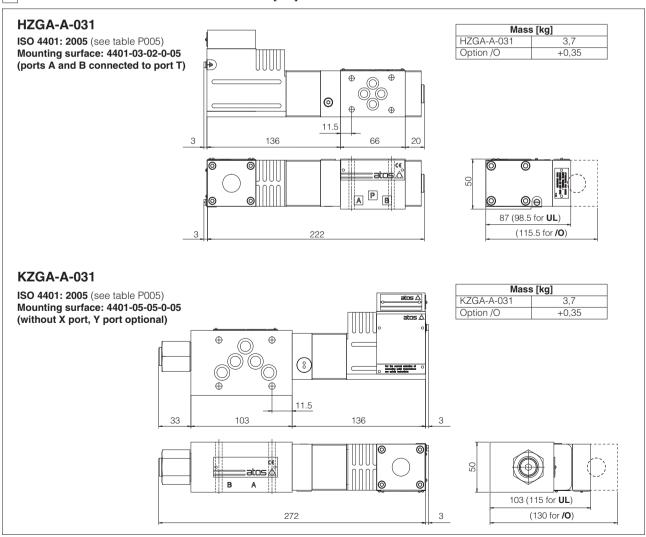




## 16 FASTENING BOLTS AND SEALS


#### 16.1 RZGA, HZGA and KZGA valves

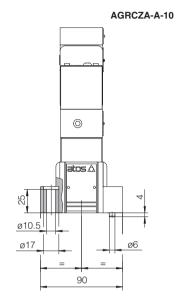
|   | RZGA-A-010                                                                      | RZGA-A-033                                                                      | HZGA-A-031                                                                   | KZGA-A-031                                                                                         |
|---|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M5 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M6 class 12.9 Tightening torque = 16 Nm                      |
| 0 | Seals: 2 OR 108 Diameter of ports P, T: Ø 5 mm (max)                            | Seals: 4 OR 108 Diameter of ports P, T: Ø 7,5 mm (max)                          | Seals: 4 OR 108 Diameter of ports P, T: Ø 7,5 mm                             | Seals: 5 OR 2050 Diameter of ports P, A, B, T: Ø 11,5 mm (max) 1 OR 108 Diameter of port Y: Ø 5 mm |

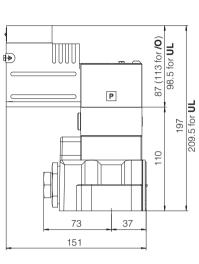

#### 16.2 AGRCZA valves

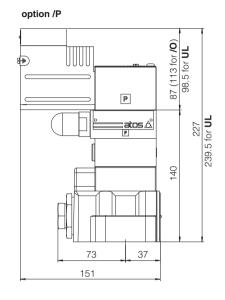
|   | AGRCZA-A-10                                                                                 | AGRCZA-A-20                                                                                 |
|---|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M110x45 class 12.9 Tightening torque = 70 Nm          | Fastening bolts: 4 socket head screws M110x45 class 12.9 Tightening torque = 70 Nm          |
| 0 | Seals: 2 OR 3068 Diameter of ports A, B: Ø 14 mm 2 OR 109/70 Diameter of ports X, Y: Ø 5 mm | Seals: 2 OR 4100 Diameter of ports A, B: Ø 22 mm 2 OR 109/70 Diameter of ports X, Y: Ø 5 mm |

#### 17 INSTALLATION DIMENSIONS FOR RZGA [mm]




## 18 INSTALLATION DIMENSIONS FOR HZGA and KZGA [mm]

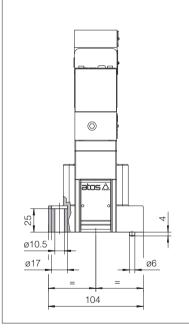


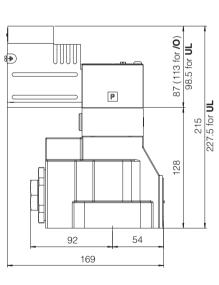


## AGRCZA-A-10

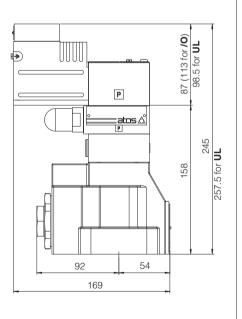
**ISO 5781: 2000** (see table P005) Mounting surface: 5781-06-07-0-00

| Mass [kg]   |      |  |  |  |  |  |  |
|-------------|------|--|--|--|--|--|--|
| AGRCZA-A-10 | 5,7  |  |  |  |  |  |  |
| Option /P   | +0,5 |  |  |  |  |  |  |







#### AGRCZA-A-20

**ISO 5781: 2000** (see table P005) Mounting surface: 5781-08-10-0-00

| Mas         | s [kg] |
|-------------|--------|
| AGRCZA-A-20 | 8,2    |
| Option /P   | +0.5   |







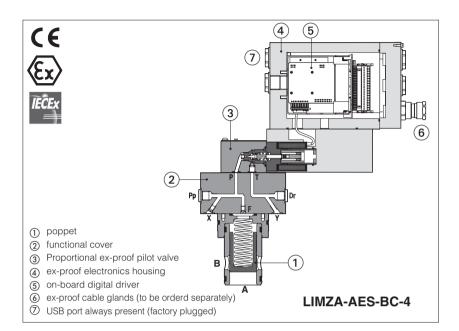
## 20 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments X020

Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

Summary of Atos ex-proof components certified to cULus X030

Operating and manintenance norms for ex-proof proportional valves FX900


Cable glands for ex-proof valves KX800

Mounting surfaces for electrohydraulic valves P005



# Ex-proof digital proportional pressure cartridges

with on-board driver and without transducer - ATEX and IECEx



#### LICZA-AES, LIMZA-AES, LIRZA-AES

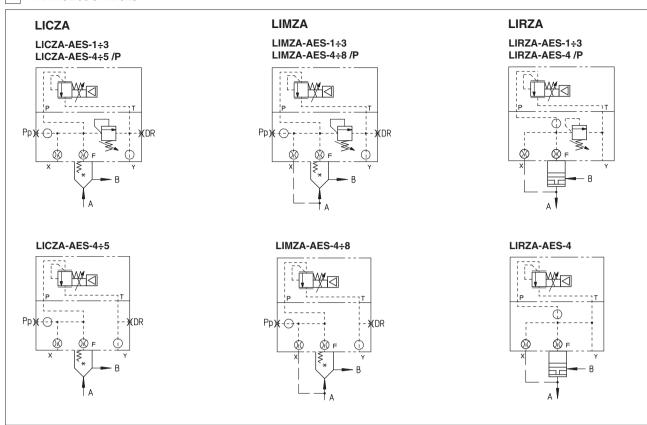
2-way ex-proof digital proportional pressure cartridges without transducer respectively performing: pressure compensator, relief or reducing functions.

They are equipped with ex-proof on-board digital driver and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

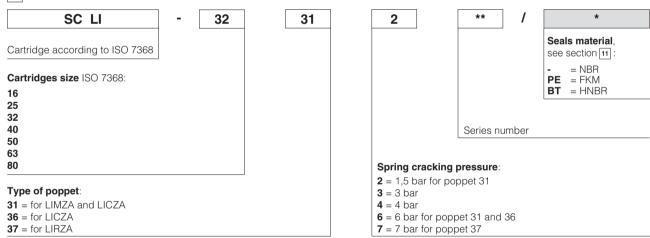
#### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver and solenoid, prevents the propagation of accidental internal sparks or fire to the external environment

The driver and solenoid are also designed to limit the surface temperature within the classified limits.


Size:  $16 \div 80$  -ISO7368 Max flow: up to 4500 l/min Max pressure: 250 bar

#### 1 MODEL CODE OF COVERS - AES NP **LIMZA** 315 / M Ex-proof proportional pressure cartridges Seals material, see section 11: = NBR LICZA = pressure compensator = FKM **LIMZA** = pressure relief = HNBR **LIRZA** = pressure reducing Series number AES = on-board driver, without transducer Hydraulic options (1): P =with integral mechanical pressure limiter (standard for size 1, 2, 3) Fieldbus interfaces, USB port always present: Electronics options (1): **NP** = Not present I = current reference input 4 ÷ 20 mA **BC** = CANopen (omit for std voltage 0 ÷ 10 Vpc) **BP** = PROFIBUS DP EH = EtherCAT Cable entrance threaded connection: M = M20x1.5Valve size ISO 7368: **1** = 16 **2** = 25 **3** = 32 Max regulated pressure: **4** = 40 5 = 50 (not for LIRZA) **80** = 80 bar **180** = 180 bar 6 = 63 (only for LIMZA) 8 = 80; (only for LIMZA) 250 = 250 bar


FX310

(1) Possible combined options: /IP

#### 2 HYDRAULICS SYMBOLS



## 3 MODEL CODE OF CARTRIDGES



### 4 TYPE OF POPPET

| Type of poppet                          | 31           | 36   | 37           |
|-----------------------------------------|--------------|------|--------------|
| Functional sketch<br>(Hydraulic symbol) | AP<br>B<br>A | AP B | AP<br>B<br>A |
| Typical section                         |              |      |              |
| Area ratio A: AP                        | 1:1          | 1:1  | 1:1          |

#### 5 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

USB or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

#### 6 VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table **GS500**):

 E-SW-BASIC
 support
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

 E-SW-\*/PQ
 support
 valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**/•** \

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved



#### 7 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

#### 8 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                   |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 75 years, see technical table P007                                                                                                                                             |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C <b>/PE</b> option = $-20^{\circ}$ C $\div$ +70°C <b>/BT</b> option = $-40^{\circ}$ C $\div$ +70°C                               |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                    |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 2 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |

#### 9 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model     |                    |            | LICZA             |                |          | LIMZA |      |             |     |         | LIRZA     |         |             |      |     |        |        |     |
|-----------------|--------------------|------------|-------------------|----------------|----------|-------|------|-------------|-----|---------|-----------|---------|-------------|------|-----|--------|--------|-----|
| Valve size      |                    | [l/min]    | 1                 | 2              | 3        | 4     | 5    | 1           | 2   | 3       | 4         | 5       | 6           | 8    | 1   | 2      | 3      | 4   |
| Max flow        |                    | [bar]      | 200               | 400            | 750      | 1000  | 2000 | 200         | 400 | 750     | 1000      | 2000    | 3000        | 4500 | 160 | 300    | 550    | 800 |
| Min regulated p | pressure           |            |                   | see section 18 |          |       |      |             |     |         |           |         |             |      |     |        |        |     |
| Max regulated   | pres. at port A    | [bar]      |                   | 80             | ; 180; : | 250   |      |             |     | 80      | ; 180; 2  | 250     |             |      |     | 80; 18 | 0; 250 |     |
| Max pressure    |                    | [box]      | Ports: T, Y = 210 |                |          |       |      |             |     |         |           |         |             |      |     |        |        |     |
| Iviax pressure  |                    | [bar]      |                   |                |          |       |      |             | F   | orts: P | , A, B, 2 | X = 350 | )           |      |     |        |        |     |
| Response time   | 0-100% step signal |            |                   |                |          |       |      |             |     |         |           |         |             |      |     |        |        |     |
| (depending on i | installation)      | [ms]       |                   | ≤ '            | 120 ÷ 4  | 130   |      | ≤ 120 ÷ 480 |     |         |           |         | ≤ 120 ÷ 380 |      |     |        |        |     |
| Hysteresis      | [% of regulated m  | nax pres.] | ≤2                |                |          |       |      | ≤ 1,5       |     |         |           |         | ≤2          |      |     |        |        |     |
| Linearity       | [% of regulated m  | nax pres.] | ≤ 3               |                |          | ≤3    |      |             |     |         | ≤3        |         |             |      |     |        |        |     |
| Repeatibility   | [% of regulated m  | nax pres.] |                   |                | ≤2       |       |      | ≤2          |     |         |           | ≤2      |             |      |     |        |        |     |

(1) Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response

FX310

PROPORTIONAL VALVES

#### 10 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                              |                                                                                                                                                                              |                                    |                                                |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|--|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                              |                                                                                                                                                                              |                                    |                                                |  |  |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r                                                                                                                         | /DC (24 VMAX tollerant)<br>nA                                                                                                                                                | Input impedance<br>Input impedance |                                                |  |  |  |  |
| Insulation class                    |                                                                                                                                                                   | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account                             |                                    |                                                |  |  |  |  |
| Monitor outputs                     | Voltage: maximum ra                                                                                                                                               | nge ± 5 Vpc @ max                                                                                                                                                            | 5 mA                               |                                                |  |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF                                                                                                                                             | state), 15 ÷ 24 VDC (ON                                                                                                                                                      | state), 9 ÷ 15 VDC (not ac         | cepted); Input impedance: Ri > $87$ k $\Omega$ |  |  |  |  |
| Fault output                        |                                                                                                                                                                   | Output range: 0 ÷ 24 VDC (ON state $\cong$ VL+ [logic power supply]; OFF state $\cong$ 0 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads) |                                    |                                                |  |  |  |  |
| Alarms                              |                                                                                                                                                                   | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, current control monitoring, power supplies level                    |                                    |                                                |  |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                             | cable gland                                                                                                                                                                  |                                    |                                                |  |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                             | =100%)                                                                                                                                                                       |                                    |                                                |  |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                            | ectronics PCB                                                                                                                                                                |                                    |                                                |  |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                                                                                                                                              |                                    |                                                |  |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                |                                                                                                                                                                              |                                    |                                                |  |  |  |  |
| Communication interface             | USB<br>Atos ASCII coding                                                                                                                                          | CANopen<br>EN50325-4 + DS408                                                                                                                                                 | PROFIBUS DP<br>EN50170-2/IEC61158  | EtherCAT<br>EC 61158                           |  |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                | optical insulated<br>CAN ISO11898                                                                                                                                            | optical insulated<br>RS485         | Fast Ethernet, insulated 100 Base TX           |  |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

#### 11 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | NBR seals (standard) = $-20^{\circ}$ C $\div +60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div +50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div +80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div +60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div +50^{\circ}$ C |                             |               |  |
|----------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|
| Recommended viscosity      |                  | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                                              |                             |               |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                  | see also filter section at  |               |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                  | www.atos.com or KTF catalog |               |  |
| Hydraulic fluid            |                  | Suitable seals type                                                                                                                                                                                                                                                                                                          | Classification              | Ref. Standard |  |
| Mineral oils               |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                               | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |
| Flame resistant without wa | ter              | FKM                                                                                                                                                                                                                                                                                                                          |                             |               |  |
| Flame resistant with water | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                    | HFC                         | ISO 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

#### (1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar

-max fluid temperature = 50°C

#### 12 CERTIFICATION DATA

| Valve type                          | LICZA, LIMZA, LIRZA                                                                                                                                          |                                         |              |              |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--------------|--|--|
| Certifications                      |                                                                                                                                                              | Multicertification Group II  ATEX IECEx |              |              |  |  |
| Solenoid certified code             |                                                                                                                                                              | OZA                                     | -AES         |              |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X                                                                                                     |                                         |              |              |  |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |                                         |              |              |  |  |
| Temperature class                   | T6                                                                                                                                                           | T5                                      |              | T4           |  |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                      | ≤ 100                                   | °C           | ≤ 135 °C     |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                 | -40 ÷ +                                 | 55 °C        | -40 ÷ +70 °C |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31 IEC 60079-0 EN 60079-1                                                                                                                |                                         | IEC 60079-31 |              |  |  |
| Cable entrance: threaded connection |                                                                                                                                                              | <b>M</b> = №                            | 120x1,5      |              |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

13 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 13.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

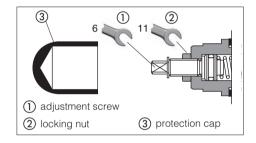
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |  |
|------------------------------|-------------------|------------------------------|-----------------------------|--|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |  |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |  |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |  |

#### 14 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table KX800

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

#### 15 HYDRAULIC OPTIONS


P = Integral mechanical pressure limiter (standard for size 1, 2 and 3)

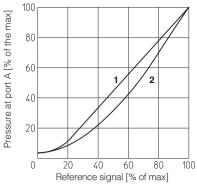
The LICZA, LIMZA and LIRZA standard size 1, 2, 3 and option /P are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

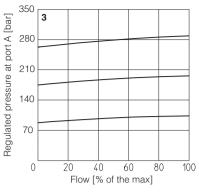
At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

For the pressure setting of the mechanical pressure limiter, proceed according to following steps:

- apply the max reference input signal to the valve's driver. The system pressure will
  not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw ① of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.




## 16 ELECTRONIC OPTIONS

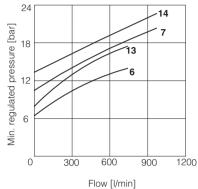

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

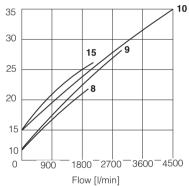
#### 17 POSSIBLE COMBINED OPTIONS

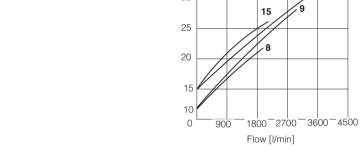
/IP

- Regulation diagrams LIMZA
- 2 Regulation diagrams LICZA
- 3 Pressure/flow diagrams LICZA, LIMZA







#### 4-14 Min. pressure/flow diagrams with zero reference signal


**4** = LIMZA-\*-1 **11** = LICZA-\*-1

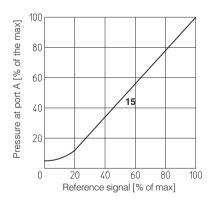
- 5 = LIMZA-\*-2**12** = LICZA-\*-2 **6** = LIMZA-\*-3 **13** = LICZA-\*-3 **7** = LIMZA-\*-4 **14** = LICZA-\*-4 **8** = LIMZA-\*-5 **15** = LICZA-\*-5
- 9= LIMZA-\*-6
- **10**= LIMZA-\*-8

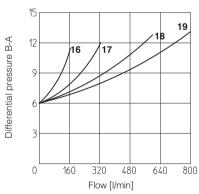






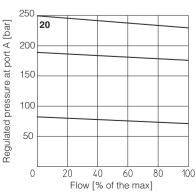



#### Regulation diagrams LIRZA


**15**= LIRZA-A

#### 16-19 Min. pressure/flow diagrams with reference signal "null"

**16**= LIRZA-\*-1 17= LIRZA-\*-2


**18**= LIRZA-\*-3 **19**= LIRZA-\*-4





#### Pressure/flow diagrams

**20**= LIRZA-A



#### 19 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 19.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 19.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 19.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

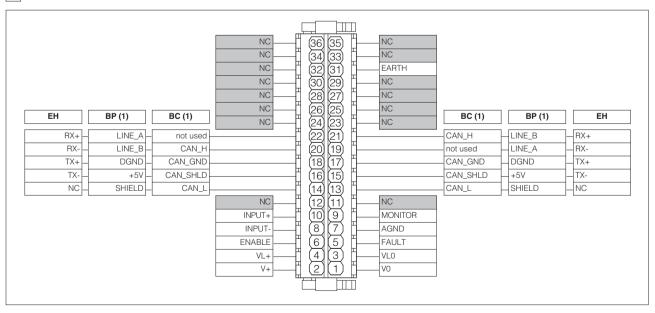
Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10 \text{VDC}$  for standard and  $4 \div 20 \text{ mA}$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10 \text{ VDC}$  or  $\pm 20 \text{ mA}$ . Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24 \text{VDC}$ .

#### 19.4 Monitor output signal (MONITOR)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is ±5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of 0 ÷ 5VDC.


#### 19.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 Vpc on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

#### 19.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for  $4 \div 20$  mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 20 TERMINAL BOARD OVERVIEW



FX310

(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

PROPORTIONAL VALVES

## 21 ELECTRONIC CONNECTIONS

## 21.1 Main connections signals

| CABLE<br>ENTRANCE | PIN                                                           | SIGNAL | TECHNICAL SPECIFICATIONS                                                                                                 | NOTES                                             |  |  |
|-------------------|---------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
|                   | 1                                                             | V0     | Power supply 0 Vpc                                                                                                       | Gnd - power supply                                |  |  |
|                   | 2                                                             | V+     | Power supply 24 Vpc                                                                                                      | Input - power supply                              |  |  |
|                   | 3 VLO Power supply 0 Vpc for driver's logic and communication |        |                                                                                                                          |                                                   |  |  |
|                   | 4                                                             | VL+    | Power supply 24 Vpc for driver's logic and communication                                                                 | Input - power supply                              |  |  |
|                   | 5                                                             | FAULT  | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                | Output - on/off signal                            |  |  |
| Λ                 | 6 ENABLE 7 AGND 8 INPUT- 9 MONITOR                            |        | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                           | Input - on/off signal                             |  |  |
|                   |                                                               |        | Analog ground                                                                                                            | Gnd - analog signal                               |  |  |
|                   |                                                               |        | Negative reference input signal for INPUT+                                                                               | Input - analog signal                             |  |  |
|                   |                                                               |        | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                         | Output - analog signal <b>Software selectable</b> |  |  |
|                   | 10                                                            | INPUT+ | Reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |  |  |
|                   | 31                                                            | EARTH  | Internally connected to driver housing                                                                                   |                                                   |  |  |

## 21.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|-------------------|-----|---------|--------------------------|-------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 - 2       |   |
|                   | 2   | ID      | Identification           | ( S S )   S |   |
| $\mid B \mid$     | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (female)    |   |
|                   | 5   | D+      | Data line +              | (Terriale)  |   |

#### 21.3 BC fieldbus execution connections

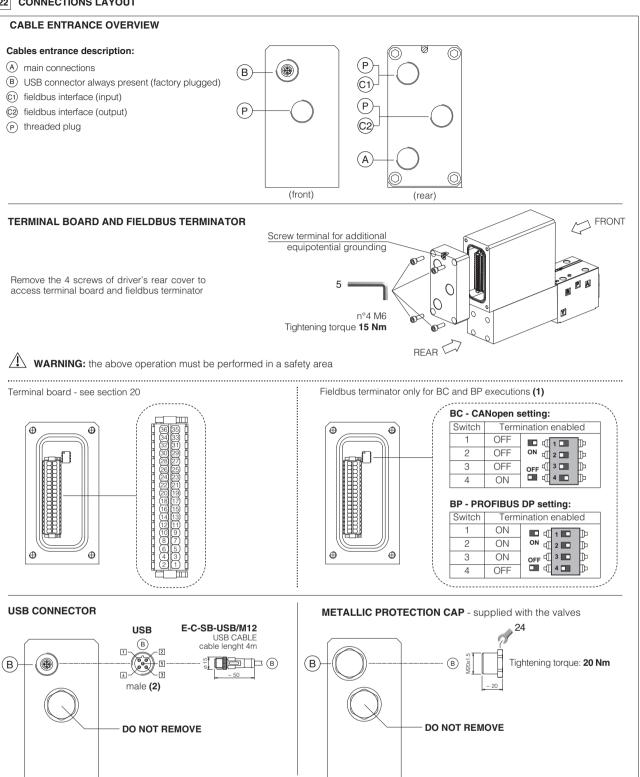
|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|--|-------------------|-----|----------|-----------------------------|
|  |                   | 14  | CAN_L    | Bus line (low)              |
|  |                   | 16  | CAN_SHLD | Shield                      |
|  | (;1]              | 18  | CAN_GND  | Signal zero data line       |
|  |                   | 20  | CAN_H    | Bus line (high)             |
|  |                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANC | E PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|------------------|-------|----------|-----------------------------|
| C2               | 13    | CAN_L    | Bus line (low)              |
|                  | 15    | CAN_SHLD | Shield                      |
|                  | 17    | CAN_GND  | Signal zero data line       |
|                  | 19    | not used | Pass-through connection (1) |
|                  | 21    | CAN_H    | Bus line (high)             |

<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

## 21.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| (;1               | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| OL.               | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

## 21.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| <b>( ; 1</b>      | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

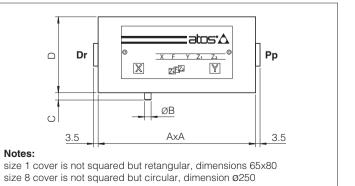
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
| 00                | 15  | TX-    | Transmitter              |
| (2)               | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

#### 22 CONNECTIONS LAYOUT

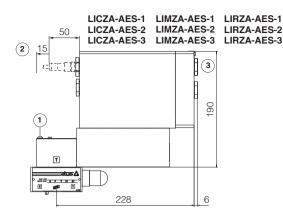


- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

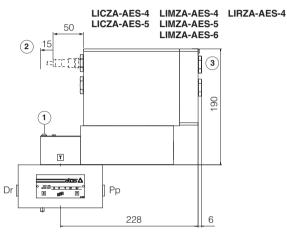
## 22.1 Cable glands and threaded plug - see tech table KX800

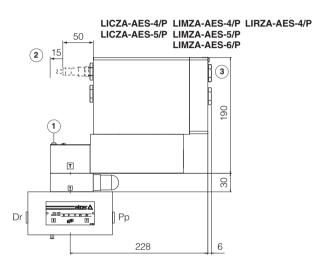

| Communication interfaces                  | Cable | be ordere<br>gland<br>entrance | Thread | ed plug | Cable entrance overview | Notes                                                                        |
|-------------------------------------------|-------|--------------------------------|--------|---------|-------------------------|------------------------------------------------------------------------------|
| NP                                        | 1     | А                              | none   | none    | (P) (A)                 | Cable entrance P are factory plugged  Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2     | C1                             | 1      | C2      |                         | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP, EH<br>"daisy chain"<br>connection | 3     | C1<br>C2<br>A                  | none   | none    |                         | Cable entrance A, C1, C2 are open for costumers                              |

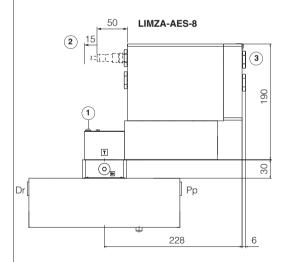
## 23 FASTENING BOLTS AND SEALS

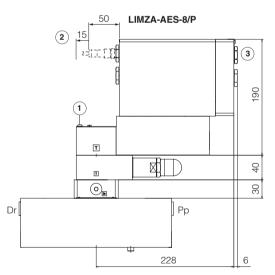

| Туре                      | Size          | Fastening bolts                                                       | Seals     |
|---------------------------|---------------|-----------------------------------------------------------------------|-----------|
|                           | <b>1</b> = 16 | 4 socket head screws M8x45 class 12.9<br>Tightening torque = 35 Nm    | 2 OR 108  |
| LIMZA<br>LICZA –<br>LIRZA | <b>2</b> = 25 | 4 socket head screws M12x45 class 12.9<br>Tightening torque = 125 Nm  | 2 OR 108  |
|                           | <b>3</b> = 32 | 4 socket head screws M16x55 class 12.9<br>Tightening torque = 300 Nm  | 2 OR 2043 |
|                           | <b>4</b> = 40 | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |
| LIMZA<br>LICZA            | <b>5</b> = 50 | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |
| LIMZA                     | <b>6</b> = 63 | 4 socket head screws M30x90 class 12.9<br>Tightening torque = 2100 Nm | 2 OR 3050 |
| LIMZA                     | <b>8</b> = 80 | 8 socket head screws M24x90 class 12.9<br>Tightening torque = 1000 Nm | 2 OR 4075 |

## 24 COVERS DIMENSIONS [mm]


| Size          | AxA     | øВ | С | D  | Port<br>Pp - Dr |
|---------------|---------|----|---|----|-----------------|
| <b>1</b> = 16 | 65x80   | 3  | 4 | 40 | -               |
| <b>2</b> = 25 | 85x85   | 5  | 6 | 40 | -               |
| <b>3</b> = 32 | 100x100 | 5  | 6 | 50 | -               |
| <b>4</b> = 40 | 125x125 | 5  | 6 | 60 | G 1/4"          |
| <b>5</b> = 50 | 140x140 | 6  | 4 | 70 | G 1/4"          |
| <b>6</b> = 63 | 180x180 | 6  | 4 | 80 | G 3/8"          |
| <b>8</b> = 80 | ø250    | 8  | 6 | 80 | G 3/8"          |




|               | Mass [kg]     |           |           |  |  |  |  |  |  |
|---------------|---------------|-----------|-----------|--|--|--|--|--|--|
|               | LICZA, LIMZA, | LIRZA     | Cartridge |  |  |  |  |  |  |
| Size          | Standard      | Option /P | SC LI     |  |  |  |  |  |  |
| <b>1</b> = 16 | 10,5          | -         | 0,2       |  |  |  |  |  |  |
| <b>2</b> = 25 | 11            | -         | 0,5       |  |  |  |  |  |  |
| <b>3</b> = 32 | 12,3          | -         | 0,9       |  |  |  |  |  |  |
| <b>4</b> = 40 | 17,7          | 12,5      | 1,7       |  |  |  |  |  |  |
| <b>5</b> = 50 | 21,2          | 16        | 2,9       |  |  |  |  |  |  |
| <b>6</b> = 63 | 30,7          | 25,5      | 6,7       |  |  |  |  |  |  |
| <b>8</b> = 80 | 39,3          | 34,1      | 13,1      |  |  |  |  |  |  |



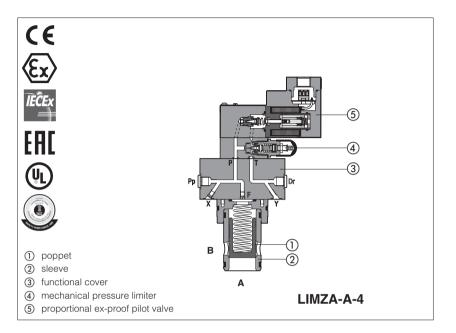






Note: for ISO 7368 mounting surface and cavity dimensions, see tech. table P006

- (1) = Screw for air bleeding: at the first valve commissioning the air eventually trapped inside the solenoid must be bled-off though the screw
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table KX800)


#### 26 RELATED DOCUMENTATION

| oof valves                    |
|-------------------------------|
| cavities for cartridge valves |
|                               |
|                               |



# **Ex-proof proportional pressure cartridges**

without transducer - ATEX, IECEx, EAC, PESO or cULus

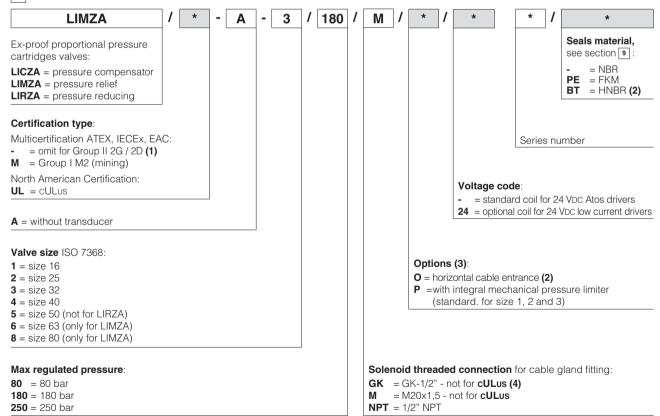


#### LICZA-A, LIMZA-A, LIRZA-A

2-way ex-proof proportional pressure cartridges without transducer respectively performing: pressure compensator, relief or reducing functions.

They are equipped with ex-proof proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

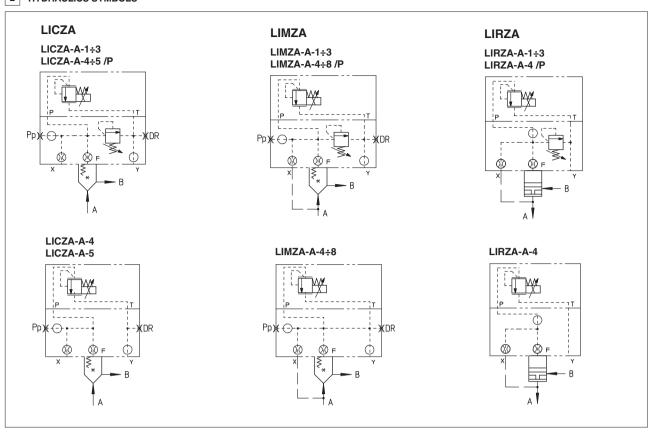
#### Certifications:


- Multicertification ATEX, IECEx EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

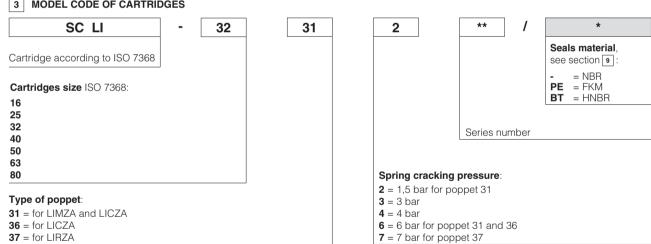
The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

Size:  $16 \div 80$  - ISO 7368 Max flow: up to **4500 l/min** Max pressure: **250 bar** 


#### 1 MODEL CODE OF FUNCTIONAL COVERS




- (1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining) (3) Possible combined options: /OP (4) Approved only for italian market

The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

## 2 HYDRAULICS SYMBOLS



#### 3 MODEL CODE OF CARTRIDGES



#### 4 TYPE OF POPPET

| Type of poppet                          | 31           | 36   | 37           |
|-----------------------------------------|--------------|------|--------------|
| Functional sketch<br>(Hydraulic symbol) | Ap<br>B<br>A | AP B | AP<br>B<br>A |
| Typical section                         |              |      |              |
| Area ratio A: AP                        | 1:1          | 1:1  | 1:1          |

#### 5 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A   | E-BM-AES-* /A |  |  |  |  |
|---------------|----------------|---------------|--|--|--|--|
| Туре          | digital        | digital       |  |  |  |  |
| Format        | DIN-rail panel |               |  |  |  |  |
| Data sheet    | G030           | GS050         |  |  |  |  |

#### 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                                             |  |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                         |  |  |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                                      |  |  |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$                 |  |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                                               |  |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                   |  |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                                 |  |  |  |  |  |  |

#### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                                                           |          |                   | LICZA        |                         |     |      |       | LIMZA        |     |     |      |      |      |              | LIRZA |     |     |     |
|-----------------------------------------------------------------------|----------|-------------------|--------------|-------------------------|-----|------|-------|--------------|-----|-----|------|------|------|--------------|-------|-----|-----|-----|
| Valve size [I/min]                                                    |          |                   | 1            | 2                       | 3   | 4    | 5     | 1            | 2   | 3   | 4    | 5    | 6    | 8            | 1     | 2   | 3   | 4   |
| Max flow                                                              |          | [bar]             | 200          | 400                     | 750 | 1000 | 2000  | 200          | 400 | 750 | 1000 | 2000 | 3000 | 4500         | 160   | 300 | 550 | 800 |
| Min regulated                                                         | pressure |                   |              | see section 15          |     |      |       |              |     |     |      |      |      |              |       |     |     |     |
| Max regulated pres. at port A [bar]                                   |          |                   | 80; 180; 250 |                         |     |      |       | 80; 180; 250 |     |     |      |      |      | 80; 180; 250 |       |     |     |     |
| Max pressure [bar]                                                    |          | Ports: T, Y = 210 |              |                         |     |      |       |              |     |     |      |      |      |              |       |     |     |     |
| wax pressure                                                          |          | [bar]             |              | Ports: P, A, B, X = 315 |     |      |       |              |     |     |      |      |      |              |       |     |     |     |
| Response time 0-100% step signal (1) (depending on installation) [ms] |          |                   | ≤ 120 ÷ 430  |                         |     |      |       | ≤ 120 ÷ 480  |     |     |      |      |      | ≤ 120 ÷ 380  |       |     |     |     |
| Hysteresis [% of regulated max pres.]                                 |          |                   | ≤ 2          |                         |     |      | ≤ 1,5 |              |     |     |      |      | ≤2   |              |       |     |     |     |
| Linearity [% of regulated max pres.]                                  |          | ≤3                |              |                         | ≤3  |      |       |              |     |     | ≤3   |      |      |              |       |     |     |     |
| Repeatibility [% of regulated max pres.]                              |          | ≤2                |              |                         | ≤ 2 |      |       |              |     | ≤2  |      |      |      |              |       |     |     |     |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section [5]

## 8 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35                                                                              | 35W                                                                                                                                              |  |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Insulation class                            |                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |  |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | ·                                                                                                                                                |  |  |  |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     |                                                                                                                                                  |  |  |  |  |  |
| Voltage code                                | standard                                                                        | option /24                                                                                                                                       |  |  |  |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 17,6 Ω                                                                                                                                           |  |  |  |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 1,1 A                                                                                                                                            |  |  |  |  |  |

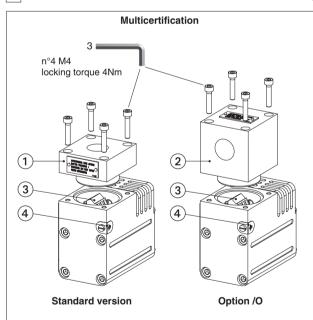
#### 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | temperature      | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                                                   |               |  |  |  |
|-------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|--|--|--|
| Recommended viscosity         |                  | 20 ÷ 100 mm²/s - max allowed i                                                                                                                                                                                                                                                                                | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |               |  |  |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                   | see also filter section at                        |               |  |  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                   | www.atos.com or KTF catalog                       |               |  |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification                                    | Ref. Standard |  |  |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD                        | DIN 51524     |  |  |  |
| Flame resistant without water |                  | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                |                                                   | ISO 12922     |  |  |  |
| Flame resistant with water    | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                                               | 150 12922     |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = $50^{\circ}$ C

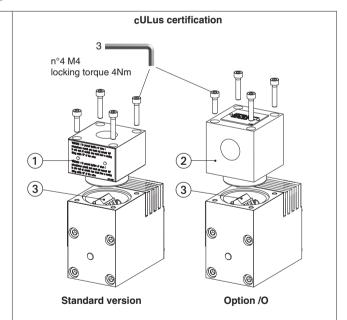
<sup>(1)</sup> Average response time value; the pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response


#### 10 CERTIFICATION DATA

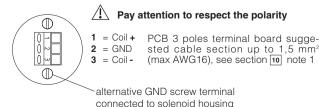
| Valve type                                                                        | DF                                                                                                                                   | PZA                                    | DPZA <b>/M</b>                                       | DPZA <b>/UL</b>                                               |                                                                                |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Certifications                                                                    |                                                                                                                                      | tion Group II  EAC PESO                | Multicertification Group I  ATEX IECEx               | North American <b>cULus</b>                                   |                                                                                |  |  |
| Solenoid certified code                                                           | OZ                                                                                                                                   | A-A                                    | OZAM-A                                               | OZA-A/EC                                                      |                                                                                |  |  |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO P338131                                                                     | ES 10.0010x                            | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324 - E366100                                            |                                                                                |  |  |
| Method of protection                                                              | ATEX, EAC EX II 2G EX d II EX II 2D Ex th IIIC IECEX EX d IIC T4/T3 EX th IIIC T135  EAC EX II 2G EX d III EX II 2G EX d III EX T135 | T135°C/T200°C Db<br>Gb<br>°C/T200°C Db | ATEX Ex I M2 Ex db I Mb IECEx Ex db I Mb             |                                                               | • UL 1203<br>Class I, Div.I, Groups C & D<br>Class I, Zone I, Groups IIA & IIB |  |  |
| Temperature class                                                                 | T4                                                                                                                                   | Т3                                     | -                                                    | T4                                                            | Т3                                                                             |  |  |
| Surface temperature                                                               | ≤ 135 °C                                                                                                                             | ≤ 200 °C                               | ≤ 150 °C                                             | ≤ 135 °C                                                      | ≤ 200 °C                                                                       |  |  |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                                                                                         | -40 ÷ +70 °C                           | -20 ÷ +60 °C                                         | -40 ÷ +55 °C                                                  | -40 ÷ +70 °C                                                                   |  |  |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                                                              |                                        | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | UL 1203 and UL429,<br>CSA 22.2 n°30-1986<br>CSA 22.2 n°139-13 |                                                                                |  |  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) |                                                                                                                                      | $\mathbf{M} = M$                       | GK-1/2"<br>20x1,5<br>: 1/2" NPT                      | 1/2" NPT                                                      |                                                                                |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

NARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


#### 11 EX PROOF SOLENOIDS WIRING OF VALVES -A without integral driver




- $\ensuremath{\textcircled{1}}$  cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- 2 cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring



#### 12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

#### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| Max ambient temperature [°C] | Temperature class |         | Max surface temperature [°C] |         | Min. cable temperature [°C] |         |
|------------------------------|-------------------|---------|------------------------------|---------|-----------------------------|---------|
| max ambient temperature [ C] | Goup I            | Goup II | Goup I                       | Goup II | Goup I                      | Goup II |
| 40 °C                        | -                 | T4      | 150 °C                       | 135 °C  | 90 °C                       | 90 °C   |
| 45 °C                        | -                 | T4      | -                            | 135 °C  | -                           | 95 °C   |
| 55 °C                        | -                 | T3      | -                            | 200 °C  | -                           | 110 °C  |
| 60 °C                        | -                 | -       | 150 °C                       | -       | 110 °C                      | -       |
| 70 °C                        | N.A.              | T3      | N.A.                         | 200 °C  | N.A.                        | 120 °C  |

#### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |  |
|------------------------------|-------------------|------------------------------|------------------------|--|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |  |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |  |

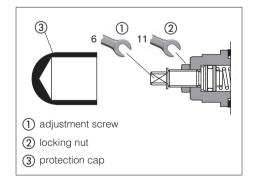
#### 13 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

FX300

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

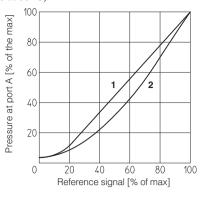
#### 14 OPTIONS

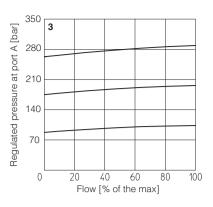

- O = Horizontal cable entrance, to be selected in case of limited verical space.
- **P** = Integral mechanical pressure limiter (standard for size 1, 2 and 3)

The LICZA-A\*, LIMZA-A\* and LIRZA-A\* standard size 1, 2, 3 and option /P are provided with mechanical pressure limiter acting as protection against overpressure. For safety reasons the factory setting of the mechanical pressure limiter is fully unloaded (min pressure).

At the first commissioning it must be set at a value lightly higher than the max pressure regulated with the proportional control.

For the pressure setting of the mechanical pressure limiter, proceed according to following steps:

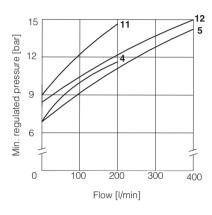

- apply the max reference input signal to the valve's driver. The system pressure will
  not increase until the mechanical pressure limiter remains unloaded.
- turn clockwise the adjustment screw ① until the system pressure will increase up to a stable value corresponding to the pressure setpoint at max reference input signal.
- turn clockwise the adjustment screw ① of additional 1 or 2 turns to ensure that the mechanical pressure limiter remains closed during the proportional valve working.

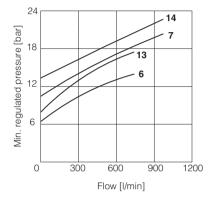


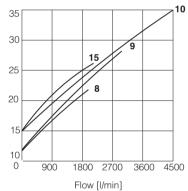

#### 14.1 Possible combined options: /OP

251

- Regulation diagrams LIMZA
- Regulation diagrams LICZA 2
- Pressure/flow diagrams LICZA, LIMZA



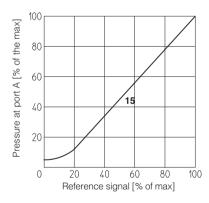


#### 4-14 Min. pressure/flow diagrams

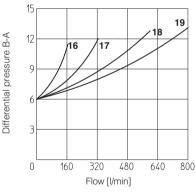
with zero reference signal

- **11** = LICZA-\*-1 4 = LIMZA-\*-15 = LIMZA-\*-2 6 = LIMZA-\*-3 12 = LICZA-\*-2 13 = LICZA-\*-3 **14** = LICZA-\*-4 **15** = LICZA-\*-5 **7** = LIMZA-\*-4
- **8** = LIMZA-\*-5 9 = LIMZA-\*-6 10 = LIMZA-\*-8



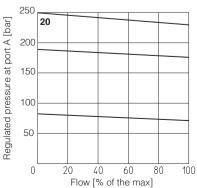






#### Regulation diagrams LIRZA

**15** = LIRZA-A

# **16-19 Min. pressure/flow diagrams** with reference signal "null"

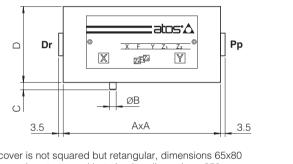

- **16** = LIRZA-\*-1
- **17** = LIRZA-\*-2
- **18** = LIRZA-\*-3
- **19** = LIRZA-\*-4





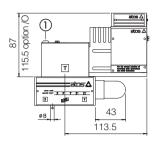
## Pressure/flow diagrams

**20** = LIRZA-A




## 16 FASTENING BOLTS AND SEALS

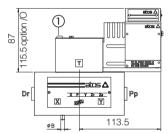
| Туре           | Size                                                                   | Fastening bolts                                                       | Seals     |  |  |
|----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|--|--|
|                | 1 = 16 4 socket head screws M8x45 class 12.9 Tightening torque = 35 Nm |                                                                       | 2 OR 108  |  |  |
| LIMZA<br>LICZA | - Ingritoring torque = 120 Mil                                         |                                                                       | 2 OR 108  |  |  |
| LIRZA          | <b>3</b> = 32                                                          | 4 socket head screws M16x55 class 12.9<br>Tightening torque = 300 Nm  | 2 OR 2043 |  |  |
| <b>4</b> = 40  |                                                                        | 4 socket head screws M20x70 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |  |  |
| LIMZA<br>LICZA | <b>5</b> = 50                                                          | 4 socket head screws M20x80 class 12.9<br>Tightening torque = 600 Nm  | 2 OR 3043 |  |  |
| LIMZA          | lightening torque = 2100 Nm                                            |                                                                       | 2 OR 3050 |  |  |
| LIMZA          | <b>8</b> = 80                                                          | 8 socket head screws M24x90 class 12.9<br>Tightening torque = 1000 Nm | 2 OR 4075 |  |  |


# 17 COVERS DIMENSIONS [mm]

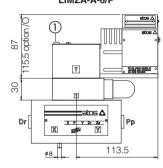
| Size          | AxA     | øВ | С | D  | Port<br>Pp - Dr |
|---------------|---------|----|---|----|-----------------|
| <b>1</b> = 16 | 65x80   | 3  | 4 | 40 | -               |
| <b>2</b> = 25 | 85x85   | 5  | 6 | 40 | -               |
| <b>3</b> = 32 | 100x100 | 5  | 6 | 50 | -               |
| <b>4</b> = 40 | 125x125 | 5  | 6 | 60 | G 1/4"          |
| <b>5</b> = 50 | 140x140 | 6  | 4 | 70 | G 1/4"          |
| <b>6</b> = 63 | 180x180 | 6  | 4 | 80 | G 3/8"          |
| <b>8</b> = 80 | ø250    | 8  | 6 | 80 | G 3/8"          |



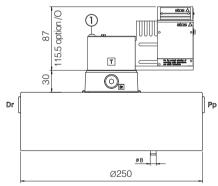
Notes: size 1 cover is not squared but retangular, dimensions 65x80 size 8 cover is not squared but circular, dimension Ø250

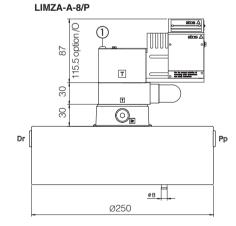






| Mass [kg] |              |           |       |  |  |
|-----------|--------------|-----------|-------|--|--|
|           | LICZA, LIMZA | Cartridge |       |  |  |
| Size      | Standard     | Option /P | SC LI |  |  |
| 1         | 4,1          | standard  | 0,2   |  |  |
| 2         | 4,8          | standard  | 0,5   |  |  |
| 3         | 6,1          | standard  | 0,9   |  |  |
| 4         | 11,5         | 12,5      | 1,7   |  |  |
| 5         | 15           | 16        | 2,9   |  |  |
| 6         | 24,5         | 25,5      | 6,7   |  |  |
| 8         | 33,1         | 34,1      | 13,1  |  |  |

1 = Screw for air bleeding: at the first valve commissioning the air eventually trapped inside the solenoid must be bled-off though the screw (1)


LIRZA-A-4 LICZA-A-4 LIMZA-A-4 LIMZA-A-5 LIMZA-A-6 LICZA-A-5




#### LICZA-A-4/P LIMZA-A-4/P LIRZA-A-4/P LICZA-A-5/P LIMZA-A-5/P LIMZA-A-6/P



#### LIMZA-A-8





Note: for mounting surface and cavity dimensions, see tech. table P006

#### 19 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments X020

Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

X030 Summary of Atos ex-proof components certified to cULus

FX900 Operating and manintenance information for ex-proof proportional valves

KX800 Cable glands for ex-proof valves

P006 Mounting surfaces and cavities for cartridge valves



# Ex-proof digital proportional reducing valves

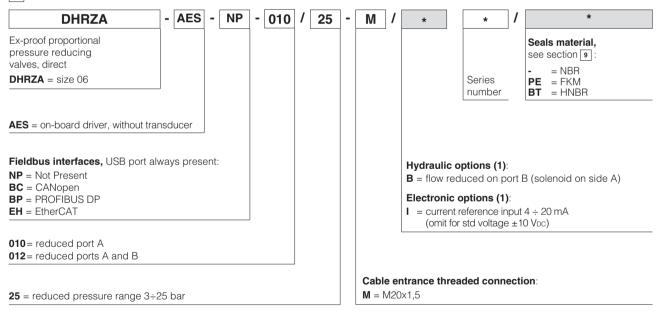
direct, with on-board driver and without transducer - ATEX and IECEx



### **DHRZA-AES**

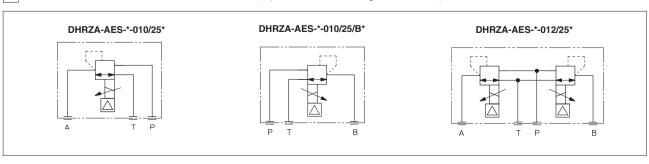
Ex-proof digital proportional pressure reducing valves, direct, without transducer, for pressure reduction in low flow systems or piloting lines.

They are equipped with ex-proof on-board digital driver and proportional solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.


### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver and solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.


Size: **06** - ISO 4401 Max flow: **24 l/min** Max pressure: **25 bar** 

# 1 MODEL CODE



(1) Possible combined options: /BI

### 2 CONFIGURAZIONS AND HYDRAULIC SYMBOLS (rapresentation according to ISO 1219-1)



### 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

**USB** or Bluetooth connection

E-C-SB-M12/BTH cable

E-C-SB-USB/M12 cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

# 4 VALVE SETTINGS AND PROGRAMMING TOOLS

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

 EW (POWERLINK)
 EI (EtherNet/IP)
 EP (PROFINET)

E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

### 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

### 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                                           |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                                    |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C                                        |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                                            |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                 |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                               |  |  |  |  |

# 7 HYDRAULIC CHARACTERISTICS

| Max regulated               | pressure (Q=1 l/min) [bar] | 25   |
|-----------------------------|----------------------------|------|
| Min. regulated              | pressure (Q=1 l/min) [bar] | 3    |
| Max. pressure a             | at port P [bar]            | 315  |
| Max. pressure a             | at port T [bar]            | 210  |
| Max. flow                   | [l/min]                    | 24   |
| Response time (depending on | 0-100% step signal [ms]    | ≤ 45 |
| Hysteresis                  | [% of the max pressure]    | ≤1,5 |
| Linearity                   | [% of the max pressure]    | ≤3   |
| Repeatability               | [% of the max pressure]    | ≤2   |

# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal : +24 VDC<br>Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                           |                                                    |                                                       |                                                        |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                              | 35 W                                               |                                                       |                                                        |  |  |  |
| Analog input signals                | Voltage: range ±10 \ Current: range ±20 r                                                                                                                         | /DC (24 VMAX tollerant)<br>nA                      | Input impedance<br>Input impedance                    |                                                        |  |  |  |
| Insulation class                    |                                                                                                                                                                   | ccuring surface tempera<br>82 must be taken into a |                                                       | ils, the European standards                            |  |  |  |
| Monitor outputs                     | Voltage: maximum ra                                                                                                                                               | nge ± 5 Vpc @ max                                  | 5 mA                                                  |                                                        |  |  |  |
| Enable input                        | Range: 0 ÷ 9 VDC (OFF                                                                                                                                             | state), 15 ÷ 24 VDC (ON                            | state), 9 ÷ 15 VDC (not ac                            | cepted); Input impedance: Ri > $87k\Omega$             |  |  |  |
| Fault output                        | external negative volta                                                                                                                                           | age not allowed (e.g. du                           | ue to inductive loads)                                | DFF state ≅ 0 V) @ max 50 mA;                          |  |  |  |
| Alarms                              |                                                                                                                                                                   |                                                    | reak with current referen<br>vel, pressure transducer | ce signal, over/under temperature, failure (/W option) |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant cable gland                                                                                                                                 |                                                    |                                                       |                                                        |  |  |  |
| Duty factor                         | Continuous rating (ED=100%)                                                                                                                                       |                                                    |                                                       |                                                        |  |  |  |
| Tropicalization                     | Tropical coating on electronics PCB                                                                                                                               |                                                    |                                                       |                                                        |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                    |                                                       |                                                        |  |  |  |
| Electromagnetic compatibility (EMC) | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                |                                                    |                                                       |                                                        |  |  |  |
| Communication interface             | USB<br>Atos ASCII coding                                                                                                                                          | CANopen<br>EN50325-4 + DS408                       | PROFIBUS DP<br>EN50170-2/IEC61158                     | EtherCAT<br>EC 61158                                   |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                | optical insulated<br>CAN ISO11898                  | optical insulated<br>RS485                            | Fast Ethernet, insulated<br>100 Base TX                |  |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | I temperature                | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |               |  |
|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|
| Recommended viscosity         |                              | 20 ÷100 mm²/s - max allowed ra                                                                                                                                                                                                                                                       | ange 15 ÷ 380 mm²/s        |               |  |
| Max fluid contamination level | normal operation longer life | ISO4406 class 18/16/13         NAS1638 class 7         see also filter section at           ISO4406 class 16/14/11         NAS1638 class 5         www.atos.com or KTF cat                                                                                                           |                            |               |  |
| Hydraulic fluid               |                              | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard |  |
| Mineral oils                  |                              | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |
| Flame resistant without wa    | ater                         | FKM                                                                                                                                                                                                                                                                                  | HFDU, HFDR                 | ISO 12922     |  |
| Flame resistant with water    | (1)                          | NBR, HNBR                                                                                                                                                                                                                                                                            | HFC                        | 150 12922     |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water:

- -max operating pressure = 210 bar
- -max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          |                                                                                                                                                                  | DHRZA                                                    |              |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|--|--|
| Certifications                      |                                                                                                                                                                  | Multicertification Group II  ATEX IECEx                  |              |  |  |
| Solenoid certified code             |                                                                                                                                                                  | OZA-AES                                                  |              |  |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X                                                                                                                                       | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X |              |  |  |
| Method of protection                | • ATEX 2014/34/EU  EX II 2G EX db IIC T6/T5/T4 Gb  EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX  EX db IIC T6/T5/T4 Gb  EX tb IIIC T85°C/T100°C/T135°C Db |                                                          |              |  |  |
| Temperature class                   | T6                                                                                                                                                               | T5                                                       | T4           |  |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                          | ≤ 100 °C                                                 | ≤ 135 °C     |  |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                     | -40 ÷ +55 °C                                             | -40 ÷ +70 °C |  |  |
| Applicable Standards                | EN 60079-0 EN 60079-31<br>EN 60079-1                                                                                                                             | IEC 60079-0<br>IEC 60079-1                               |              |  |  |
| Cable entrance: threaded connection |                                                                                                                                                                  | <b>M</b> = M20x1,5                                       |              |  |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

### 11 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> Grounding: section of external ground wire = 4 mm<sup>2</sup>

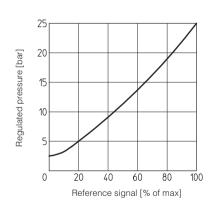
### 11.1 Cable temperature

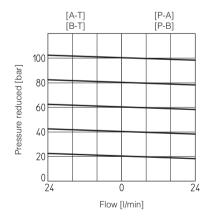
The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

# 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX600**Note: a Loctite sealant type 545, should be used on the cable gland entry threads


# 13 HYDRAULIC OPTIONS


B = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 15.1

# 14 ELECTRONIC OPTIONS

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

# 15 DIAGRAMS based on mineral oil ISO VG 46 at 50°C





### 16 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

### 16.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 16.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 16.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10 \text{VDC}$  for standard and  $4 \div 20 \text{ mA}$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10 \text{ VDC}$  or  $\pm 20 \text{ mA}$ . Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24 \text{VDC}$ .

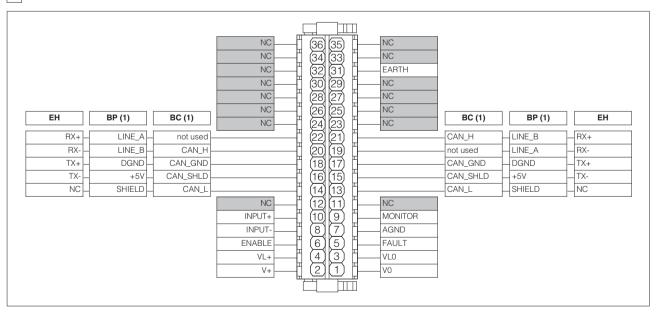
### 16.4 Monitor output signal (MONITOR)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is 0 ÷ 5VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.

### 16.5 Enable input signal (ENABLE)


To enable the driver, supply a 24 VDC on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849.

Enable input signal can be used as generic digital input by software selection.

#### 16.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 17 TERMINAL BOARD OVERVIEW



(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

259

# 18 ELECTRONIC CONNECTIONS

# 18.1 Main connections signals

| CABLE<br>ENTRANCE | PIN             | SIGNAL  | TECHNICAL SPECIFICATIONS                                                                                                 | NOTES                                             |
|-------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1               | V0      | Power supply 0 Vpc                                                                                                       | Gnd - power supply                                |
|                   | 2               | V+      | Power supply 24 Vpc                                                                                                      | Input - power supply                              |
|                   | 3               | VL0     | Power supply 0 Vpc for driver's logic and communication                                                                  | Gnd - power supply                                |
|                   | 4               | VL+     | Power supply 24 Vpc for driver's logic and communication                                                                 | Input - power supply                              |
|                   | 5               | FAULT   | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                | Output - on/off signal                            |
| Λ                 | 6               | ENABLE  | Enable (24 VDC) or disable (0 VDC) the driver, referred to VL0                                                           | Input - on/off signal                             |
|                   | 7 <b>AGND</b> / |         | Analog ground                                                                                                            | Gnd - analog signal                               |
|                   | 8               | INPUT-  | Negative reference input signal for INPUT+                                                                               | Input - analog signal                             |
|                   | 9               | MONITOR | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                         | Output - analog signal <b>Software selectable</b> |
|                   | 10              | INPUT+  | Reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |
|                   | 31              | EARTH   | Internally connected to driver housing                                                                                   |                                                   |

# 18.2 USB connector - M12 - 5 pin always present

|                   |     |         | <u> </u>                 |             |   |
|-------------------|-----|---------|--------------------------|-------------|---|
| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|                   | 1   | +5V_USB | Power supply             |             |   |
|                   | 2   | ID      | Identification           |             |   |
| B                 | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (female)    |   |
|                   | 5   | D+      | Data line +              | (Ternale)   |   |

# 18.3 BC fieldbus execution connections

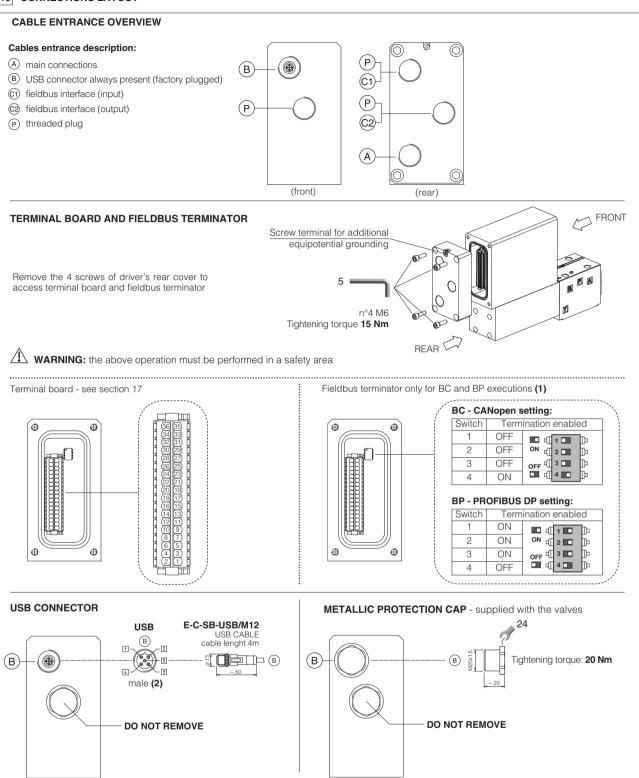
| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>A</b>          | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
| C2                | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

(1) pin 19 and 22 can be fed with external +5V supply of CAN interface

# 18.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
|                   | 16  | +5V    | Power supply                          |
| ( ; 1             | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 18.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| ( ) 1             | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (2)               | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

### 19 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 19.1 Cable glands and threaded plug - see tech table KX800

| Communication                             | То | be ordere         | ed separat | ely                 | Cable entrance |                                                                             |
|-------------------------------------------|----|-------------------|------------|---------------------|----------------|-----------------------------------------------------------------------------|
| interfaces                                |    | gland<br>entrance |            | ed plug<br>entrance | overview       | Notes                                                                       |
| NP                                        | 1  | А                 | none       | none                | (P)            | Cable entrance P are factory plugged Cable entrance A is open for costumers |
| BC, BP, EH "via stub" connection          | 2  | C1                | 1          | C2                  |                | Cable entrance A, C1, C2 are open for costumers                             |
| BC, BP, EH<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none       | none                |                | Cable entrance A, C1, C2 are open for costumers                             |

# 20 FASTENING BOLTS AND SEALS

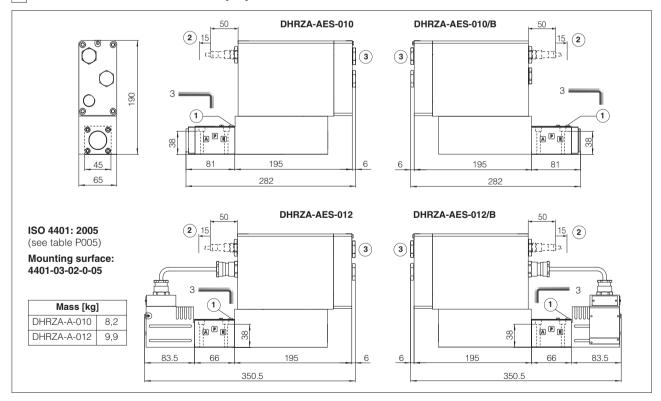


# Fastening bolts:

4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm



### Seals:


4 OR 108;

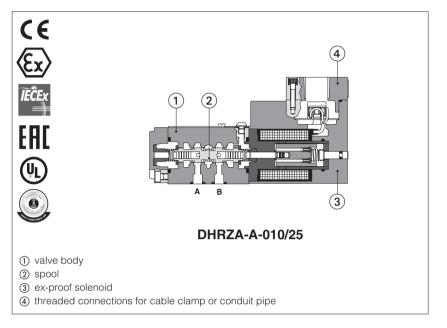
Diameter of ports P, A, B, T: Ø 7,5 mm (max)

1 OR 2025

Diameter of port Y:  $\emptyset = 3.2 \text{ mm}$  (only for /Y option)

# 21 INSTALLATION DIMENSIONS FOR DHRZA [mm]




# 22 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS510 | Fieldbus                                      |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | KX800 | Cable glands for ex-proof valves              |
| FX900 | Operating and manintenance information for ex-proof proportional valves | P005  | Mounting surfaces for electrohydraulic valves |
| GS500 | Programming tools                                                       |       |                                               |



# **Ex-proof proportional reducing valves**

direct, without transducer - ATEX, IECEx, EAC, PESO or cULus

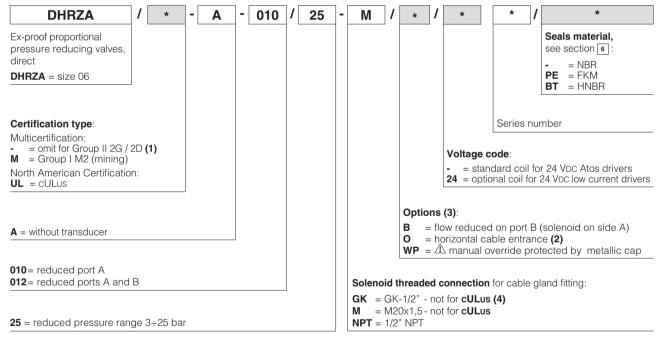


### **DHRZA-A**

Ex-proof proportional pressure reducing valves, direct, without transducer, for pressure reduction in low flow systems or piloting lines.

They are equipped with ex-proof proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:


- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment

The solenoid is also designed to limit the surface temperature within the classified limits.

Size: **06** - ISO 4401 Max flow: **24 l/min** Max pressure: **25 bar** 

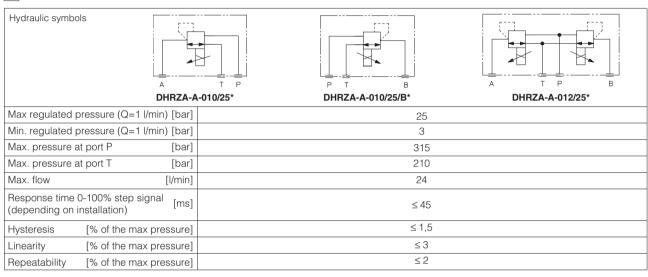
# 1 MODEL CODE



- (1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining)
- (3) Possible combined options: all combinations are available
- (4) Approved only for italian market

# 2 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.


Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A E-BM-AES-* /A |         |  |  |
|---------------|----------------------------|---------|--|--|
| Туре          | digital                    | digital |  |  |
| Format        | DIN-rail panel             |         |  |  |
| Data sheet    | G030                       | GS050   |  |  |

# **3 GENERAL CHARACTERISTICS**

| Assembly position                      | Any position                                                                                                                                                             |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                      |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C          |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                               |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                    |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                 |  |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS



Above performance data refer to valves coupled with Atos electronic drivers, see section 2

# 5 ELECTRICAL CHARACTERISTICS

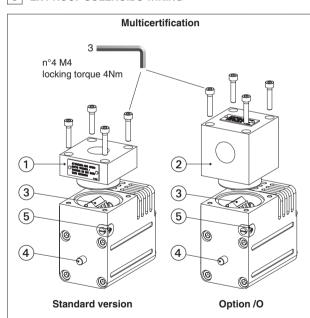
| Max. power                                  | 35                                                                              | 35W                                                                                                                                              |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insulation class                            |                                                                                 | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | · ·                                                                                                                                              |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |
| Voltage code                                | standard                                                                        | option /24                                                                                                                                       |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 3,2 Ω 17,6 Ω                                                                                                                                     |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 1,1 A                                                                                                                                            |  |  |

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature |                  | NBR seals (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$<br>FKM seals (/PE option) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$<br>HNBR seals (/BT option) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-40^{\circ}\text{C} \div +50^{\circ}\text{C}$ |                                                   |                            |  |  |
|--------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|--|--|
| Recommended viscosity                |                  | 20 ÷ 100 mm²/s - max allowed                                                                                                                                                                                                                                                                                                                                                           | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                            |  |  |
| Max fluid                            | normal operation | ISO4406 class 18/16/13 NAS1638 class 7                                                                                                                                                                                                                                                                                                                                                 |                                                   | see also filter section at |  |  |
| contamination level                  | longer life      | ISO4406 class 16/14/11 NAS                                                                                                                                                                                                                                                                                                                                                             | www.atos.com or KTF catalog                       |                            |  |  |
| Hydraulic fluid                      |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                                                                    | Classification                                    | Ref. Standard              |  |  |
| Mineral oils                         |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD                        | DIN 51524                  |  |  |
| Flame resistant without water        |                  | FKM                                                                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                                        | ISO 12922                  |  |  |
| Flame resistant with water           | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                                                                              | HFC                                               | 130 12922                  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

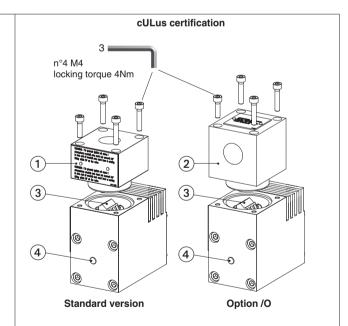
<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature =  $50^{\circ}$ C


# 7 CERTIFICATION DATA

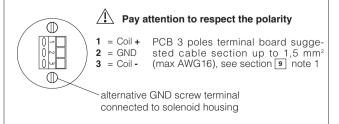
| Valve type                                                                        | DHRZA, DKZA                                                                                         |                          | DHRZA <b>/M</b> , DKZA <b>/M</b>                                                                           |      | DHRZA <b>/UL</b> , DKZA <b>/UL</b> |                                     |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|------|------------------------------------|-------------------------------------|
| Certifications                                                                    |                                                                                                     | ation Group II  EAC PESO | Multicertification Grou                                                                                    | ıр I |                                    | merican<br><b>Lus</b>               |
| Solenoid certified code                                                           | OZ                                                                                                  | A-A                      | OZAM-A                                                                                                     |      | OZA-                               | A/EC                                |
| Type examination certificate (1)                                                  | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131 |                          | ATEX: CESI 03 ATEX 057<br>IECEx: IECEx CES 12.000                                                          |      | 20170324 - E366100                 |                                     |
| Method of protection                                                              |                                                                                                     |                          | ATEX     Ex I M2 Ex db I Mb     IECEx     Ex db I Mb      IEC Ex     Ex db I Mb      IEC Ex     Ex db I Mb |      |                                    |                                     |
|                                                                                   |                                                                                                     | s°C/T200°C Db            |                                                                                                            |      |                                    |                                     |
| Temperature class                                                                 | T4                                                                                                  | Т3                       | -                                                                                                          |      | T4                                 | Т3                                  |
| Surface temperature                                                               | ≤ 135 °C                                                                                            | ≤ 200 °C                 | ≤ 150 °C                                                                                                   |      | ≤ 135 °C                           | ≤ 200 °C                            |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                                                        | -40 ÷ +70 °C             | -20 ÷ +60 °C                                                                                               |      | -40 ÷ +55 °C                       | -40 ÷ +70 °C                        |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                             |                          | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31                                                                 |      | CSA 22.2                           | and UL429,<br>n°30-1986<br>n°139-13 |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = G<br><b>M</b> = M2<br><b>NPT</b> = 1                                                    |                          |                                                                                                            |      | 1/2"                               | NPT                                 |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


# 8 EX PROOF SOLENOIDS WIRING




- $\ensuremath{\textcircled{\textbf{1}}}$  cover with threaded connection for vertical cable gland fitting
- $\ensuremath{\mathfrak{D}}$  cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- $\underbrace{\mathbb{O}}$  cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- (3) terminal board for cables wiring
- standard manual override



### 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

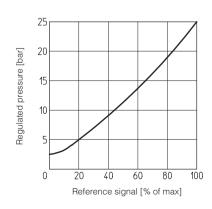
### 9.1 Cable temperature

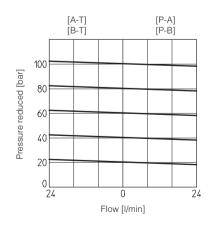
The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| May ambient temperature [°C] | Temperature class |         | Max surface temperature [°C] |         | Min. cable temperature [°C] |         |
|------------------------------|-------------------|---------|------------------------------|---------|-----------------------------|---------|
| Max ambient temperature [°C] | Goup I            | Goup II | Goup I                       | Goup II | Goup I                      | Goup II |
| 40 °C                        | -                 | T4      | 150 °C                       | 135 °C  | 90 °C                       | 90 °C   |
| 45 °C                        | -                 | T4      | -                            | 135 °C  | -                           | 95 °C   |
| 55 °C                        | -                 | Т3      | -                            | 200 °C  | -                           | 110 °C  |
| 60 °C                        | -                 | -       | 150 °C                       | -       | 110 °C                      | -       |
| 70 °C                        | N.A.              | T3      | N.A.                         | 200 °C  | N.A.                        | 120 °C  |

### cULus certification

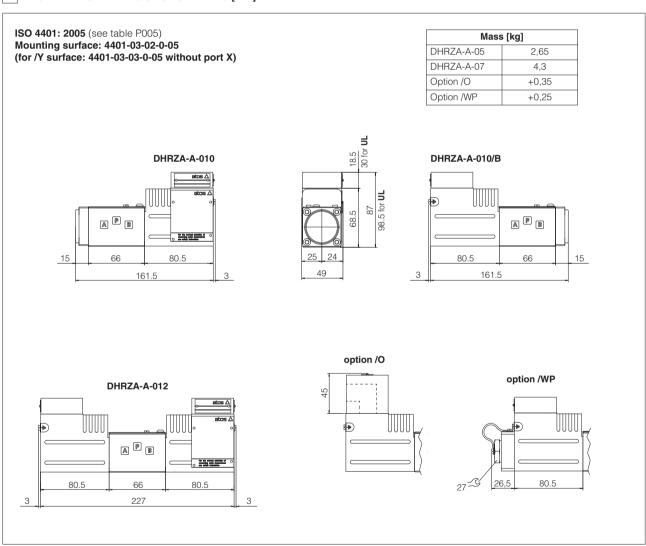

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |  |
|------------------------------|-------------------|------------------------------|------------------------|--|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |  |
| 70 °C                        | Т3                | 200 °C                       | 100 °C                 |  |


# 10 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

# 11 DIAGRAMS based on mineral oil ISO VG 46 at 50°C



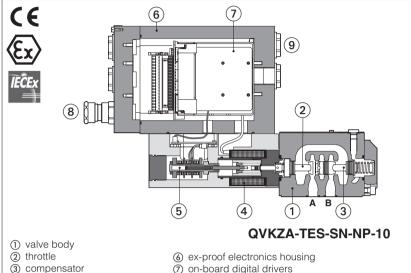



# 12 FASTENING BOLTS AND SEALS

|   | DHZA                                                                  | DKZA                                              |
|---|-----------------------------------------------------------------------|---------------------------------------------------|
|   |                                                                       |                                                   |
|   | Fastening bolts:                                                      | Fastening bolts:                                  |
| H | 4 socket head screws M5x50 class 12.9                                 | 4 socket head screws M6x40 class 12.9             |
|   | Tightening torque = 8 Nm                                              | Tightening torque = 15 Nm                         |
|   | Seals:                                                                | Seals:                                            |
|   | 4 OR 108;                                                             | 5 OR 2050;                                        |
|   | Diameter of ports P, A, B, T: Ø 7,5 mm (max)                          | Diameter of ports P, A, B, T: Ø 11,5 mm (max)     |
|   | Diameter of port Y: $\emptyset = 3.2 \text{ mm}$ (only for /Y option) | Diameter of port Y: Ø = 5 mm (only for /Y option) |
|   |                                                                       |                                                   |

# 13 INSTALLATION DIMENSIONS FOR DHRZO [mm]




# 14 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  |
|-------|-------------------------------------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO |
| X030  | Summary of Atos ex-proof components certified to cULus                  |
| FX900 | Operating and manintenance information for ex-proof proportional valves |
| KX800 | Cable glands for ex-proof valves                                        |
| P005  | Mounting surfaces for electrohydraulic valves                           |
|       |                                                                         |



# Ex-proof digital proportional flow valves high performance

pressure compensated, with on-board driver and LVDT transducer - ATEX and IECEx



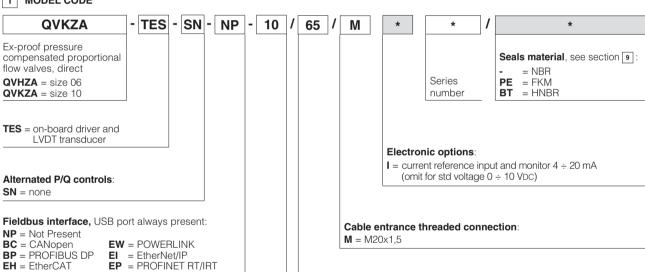
- on-board digital drivers
  - (8) ex-proof cable glands (to be ordered separately)
- ⑤ ex-proof LVDT transducer (9) USB port always present (factory plugged)

### **QVHZA-TES, QVKZA-TES**

Ex-proof digital high performance proportional flow valves, with LVDT position transducer for pressure compensated flow regulations.

They are equipped with ex-proof on-board digital driver, LVDT transducer and solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The flameproof enclosure of on-board digital driver, solenoid and transducer, prevents the propagation of accidental internal sparks or fire to the external environment.

The driver and solenoid are also designed to limit the surface temperature within the classified limits.

**QVHZA** QVKZA: Size: 10 - ISO4401 Size: **06** - ISO4401 Max flow: 45 I/min Max flow: 90 l/min Max pressure: 210 bar Max pressure: 210 bar

# 1 MODEL CODE

(4) ex-proof solenoid



### Valve size ISO 4401:

**06** = size 06

10 = size 10

### Max regulated flow:

QVHZA: QVKZA: 3 = 3.5 l/min**36** = 35 l/min 65 = 65 l/min**12** = 12 l/min 90 = 90 l/min45 = 45 l/min

18 = 18 l/min

# 2 HYDRAULIC SYMBOLS



2 wav connection



3 wav connection

The valves can be used in 2 or 3 way connection, depending to the application requirements.

In 2 way the P port must not be connected (blocked)

In 3 way the P port has to be connected to tank or to other user lines

The port T must be always not connected (blocked)

### **3 GENERAL NOTES**

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the E-SW-\* programming software.

### 4 VALVE SETTINGS AND PROGRAMMING TOOLS

 $\triangle$ 

WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

 E-SW-BASIC
 support:
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support:
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

E-SW-\*/PQ EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

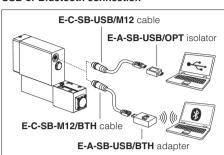
/\

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

# 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 6 GENERAL CHARACTERISTICS


| Assembly position                      | Any position                                                                                                                                                                             |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                         |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                      |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C           |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                   |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                                              |  |  |  |  |

# 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model               |               |                                     |     | QVHZA      |                 |           | QVI   | KZA     |
|---------------------------|---------------|-------------------------------------|-----|------------|-----------------|-----------|-------|---------|
| Max regulated flow        | [l/min]       | 3,5                                 | 12  | 18         | 35              | 45        | 65    | 90      |
| Min regulated flow        | [cm³/min]     | 15                                  | 20  | 30         | 50              | 60        | 85    | 100     |
| Regulating $\Delta p$     | [bar]         | 4                                   | - 6 | 10         | - 12            | 15        | 6 - 8 | 10 - 12 |
| Max flow on port A (1)    | [l/min]       |                                     | 4   | 10         | 50              | 55        | 70    | 100     |
| Max pressure              | [bar]         |                                     |     |            | 210             |           |       |         |
| Response time 0÷100% step | o signal [ms] | ≤ 30 ≤ 45                           |     |            |                 | 45        |       |         |
| Hysteresis                |               | ≤ 0,5 [% of the regulated max flow] |     |            |                 |           |       |         |
| Linearity                 |               | ≤0,5 [% of the regulated max flow]  |     |            |                 |           |       |         |
| Repeatability             |               |                                     |     | ≤ 0,1 [% o | f the regulated | max flow] |       |         |

(1) for different Δp, the max flow is in accordance to diagrams in section 14.3

### **USB** or Bluetooth connection



# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                      | Nominal<br>Rectified and filtered                                                                                                                                   | Nominal : +24 VDC<br>Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP) |                                            |                                                                       |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption               | 35 W                                                                                                                                                                |                                                                                         |                                            |                                                                       |  |  |  |
| Analog input signals                | Voltage: range $\pm 10$ VDC (24 VMAX tollerant) Input impedance: Ri > 50 k $\Omega$ Current: range $\pm 20$ mA Input impedance: Ri = 500 $\Omega$                   |                                                                                         |                                            |                                                                       |  |  |  |
| Insulation class                    |                                                                                                                                                                     | ccuring surface tempera<br>82 must be taken into a                                      |                                            | ils, the European standards                                           |  |  |  |
| Monitor outputs                     |                                                                                                                                                                     | oltage ±10 VDC @ ma<br>urrent ±20 mA @ ma                                               | ax 5 mA<br>ax 500 $\Omega$ load resistance |                                                                       |  |  |  |
| Enable input                        | Range: $0 \div 5 \text{ VDC}$ (OFF state), $9 \div 24 \text{ VDC}$ (ON state), $5 \div 9 \text{ VDC}$ (not accepted); Input impedance: Ri > $10 \text{ k}\Omega$    |                                                                                         |                                            |                                                                       |  |  |  |
| Fault output                        |                                                                                                                                                                     | VDC (ON state > [powerage not allowed (e.g. du                                          |                                            | ate < 1 V ) @ max 50 mA;                                              |  |  |  |
| Alarms                              | Solenoid not connecte<br>valve spool transduce                                                                                                                      |                                                                                         | oreak with current refere                  | ence signal, over/under temperature,                                  |  |  |  |
| Protection degree to DIN EN60529    | IP66/67 with relevant                                                                                                                                               | cable gland                                                                             |                                            |                                                                       |  |  |  |
| Duty factor                         | Continuous rating (ED                                                                                                                                               | =100%)                                                                                  |                                            |                                                                       |  |  |  |
| Tropicalization                     | Tropical coating on el                                                                                                                                              | ectronics PCB                                                                           |                                            |                                                                       |  |  |  |
| Additional characteristics          | Short circuit protection of solenoid current supply; spool position control by P.I.D. with rapid solenoi ching; protection against reverse polarity of power supply |                                                                                         |                                            |                                                                       |  |  |  |
| Electromagnetic compatibility (EMC) | C) According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                               |                                                                                         |                                            |                                                                       |  |  |  |
| Communication interface             | USB Atos ASCII coding                                                                                                                                               | CANopen<br>EN50325-4 + DS408                                                            | PROFIBUS DP<br>EN50170-2/IEC61158          | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer        | not insulated<br>USB 2.0 + USB OTG                                                                                                                                  | optical insulated<br>CAN ISO11898                                                       | optical insulated<br>RS485                 | Fast Ethernet, insulated<br>100 Base TX                               |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                                                   |                             |  |  |
|----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--|--|
| Recommended viscosity      |             | 20 ÷ 100 mm²/s - max allowed r                                                                                                                                                                                                                                                                                                         | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                             |  |  |
| Max fluid normal operation |             | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | see also filter section at                        |                             |  |  |
| contamination level        | longer life | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | 638 class 5                                       | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid            |             | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification                                    | Ref. Standard               |  |  |
| Mineral oils               |             | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD                        | DIN 51524                   |  |  |
| Flame resistant without wa | iter        | FKM                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                                        | ISO 12922                   |  |  |
| Flame resistant with water | (1)         | NBR, HNBR                                                                                                                                                                                                                                                                                                                              | HFC                                               | 130 12922                   |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          | QVHZA, QVKZA                                                                                                                                                 |                           |              |                 |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------------|
| Certifications                      | Multicertification Group II  ATEX IECEx                                                                                                                      |                           |              |                 |
| Solenoid certified code             | OZA-TES                                                                                                                                                      |                           |              |                 |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECEx TPS 19.0004X                                                                                                     |                           |              | Ex TPS 19.0004X |
| Method of protection                | • ATEX 2014/34/EU Ex II 2G Ex db IIC T6/T5/T4 Gb Ex II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX Ex db IIC T6/T5/T4 Gb Ex tb IIIC T85°C/T100°C/T135°C Db |                           |              |                 |
| Temperature class                   | Т6                                                                                                                                                           | T5                        |              | T4              |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                      | ≤ 100                     | °C           | ≤ 135 °C        |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                 |                           | -40 ÷ +70 °C |                 |
| Applicable Standards                | EN 60079-0 EN 60079-31 IEC 60079-0 IEC 60079-31 EN 60079-1                                                                                                   |                           |              | IEC 60079-31    |
| Cable entrance: threaded connection |                                                                                                                                                              | $\mathbf{M} = \mathbf{M}$ | 20x1,5       |                 |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40  $^{\circ}$ C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 11 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

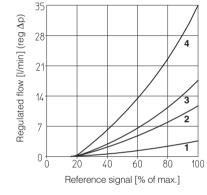
### 11.1 Cable temperature

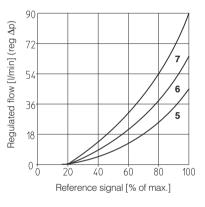
The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | ent temperature [°C] Temperature class |        | Min. cable temperature [°C] |
|------------------------------|----------------------------------------|--------|-----------------------------|
| 40 °C                        | T6                                     | 85 °C  | 80 °C                       |
| 55 °C                        | T5                                     | 100 °C | 90 °C                       |
| 70 °C                        | T4                                     | 135 °C | 110 °C                      |

### 12 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table KX800 Note: a Loctite sealant type 545, should be used on the cable gland entry threads

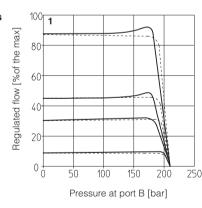

# **ELECTRONIC OPTIONS**

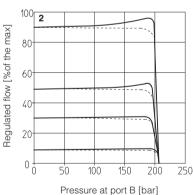

= It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 Vpc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDc or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

# DIAGRAMS - based on mineral oil ISO VG 46 at 50 °C

### 14.1 Regulation diagrams

- 1 = QVHZA-\*-06/3
- 2 = QVHZA-\*-06/12
- 3 = QVHZA-\*-06/18
- 4 = QVHZA-\*-06/36
- **5** = QVHZA-\*-06/45 6 = QVKZA-\*-10/65
- 7 = QVKZA-\*-10/90



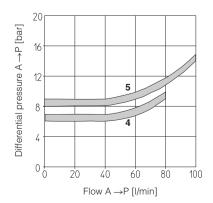




### 14.2 Regulated flow/outlet pressure diagrams with inlet pressure = 210 bar

- 1 = QVH7A
- 2 = QVKZA

Dotted line for 3-way versions






### 14.3 Flow A → P/∆p diagrams

3-way configuration

- 1 = QVHZA-\*-06/3QVHZA-\*-06/12
- 2 = QVHZA-\*-06/18
- QVHZA-\*-06/36 **3** = QVHZA-\*-06**/45**
- 4 = QVKZA-\*-10/65
- 5 = QVKZA-\*-10/90





### 15 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

#### 15.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 15.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

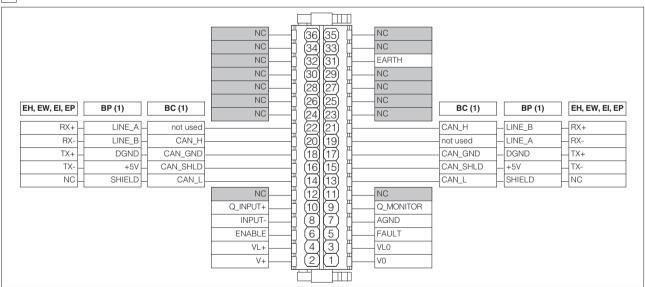
A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 15.3 Flow reference input signal (Q\_INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal. Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 15.4 Flow monitor output signal (Q MONITOR)

The driver generates an analog output signal proportional to the actual spool position of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, pilot spool position). Monitor output signal is factory preset according to selected valve code, defaults are  $0 \div 10$  VDC for standard and  $4 \div 20$  mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.


### 15.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 VDC on pin 5: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as generic digital input by software selection.

### 15.6 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 16 TERMINAL BOARD OVERVIEW



(1) For BC and BP executions the fieldbus connections have an internal pass-through connection

FX430 PROPORTIONAL VALVES

# 17 ELECTRONIC CONNECTIONS

# 17.1 Main connections signals

| CABLE<br>ENTRANCE     | PIN                                                                                                                                                               | SIGNAL                                                                                                                                                     | TECHNICAL SPECIFICATIONS                                       | NOTES                                         |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--|
|                       | 1                                                                                                                                                                 | V0                                                                                                                                                         | Power supply 0 Vpc                                             | Gnd - power supply                            |  |
|                       | 2                                                                                                                                                                 | V+                                                                                                                                                         | Power supply 24 VDC                                            | Input - power supply                          |  |
|                       | 3                                                                                                                                                                 | VL0                                                                                                                                                        | Power supply 0 Vpc for driver's logic and communication        | Gnd - power supply                            |  |
|                       | 4                                                                                                                                                                 | VL+ Power supply 24 Vpc for driver's logic and communication Input - pow                                                                                   |                                                                |                                               |  |
|                       | 5                                                                                                                                                                 | FAULT                                                                                                                                                      | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0      | Output - on/off signal                        |  |
| Λ                     | 6                                                                                                                                                                 | ENABLE                                                                                                                                                     | Enable (24 VDC) or disable (0 VDC) the driver, referred to VL0 | Input - on/off signal                         |  |
| $\boldsymbol{\wedge}$ | 7                                                                                                                                                                 | AGND Analog ground Gnd                                                                                                                                     |                                                                | Gnd - analog signal                           |  |
|                       | 8                                                                                                                                                                 | INPUT-                                                                                                                                                     | Input - analog signal                                          |                                               |  |
|                       | 9                                                                                                                                                                 | 9 Q_MONITOR Flow monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option |                                                                | Output - analog signal<br>Software selectable |  |
|                       | 10 Q_INPUT+ Flow reference input signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /l option Softw |                                                                                                                                                            | Input - analog signal<br>Software selectable                   |                                               |  |
|                       | 31                                                                                                                                                                | EARTH                                                                                                                                                      | Internally connected to driver housing                         |                                               |  |

# 17.2 USB connector - M12 - 5 pin always present

|                   |     | _       |                          |             |   |
|-------------------|-----|---------|--------------------------|-------------|---|
| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view | B |
|                   | 1   | +5V_USB | Power supply             |             |   |
|                   | 2   | ID      | Identification           | [ To a   5  |   |
| $\perp$ B         | 3   | GND_USB | Signal zero data line    |             |   |
|                   | 4   | D-      | Data line -              | (female)    |   |
|                   | 5   | D+      | Data line +              | (leinale)   |   |

# 17.3 BC fieldbus execution connections

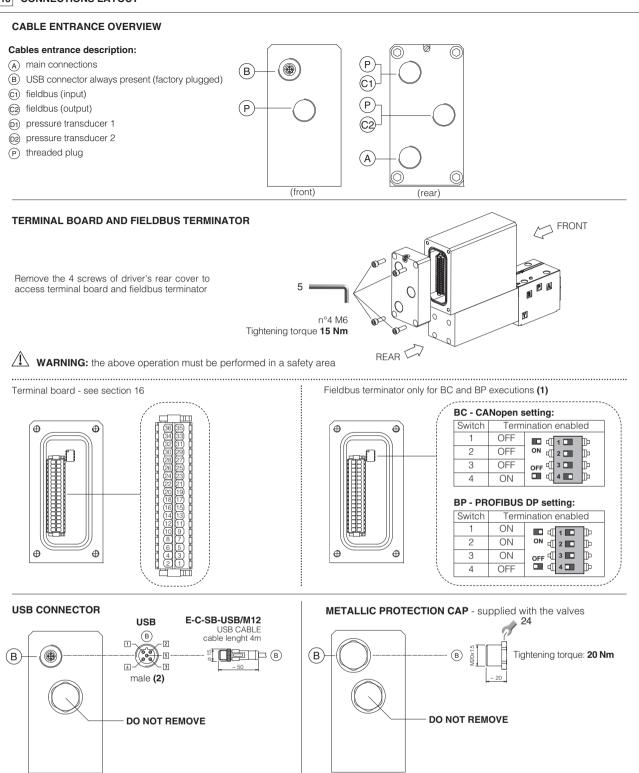
| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>~</b> .        | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
| C2                | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
|                   | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

(1) Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 17.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 17.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
|                   | 16  | TX-    | Transmitter              |
| C1                | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

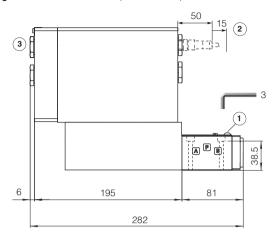
### 18 CONNECTIONS LAYOUT



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 18.1 Cable glands and threaded plug - see tech table KX800

| Communication                                            | То | be ordere         | ed separat | tely                | Cable entrance |                                                                              |
|----------------------------------------------------------|----|-------------------|------------|---------------------|----------------|------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |            | ed plug<br>entrance | overview       | Notes                                                                        |
| NP                                                       | 1  | А                 | none       | none                | ©<br>©<br>(A)  | Cable entrance A is open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 2  | C1                | 1          | C2                  |                | Cable entrance A, C1, C2 are open for costumers                              |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 3  | C1<br>C2<br>A     | none       | none                |                | Cable entrance A, C1, C2 are open for costumers                              |


# 19 FASTENING BOLTS AND SEALS

|   | QVHZA                                                                           | QVKZA                                                                            |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max)                   | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max)                  |

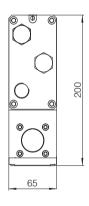

# **QVHZA-TES**

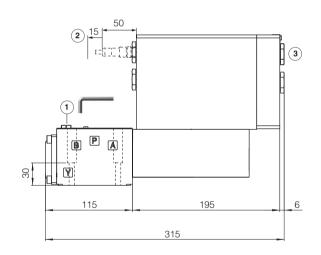
ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see tab. P005)



| Mass      | s [kg] |
|-----------|--------|
| QVHZA-TES | 7,2    |





# **QVKZA-TES**

ISO 4401: 2005

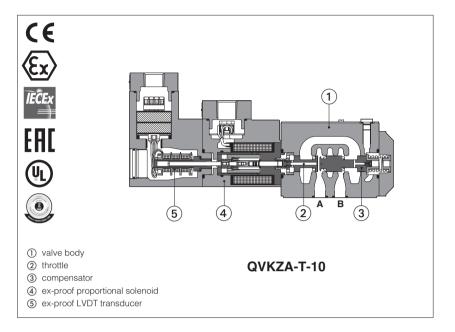
Mounting surface: 4401-05-04-0-05 (see tab. P005)

| Mass [kg] |   |  |
|-----------|---|--|
| QVKZA     | 9 |  |





- $\bigcirc$  = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table KX800)


# 21 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | KX800 | Cable glands for ex-proof valves              |
| FX900 | Operating and manintenance information for ex-proof proportional valves | P005  | Mounting surfaces for electrohydraulic valves |
| GS500 | Programming tools                                                       |       |                                               |
| GS510 | Fieldbus                                                                |       |                                               |



# Ex-proof proportional flow valves high performance

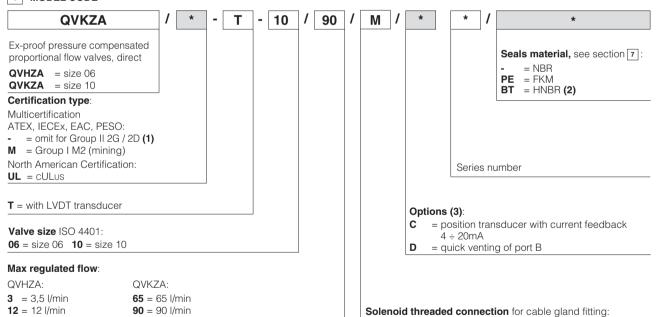
pressure compensated, with LVDT transducer - ATEX, IECEx, EAC, PESO or cULus



### QVHZA-T, QVKZA-T

Ex-proof high performance proportional flow control valves, with LVDT position transducer for pressure compensated flow regulations. They are equipped with ex-proof proportional solenoids LVDT transducer certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:

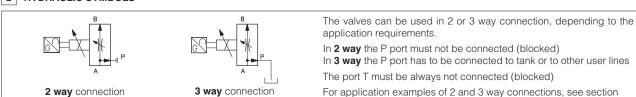

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid and transducer prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

QVHZA: QVKZA:
Size: 06 - ISO 4401 Size: 10 - ISO 4401
Max flow: 45 l/min Max pressure: 210 bar Max pressure: 210 bar

# 1 MODEL CODE




- (1) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining) (3) Possible combined options: /CD (4) Approved only for the Italian market

### 2 HYDRAULIC SYMBOLS

**18** = 18 l/min **36** = 35 l/min

45 = 45 l/min



**GK** = GK-1/2" - not for **cULus (4)** 

**NPT** = 1/2" NPT

= M20x1,5 - not for cULus

# 3 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A E-BM-AES-* /A |         |  |
|---------------|----------------------------|---------|--|
| Туре          | digital                    | digital |  |
| Format        | DIN-rail panel             |         |  |
| Data sheet    | G030                       | GS050   |  |

# 4 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                                                    |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                                |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                                             |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$        |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$          |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                                                      |  |  |  |  |
| Compliance                             | Explosion proof protection, see section  -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"  RoHs Directive 2011/65/EU as last update by 2015/65/EU  REACH Regulation (EC) n°1907/2006 |  |  |  |  |

# 5 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model           |           | QVHZA                               |    |            | QVKZA           |           |         |     |
|-----------------------|-----------|-------------------------------------|----|------------|-----------------|-----------|---------|-----|
| Max regulated flow    | [l/min]   | 3,5                                 | 12 | 18         | 35              | 45        | 65      | 90  |
| Min regulated flow    | [cm³/min] | 15                                  | 20 | 30         | 50              | 60        | 85      | 100 |
| Regulating $\Delta p$ | [bar]     | 4 - 6 10 - 12                       |    | - 12       | 15              | 6 - 8     | 10 - 12 |     |
| Max flow on port A    | [l/min]   | 40 50                               |    |            | 50              | 55        | 70      | 100 |
| Max pressure          | [bar]     | 210                                 |    |            |                 |           |         |     |
| Response time (1)     | [ms]      | ≤ 30 ≤ 40                           |    |            |                 | 40        |         |     |
| Hysteresis            |           | ≤0,5 [% of the regulated max flow]  |    |            |                 |           |         |     |
| Linearity             |           | ≤ 0,5 [% of the regulated max flow] |    |            |                 |           |         |     |
| Repeatability         |           |                                     |    | ≤ 0,1 [% o | f the regulated | max flow] |         |     |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 3

(1) 0 ÷ 100 % step signal

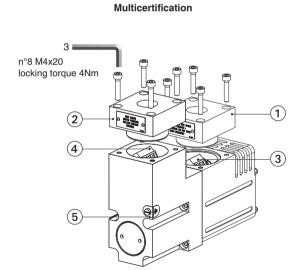
# 6 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 35W                                                                                                                                              |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Insulation class                            | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved                                                                  |
| Duty factor                                 | Continuous rating (ED=100%)                                                                                                                      |
| Voltage code                                | standard                                                                                                                                         |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                                                                                            |
| Max. solenoid current                       | 2,5 A                                                                                                                                            |

# 7 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature |                  | NBR seals (standard) = -20°C $\div$ +60°C, with HFC hydraulic fluids = -20°C $\div$ +50°C FKM seals (/PE option) = -20°C $\div$ +80°C HNBR seals (/BT option) = -40°C $\div$ +60°C, with HFC hydraulic fluids = -40°C $\div$ +50°C |                                                   |                            |  |  |
|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|--|--|
| Recommended viscosity                |                  | 20 ÷ 100 mm²/s - max allowed                                                                                                                                                                                                       | 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                            |  |  |
| Max fluid                            | normal operation | ISO4406 class 18/16/13 NAS1638 class 7                                                                                                                                                                                             |                                                   | see also filter section at |  |  |
| contamination level longer life      |                  | ISO4406 class 16/14/11 NAS                                                                                                                                                                                                         | www.atos.com or KTF catalog                       |                            |  |  |
| Hydraulic fluid                      |                  | Suitable seals type                                                                                                                                                                                                                | Classification                                    | Ref. Standard              |  |  |
| Mineral oils                         |                  | NBR, FKM, HNBR                                                                                                                                                                                                                     | HL, HLP, HLPD, HVLP, HVLPD                        | DIN 51524                  |  |  |
| Flame resistant without water        |                  | FKM HFDU, HFDR                                                                                                                                                                                                                     |                                                   | - ISO 12922                |  |  |
| Flame resistant with water           | (1)              | NBR, HNBR HFC                                                                                                                                                                                                                      |                                                   | 130 12922                  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


# 8 CERTIFICATION DATA

| Valve type                          | QVHZA, QVKZA                                                                                                                                                        |                               | QVHZA <b>/M</b> , QVHZA <b>/M</b>                    | QVHZA <b>/UL</b>                                                       | QVHZA <b>/UL</b> , QVHZA <b>/UL</b>   |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|--|
| Certifications                      | Multicertification Group II ATEX IECEX EAC PESO                                                                                                                     |                               | Multicertification Group I ATEX IECEx                | North American <b>cULus</b>                                            |                                       |  |
| Solenoid cerified code              | OZ                                                                                                                                                                  | A-T                           | OZAM-T                                               | OZA                                                                    | -T/EC                                 |  |
| Type examination certificate (1)    | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO: P33813                                                                                                    | ES 10.0010x<br>IT. 08.B.01784 | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324                                                               | - E366100                             |  |
| Method of protection                | ATEX, EAC Ex II 2G Ex d IIC T6/T4/T3 Gb Ex II 2D Ex tb IIIC T85°C/T200°C Db  IECEX Ex d IIC T6/T4/T3 Gb Ex tb IIIC T85°C/T200°C Db  PESO Ex II 2G Ex d IIC T6/T4 Gb |                               | ATEX     Ex I M2 Ex db I Mb     IECEx     Ex db I Mb | x I M2 Ex db I Mb Class I, Div.I, Groups<br>CEX Class I, Zone I, Group |                                       |  |
| Temperature class                   | T4                                                                                                                                                                  | Т3                            | -                                                    | T4                                                                     | Т3                                    |  |
| Surface temperature                 | ≤ 135 °C                                                                                                                                                            | ≤ 200 °C                      | ≤ 150 °C                                             | ≤ 135°C                                                                | ≤ 200 °C                              |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                        | -40 ÷ +70 °C                  | -20 ÷ +60 °C                                         | -40 ÷ +55 °C                                                           | -40 ÷ +70 °C                          |  |
| Applicable standards                | EN 60079-1                                                                                                                                                          |                               | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | CSA 22.2                                                               | and UL429,<br>n°30-1986<br>! n°139-13 |  |
| Cable entrance: threaded connection | GK = GK-1/2"<br>M = M20x1,5<br>NPT = 1/2" NPT                                                                                                                       |                               |                                                      | 1/2"                                                                   | NPT                                   |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids Group II and cULus are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

/N WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 9 EX PROOF SOLENOIDS AND LVDT TRANSDUCER WIRING



- (1) solenoid cover with threaded connection for cable gland fitting
- 2) transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4) transducer terminal board for cables wiring
- (5) screw terminal for additional equipotential grounding

# Solenoid wiring

1 = Coil **2** = GND 3 = Coil

PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

### Position transducer wiring



1 = Output signal **2** = Supply -15 V

= Supply +15 V = GND

PCB 4 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)

# cULus certification 3 n°8 M4x20 locking torque 4Nm (1)(2 (3)

- (1) solenoid cover with threaded connection for cable gland fitting
- 2) transducer cover with threaded connection for cable gland fitting
- 3 solenoid terminal board for cables wiring
- 4 transducer terminal board for cables wiring

### Solenoid wiring



### Pay attention to respect the polarity

1 = Coil + **2** = GND 3 = Coil -

PCB 3 poles terminal board suggested cable section up to 1,5 mm<sup>2</sup> (max AWG16), see section 10 note 1

alternative GND screw terminal connected to solenoid housing

### Position transducer wiring



- 1 = Output signal
- = Supply -15 V 3 = Supply + 15 V
- **4** = GND

PCB 4 poles terminal board suggested cable section up to 1,5 mm<sup>2</sup> (max AWG16), see section 10 note 1

281

FX420 PROPORTIONAL VALVES

### 10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

Grounding: section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the

### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

### Multicertification

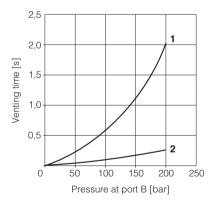
|   | Max ambient temperature [°C] | Temperature class |         | Max surface te | mperature [°C] | Min. cable temperature [°C] |         |
|---|------------------------------|-------------------|---------|----------------|----------------|-----------------------------|---------|
|   | max ambient temperature [ C] | Goup I            | Goup II | Goup I         | Goup II        | Goup I                      | Goup II |
| Ī | 40 °C                        | -                 | T4      | 150 °C         | 135 °C         | -                           | 90 °C   |
| Ī | 60 °C                        | -                 | -       | 150 °C         | -              | 110 °C                      | -       |
| ľ | 70 °C                        | N.A.              | T3      | N.A.           | 200 °C         | N.A.                        | 120 °C  |

#### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | Т3                | 200 °C                       | 100 °C                 |

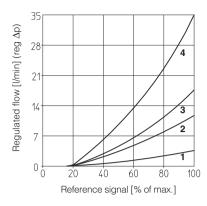
# 11 CABLE GLANDS - only Multicertification

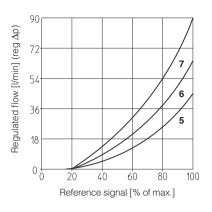
Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table KX800


Note: a Loctite sealant type 545, should be used on the cable gland entry threads

# 12 OPTIONS

- = Position transducer with current feedback 4÷20 mA, suggested in case of long distance between the electronic driver and the proportional valve
- **D** = This option provides a quick venting of the use port B when the valve is closed or de-energized. The valve must be connected in 3 way, with P port connected to tank. When the proportional throttle is fully closed, the valve's port B is internally connected to port P (tank), permitting a quickly decompression of the pressure in the use line. In the diagram aside are represented the venting times of QVHZA and QVKZA option /D


respect to standard versions:

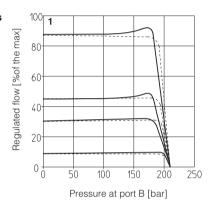

- 1 = standard versions
- 2 = option /D

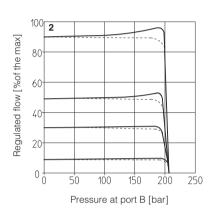


# 13.1 Regulation diagrams

- 1 = QVHZA-\*-06/3
- 2 = QVHZA-\*-06/12
- 3 = QVHZA-\*-06/18
- **4** = QVHZA-\*-06/36
- **5** = QVHZA-\*-06**/45**
- **6** = QVKZA-\*-10**/65**
- 7 = QVKZA-\*-10/90





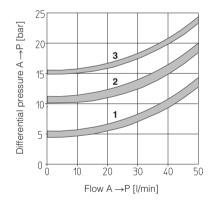


# 13.2 Regulated flow/outlet pressure diagrams

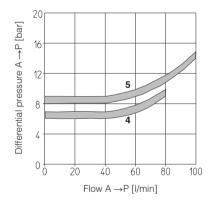
with inlet pressure = 210 bar

- 1 = QVHZA
- 2 = QVKZA

Dotted line for 3-way versions







# 13.3 Flow A $\rightarrow$ P/ $\Delta$ p diagrams

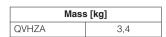
3-way configuration

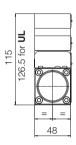
- 1 = QVHZA-\*-06/3 QVHZA-\*-06/12 2 = QVHZA-\*-06/18

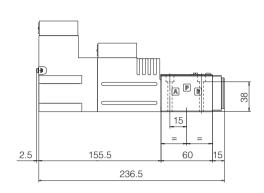
- 2 = QVHZA--06/16 QVHZA-\*-06/36 3 = QVHZA-\*-06/45 4 = QVKZA-\*-10/65 5 = QVKZA-\*-10/90






# 14 FASTENING BOLTS AND SEALS

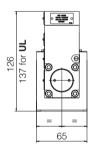

|   | QVHZA                                                                           | QVKZA                                                                            |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max)                   | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max)                  |

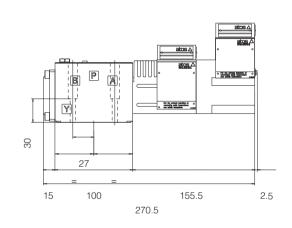

# 15 INSTALLATION DIMENSIONS FOR QVHZA [mm]

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see tab. P005)






ISO 4401: 2005

Mounting surface: 4401-05-04-0-05 (see tab. P005)

| Mass [kg] |     |  |  |
|-----------|-----|--|--|
| QVKZA     | 4,9 |  |  |





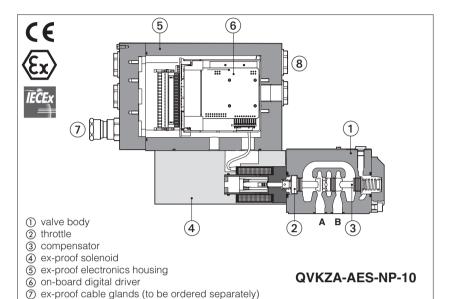
# 16 RELATED DOCUMENTATION

**X010** Basics for electrohydraulics in hazardous environments

**X020** Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO

**X030** Summary of Atos ex-proof components certified to cULus

**FX900** Operating and manintenance information for ex-proof proportional valves


**KX800** Cable glands for ex-proof valves

**P005** Mounting surfaces for electrohydraulic valves



# Ex-proof digital proportional flow valves

pressure compensated with on-board driver and without transducer - ATEX and IECEx



### QVHZA-AES, QVKZA-AES

Ex-proof digital proportional flow valves, without position transducer for pressure compensated flow regulations.

They are equipped with ex-proof on-board digital driver and solenoid certified for safe operations in hazardous environments with potentially explosive atmosphere.

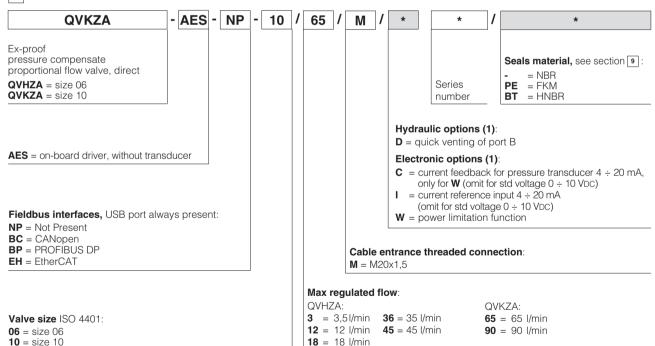
### Multicertification ATEX and IECEx

for gas group II 2G and dust category II 2D

The flameproof enclosure of on-board digital driver and solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

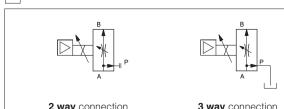
The driver and solenoid are also designed to limit the surface temperature within the classified limits.

 QVHZA:
 QVKZA:


 Size: 06 - ISO4401
 Size: 10 - ISO4401

 Max flow: 45 l/min
 Max flow: 90 l/min

 Max pressure: 210 bar
 Max pressure: 210 bar


# 1 MODEL CODE

USB port always present (factory plugged)



(1) For possible combined options, see section 15

# 2 HYDRAULIC SYMBOLS



The valves can be used in 2 or 3 way connection, depending to the application requirements.

In 2 way the P port must not be connected (blocked)

In  $\bf 3$  way the P port has to be connected to tank or to other user lines The port T must be always not connected (blocked)

# 3 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table FX900 and in the user manuals included in the E-SW-\* programming software.

### 4 VALVE SETTINGS AND PROGRAMMING TOOLS

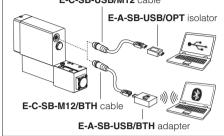
WARNING: the below operation must be performed in a safety area

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared) **E-SW-FIELDBUS** support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)


E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved



**USB** or Bluetooth connection



# 5 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 6 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                                                           |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                                                                    |  |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C                         |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                                            |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 10 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                 |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                               |  |  |  |  |

### 7 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model               |             | QVHZA                             |    |           | QV              | KZA       |    |     |
|---------------------------|-------------|-----------------------------------|----|-----------|-----------------|-----------|----|-----|
| Max regulated flow        | [l/min]     | 3,5                               | 12 | 18        | 35              | 45        | 65 | 90  |
| Min regulated flow        | [cm³/min]   | 15                                | 20 | 30        | 50              | 60        | 85 | 100 |
| Regulating ∆p             | [bar]       | 4 - 6 10 - 12                     |    | 15        | 6 - 8           | 10 - 12   |    |     |
| Max flow on port A (1)    | [l/min]     | 40 50                             |    | 55        | 70              | 100       |    |     |
| Max pressure              | [bar]       | 210                               |    |           |                 |           |    |     |
| Response time 0÷100% step | signal [ms] |                                   |    | ≤ 35      |                 |           | ≤  | 50  |
| Hysteresis                |             | ≤ 5 [% of the regulated max flow] |    |           |                 |           |    |     |
| Linearity                 |             | ≤3 [% of the regulated max flow]  |    |           |                 |           |    |     |
| Repeatability             |             |                                   |    | ≤ 1 [% of | the regulated r | max flow] |    |     |

(1) for different  $\Delta p$ , the max flow is in accordance to diagrams in section 16.3

# 8 ELECTRICAL CHARACTERISTICS

| Power supplies                                    | Nominal : +24 VDC Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                              |                                                    |                                                       |                                                        |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--|--|
| Max power consumption                             | 35 W                                                                                                                                                              | 35 W                                               |                                                       |                                                        |  |  |
| Analog input signals                              | Voltage: range ±10 \ Current: range ±20 n                                                                                                                         | /DC (24 VMAX tollerant)<br>nA                      | Input impedance<br>Input impedance                    |                                                        |  |  |
| Insulation class                                  |                                                                                                                                                                   | ccuring surface tempera<br>82 must be taken into a |                                                       | ils, the European standards                            |  |  |
| Monitor outputs                                   | Voltage: maximum ra                                                                                                                                               | nge ± 5 Vpc @ max                                  | 5 mA                                                  |                                                        |  |  |
| Enable input                                      | Range: 0 ÷ 9 VDC (OFF                                                                                                                                             | state), 15 ÷ 24 VDC (ON                            | state), 9 ÷ 15 VDC (not ac                            | ccepted); Input impedance: Ri > $87k\Omega$            |  |  |
| Fault output                                      | Output range: 0 ÷ 24 external negative volta                                                                                                                      | VDC (ON state ≅ VL+<br>age not allowed (e.g. du    | - [logic power supply] ; (<br>ue to inductive loads)  | DFF state ≅ 0 V) @ max 50 mA;                          |  |  |
| Pressure transducer power supply (only /W option) | +24VDC @ max 100 r                                                                                                                                                | nA (E-ATRA-7 see tech                              | table <b>GX800</b> )                                  |                                                        |  |  |
| Alarms                                            |                                                                                                                                                                   |                                                    | reak with current referen<br>vel, pressure transducer | ce signal, over/under temperature, failure (/W option) |  |  |
| Protection degree to DIN EN60529                  | IP66/67 with relevant                                                                                                                                             | cable gland                                        |                                                       |                                                        |  |  |
| Duty factor                                       | Continuous rating (ED                                                                                                                                             | =100%)                                             |                                                       |                                                        |  |  |
| Tropicalization                                   | Tropical coating on el                                                                                                                                            | ectronics PCB                                      |                                                       |                                                        |  |  |
| Additional characteristics                        | Short circuit protection of solenoid current supply; current control by P.I.D. with rapid solenoid switching; protection against reverse polarity of power supply |                                                    |                                                       |                                                        |  |  |
| Electromagnetic compatibility (EMC)               | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                |                                                    |                                                       |                                                        |  |  |
| Communication interface                           | USB<br>Atos ASCII coding                                                                                                                                          | CANopen<br>EN50325-4 + DS408                       | PROFIBUS DP<br>EN50170-2/IEC61158                     | EtherCAT<br>EC 61158                                   |  |  |
| Communication physical layer                      | not insulated<br>USB 2.0 + USB OTG                                                                                                                                | optical insulated<br>CAN ISO11898                  | optical insulated<br>RS485                            | Fast Ethernet, insulated<br>100 Base TX                |  |  |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

# 9 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature |                  | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                             |               |  |  |
|--------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|--|
| Recommended viscosity                |                  | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                                                        |                             |               |  |  |
| Max fluid                            | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | see also filter section at  |               |  |  |
| contamination level                  | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | www.atos.com or KTF catalog |               |  |  |
| Hydraulic fluid                      |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification              | Ref. Standard |  |  |
| Mineral oils                         |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524     |  |  |
| Flame resistant without water        |                  | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                                         |                             | ISO 12922     |  |  |
| Flame resistant with water           | (1)              | NBR, HNBR                                                                                                                                                                                                                                                                                                                              |                             |               |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

# 10 CERTIFICATION DATA

| Valve type                          | QVHZA, QVKZA                                                                                                                                                 |                             |                            |                 |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------|--|
| Certifications                      | Multicertification Group II  ATEX IECEx                                                                                                                      |                             |                            |                 |  |
| Solenoid certified code             | OZA-AES                                                                                                                                                      |                             |                            |                 |  |
| Type examination certificate (1)    | ATEX: TUV IT 18 ATEX 06                                                                                                                                      | ATEX 068 X • IECEx: IECEx 7 |                            | Ex TPS 19.0004X |  |
| Method of protection                | • ATEX 2014/34/EU EX II 2G EX db IIC T6/T5/T4 Gb EX II 2D EX tb IIIC T85°C/T100°C/T135°C Db  • IECEX EX db IIC T6/T5/T4 Gb EX tb IIIC T85°C/T100°C/T135°C Db |                             |                            |                 |  |
| Temperature class                   | Т6                                                                                                                                                           |                             | T5                         | T4              |  |
| Surface temperature                 | ≤ 85 °C                                                                                                                                                      | ≤ 1                         | 00 °C                      | ≤ 135 °C        |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                 | -40 ÷                       | +55 °C                     | -40 ÷ +70 °C    |  |
| Applicable Standards                | EN 60079-0<br>EN 60079-1                                                                                                                                     | EN 60079-31                 | IEC 60079-0<br>IEC 60079-1 | IEC 60079-31    |  |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5                                                                                                                                           |                             |                            |                 |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The driver and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.
- WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup>

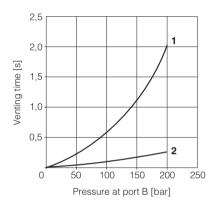
**Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 11.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

# 12 CABLE GLANDS


Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX600 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

# 13 HYDRAULIC OPTIONS

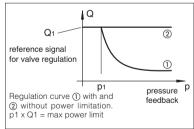
D = This option provides a quick venting of the use port B when the valve is closed or de-energized. The valve must be connected in 3 way, with P port connected to tank. When the proportional throttle is fully closed, the valve's port B is internally connected to port P (tank), permitting a quickly decompression of the pressure in the use line. In the diagram aside are represented the venting times of QVHZA and QVKZA option /D respect to standard versions:



2 = option /D



### 14 ELECTRONIC OPTIONS

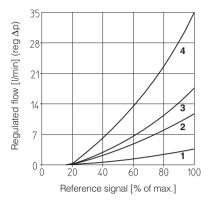

I = It provides 4 ÷ 20 mA current reference signal, instead of the standard 0 ÷ 10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

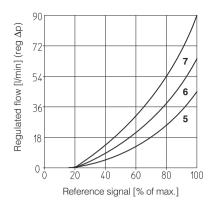
### **C** = Only in combination with option /W

It is available to connect pressure transducer with  $4 \div 20$  mA current output signal, instead of the standard  $0 \div 10$ VDC .Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA.

W = Only for valves coupled with pressure compensator type HC-011 or KC-011 (see tech table D150). It provides the hydraulic power limitation function. The driver receives the flow reference signal by the analog input INPUT+ and a pressure transducer, installed in the hydraulic system, has to be connected to the driver's analog input TR. When the actual requested hydraulic power pxQ (TR x INPUT+) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:

### Hydraulic Power Limitation - option /W



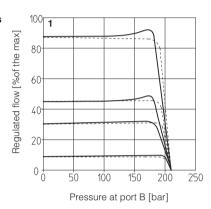


### 15 POSSIBLE COMBINED OPTIONS

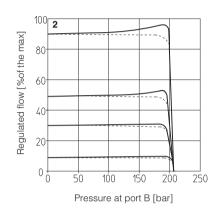
/DI, /DW, /IW, /ICW, /ICWD

# 16.1 Regulation diagrams

- 1 = QVHZA-\*-06/3
- 2 = QVHZA-\*-06/12
- 3 = QVHZA-\*-06/18
- **4** = QVHZA-\*-06/36
- 5 = QVHZA-\*-06/45
- 6 = QVKZA-\*-10/65
- 7 = QVKZA-\*-10/90



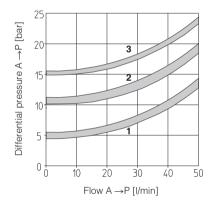


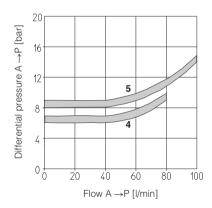


# 16.2 Regulated flow/outlet pressure diagrams

with inlet pressure = 210 bar

- 1 = QVHZA
- 2 = QVKZA

Dotted line for 3-way versions




# 16.3 Flow A $\rightarrow$ P/ $\triangle$ p diagrams

3-way configuration

- 1 = QVHZA-\*-06/3
- QVHZA-\*-06/12 2 = QVHZA-\*-06/18
- QVHZA-\*-06/**36** = QVHZA-\*-06/**45**
- **4** = QVKZA-\*-10/**65 5** = QVKZA-\*-10/**90**





### 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

### 17.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

### 17.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

### 17.3 Flow reference input signal (INPUT+)

The driver controls in closed loop the valve spool position proportionally to the external reference input signal.

Reference input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  VDC for standard and  $4 \div 20$  mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Drivers with fieldbus interface can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24$ VDC.

### 17.4 Monitor output signals (MONITOR and MONITOR2)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference).

Monitor output signal is factory preset according to selected valve code, default settings is ±5 VDC (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 VDC.

#### Option /W

rhe driver generates a second analog output signal (MONITOR2) proportional to the actual system pressure.

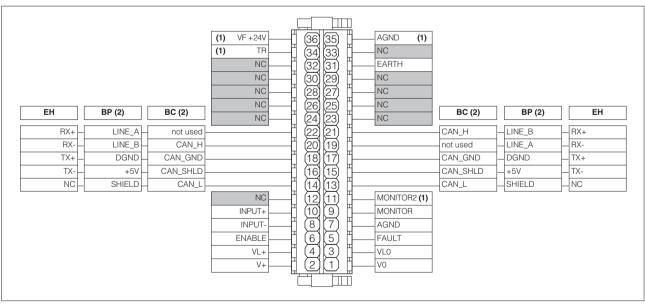
The output maximum range is ±5 VDC; default setting is 0 ÷ 5 VDC

### 17.5 Enable input signal (ENABLE)

To enable the driver, supply a 24 Vpc on pin 6: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849.

Enable input signal can be used as generic digital input by software selection.

### 17.6 Fault output signal (FAULT)


Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4 ÷ 20 mA input, spool position transducer cable broken, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. Fault status is not affected by the Enable input signal. Fault output signal can be used as digital output by software selection.

### 17.7 Remote Pressure Transducer Input signal (TR) - only for /W option

Analog pressure transducers can be directly connected to the driver.

Analog input signal is factory preset according to selected valve code, defaults are  $0 \div 10$  VDC for standard and  $4 \div 20$  mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  VDC or  $\pm 20$  mA. Note: transducer feedback can be read as a digital information through fieldbus communication - software selectable.

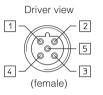
### 18 TERMINAL BOARD OVERVIEW

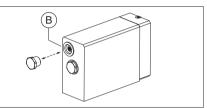


(1) Connections available only for /W option

(2) For BC and BP executions the fieldbus connections have an internal pass-through connection

## 19 ELECTRONIC CONNECTIONS


## 19.1 Main connections signals


| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS                                                                                                 | NOTES                                             |  |  |  |
|-------------------|-----|----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|                   | 1   | V0       | Power supply 0 Vpc                                                                                                       | Gnd - power supply                                |  |  |  |
|                   | 2   | V+       | Power supply 24 Vpc                                                                                                      | Input - power supply                              |  |  |  |
|                   | 3   | VL0      | Power supply 0 Vpc for driver's logic and communication                                                                  | Gnd - power supply                                |  |  |  |
|                   | 4   | VL+      | Power supply 24 Vpc for driver's logic and communication                                                                 | Input - power supply                              |  |  |  |
|                   | 5   | FAULT    | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0 Outp                                                           |                                                   |  |  |  |
| _                 | 6   | ENABLE   | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                           |                                                   |  |  |  |
| Α                 | 7   | AGND     | Analog ground                                                                                                            | Gnd - analog signal                               |  |  |  |
| / \               | 8   | INPUT-   | Negative reference input signal for INPUT+                                                                               | Input - analog signal                             |  |  |  |
|                   | 9   | MONITOR  | Monitor output signal: ±5 Vpc maximum range, referred to AGND Default is: ±5 Vpc                                         | Output - analog signal <b>Software selectable</b> |  |  |  |
|                   | 10  | INPUT+   | Reference input signal: ±10 Vpc / ±20 mA maximum range Defaults are: 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /I option | Input - analog signal <b>Software selectable</b>  |  |  |  |
|                   | 11  | MONITOR2 | 2nd monitor output signal: ±5 Vpc maximum range, referred to AGND (1) Default is: 0 ÷ 5 Vpc                              | Output - analog signal <b>Software selectable</b> |  |  |  |
|                   | 31  | EARTH    | Internally connected to driver housing                                                                                   |                                                   |  |  |  |

<sup>(1) 2</sup>nd monitor output signal is available only for /W option

## 19.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver |
|-------------------|-----|---------|--------------------------|--------|
|                   | 1   | +5V_USB | Power supply             |        |
|                   | 2   | ID      | Identification           |        |
| В                 | 3   | GND_USB | Signal zero data line    |        |
|                   | 4   | D-      | Data line -              | 4 //   |
|                   | 5   | D+      | Data line +              | (fem   |





## 19.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>~</b> 4        | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
|                   | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|----------|-----|----------|-----------------------------|
|          | 13  | CAN_L    | Bus line (low)              |
|          | 15  | CAN_SHLD | Shield                      |
| C2       | 17  | CAN_GND  | Signal zero data line       |
|          | 19  | not used | Pass-through connection (1) |
|          | 21  | CAN_H    | Bus line (high)             |

<sup>(1)</sup> pin 19 and 22 can be fed with external +5V supply of CAN interface

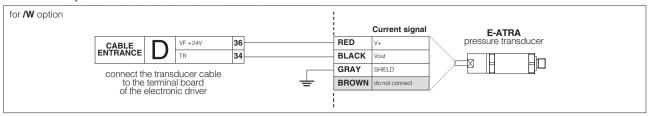
## 19.4 BP fieldbus execution connections

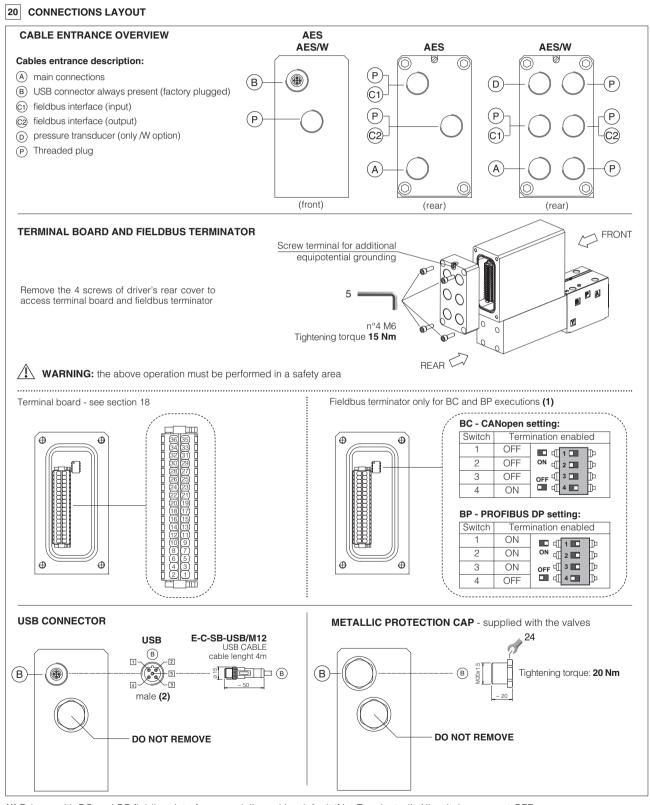
| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| ()1               | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| (;2               | 17  | DGND   | Data line and termination signal zero |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

## 19.5 EH fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| <b>.</b>          | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |


## $\textbf{19.6 Remote pressure transducer connector} \ \textbf{-} \ \text{only for } \ \text{/W option}$

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                            | NOTES                                     | Voltage | Current |
|-------------------|-----|---------|-----------------------------------------------------|-------------------------------------------|---------|---------|
|                   | 34  | TR      | Signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable | Connect | Connect |
|                   | 35  | AGND    | Common gnd for transducer power and signals         | Common gnd                                | Connect | /       |
|                   | 36  | VF +24V | Power supply +24VDC                                 | Output - power supply                     | Connect | Connect |

291

#### E-ATRA remote pressure transducer connection - see tech table GX800





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

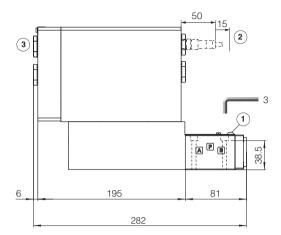
## 20.1 Cable glands and threaded plug for AES - see tech table KX800

| Communication interfaces                  |          | be ordere     |          | ely<br>ed plug | Cable entrance overview | Notes                                                                       |
|-------------------------------------------|----------|---------------|----------|----------------|-------------------------|-----------------------------------------------------------------------------|
|                                           | quantity | entrance      | quantity | entrance       |                         |                                                                             |
| NP                                        | 1        | А             | none     | none           | (P)<br>(A)              | Cable entrance P are factory plugged Cable entrance A is open for costumers |
| BC, BP, EH<br>"via stub"<br>connection    | 2        | C1            | 1        | C2             |                         | Cable entrance A, C1, C2 are open for costumers                             |
| BC, BP, EH<br>"daisy chain"<br>connection | 3        | C1<br>C2<br>A | none     | none           |                         | Cable entrance A, C1, C2 are open for costumers                             |

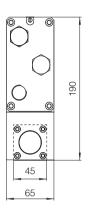
## 20.2 Cable glands and threaded plug for AES with /W option - see tech table KX800

|                                           | То    | be ordere         | ed separat | ely     | Cable entrance                          |                                                                                         |
|-------------------------------------------|-------|-------------------|------------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| Communication interfaces                  | Cable | gland<br>entrance |            | ed plug | overview                                | Notes                                                                                   |
| NP                                        | 2     | D A               | none       | none    | © (P)<br>(P) (P)<br>(A) (P)             | Cable entrance P are factory plugged  Cable entrance A, D are open for costumers        |
| BC, BP, EH<br>"via stub"<br>connection    | 3     | D<br>C1<br>A      | 1          | C2      |                                         | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |
| BC, BP, EH<br>"daisy chain"<br>connection | 4     | D<br>C1 - C2<br>A | none       | none    | 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P | Cable entrance P are factory plugged Cable entrance A, C1, C2, D are open for costumers |

## 21 FASTENING BOLTS AND SEALS


|   | QVHZA                                                                           | QVKZA                                                                            |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max)                   | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max)                  |

293

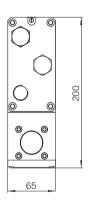

## **QVHZA-AES**

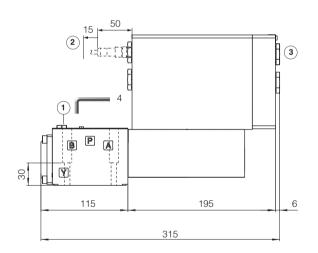
ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see tab. P005)



| Mass      | s [kg] |
|-----------|--------|
| QVHZA-AES | 8,2    |





## **QVKZA-AES**

ISO 4401: 2005

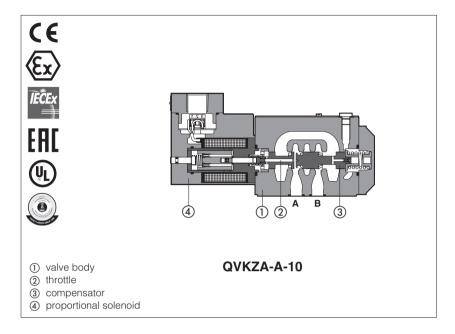
Mounting surface: 4401-05-04-0-05 (see tab. P005)

| Mass [kg] |    |  |  |  |
|-----------|----|--|--|--|
| QVKZA-AES | 10 |  |  |  |





- $\bigcirc$  = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


## 23 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS510 | Fieldbus                                      |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | KX800 | Cable glands for ex-proof valves              |
| FX900 | Operating and manintenance information for ex-proof proportional valves | P005  | Mounting surfaces for electrohydraulic valves |
| GS500 | Programming tools                                                       |       |                                               |



## **Ex-proof proportional flow valves**

pressure compensated, without transducer - ATEX, IECEx, EAC, PESO or cULus



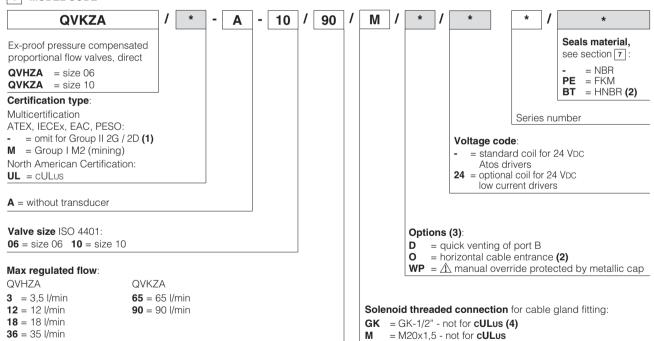
#### QVHZA-A, QVKZA-A

Ex-proof proportional flow valves, without position transducer for pressure compensated flow regulations.

They are equipped with ex-proof proportional solenoids certified for safe operations in hazardous environments with potentially explosive atmosphere.

#### Certifications:

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D


The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

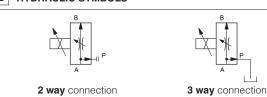
# QVHZA: QVKZA: Size: 06 - ISO 4401 Size: 10 Max flow: 45 l/min Max flow Max pressure: 210 bar Max pressure:

Size: 10 - ISO 4401 Max flow: 90 l/min Max pressure: 210 bar

## 1 MODEL CODE



(1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com


FX400

(2) Not for multicertification M group I (mining) (3) Possible combined options: /DO, /DWP, /DOWP, /OWP

(4) Approved only for the Italian market

#### 2 HYDRAULIC SYMBOLS

45 = 45 l/min



The valves can be used in 2 or 3 way connection, depending to the application requirements.

In 2 way the P port must not be connected (blocked)

In  ${\bf 3}$  way the P port has to be connected to tank or to other user lines

The port T must be always not connected (blocked)

For application examples of 2 and 3 way connections, see section

**NPT** = 1/2" NPT

## 3 ELECTRONIC DRIVERS

Electronic drivers are factory set with max current limitation for ex-proof valves.

Please include in the driver order also the complete code of the connected ex-proof proportional valve.

| Drivers model | E-BM-AS-* /A   | E-BM-AES-* /A |  |  |
|---------------|----------------|---------------|--|--|
| Туре          | digital        | digital       |  |  |
| Format        | DIN-rail panel |               |  |  |
| Data sheet    | G030           | GS050         |  |  |

## 4 GENERAL CHARACTERISTICS

| Assembly position                                                                        | Any position                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Subplate surface finishing to ISO 4401                                                   | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                         |  |  |  |
| MTTFd valves according to EN ISO 13849                                                   | 150 years, see technical table P007                                                                                                                                                                      |  |  |  |
| Ambient temperature range                                                                | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ / <b>BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |
| Storage temperature range                                                                | <b>Standard</b> = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ / <b>PE</b> option = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ / <b>BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |
| Surface protection                                                                       | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                                               |  |  |  |
| Compliance                                                                               | Explosion proof protection, see section 8 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                    |  |  |  |
| RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |                                                                                                                                                                                                          |  |  |  |

## 5 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model           |           | QVHZA                             |    |      | QVKZA |       |         |     |
|-----------------------|-----------|-----------------------------------|----|------|-------|-------|---------|-----|
| Max regulated flow    | [l/min]   | 3,5                               | 12 | 18   | 35    | 45    | 65      | 90  |
| Min regulated flow    | [cm³/min] | 15                                | 20 | 30   | 50    | 60    | 85      | 100 |
| Regulating $\Delta p$ | [bar]     | 4 - 6 10 -                        |    | - 12 | 15    | 6 - 8 | 10 - 12 |     |
| Max flow on port A    | [l/min]   | 40 50                             |    | 50   | 55    | 70    | 100     |     |
| Max pressure          | [bar]     | 210                               |    |      |       |       |         |     |
| Response time (1)     | [ms]      | ≤35 ≤50                           |    |      |       | 50    |         |     |
| Hysteresis            |           | ≤ 5 [% of the regulated max flow] |    |      |       |       |         |     |
| Linearity             |           | ≤3 [% of the regulated max flow]  |    |      |       |       |         |     |
| Repeatability         |           | ≤ 1 [% of the regulated max flow] |    |      |       |       |         |     |

Note: above performance data refer to valves coupled with Atos electronic drivers, see section 3

(1) 0 ÷100 % step signal

## 6 ELECTRICAL CHARACTERISTICS

| Max. power                                  | 3                                                                               | 85W                                                                                                                                              |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insulation class                            | , , ,                                                                           | H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account |  |  |
| Protection degree with relevant cable gland | Multicertification: IP66/67 to DIN EN60529 UL: raintight enclosure, UL approved | ·                                                                                                                                                |  |  |
| Duty factor                                 | Continuous rating (ED=100%)                                                     | Continuous rating (ED=100%)                                                                                                                      |  |  |
| Voltage code                                | standard                                                                        | option /24                                                                                                                                       |  |  |
| Coil resistance R at 20°C                   | 3,2 Ω                                                                           | 3,2 Ω 17,6 Ω                                                                                                                                     |  |  |
| Max. solenoid current                       | 2,5 A                                                                           | 1,1 A                                                                                                                                            |  |  |

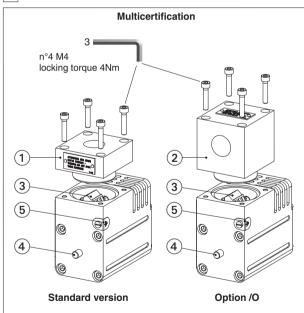
## 7 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid                                                | l temperature                                                          | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                            |                             |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--|
| Recommended viscosity 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                                                                        |                                                                                                                                                                                                                                                                                      |                            |                             |  |
| Max fluid normal operation                                              |                                                                        | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                          | see also filter section at |                             |  |
| contamination level                                                     | contamination level longer life ISO4406 class 16/14/11 NAS1638 class 5 |                                                                                                                                                                                                                                                                                      | 638 class 5                | www.atos.com or KTF catalog |  |
| Hydraulic fluid                                                         |                                                                        | Suitable seals type                                                                                                                                                                                                                                                                  | Classification             | Ref. Standard               |  |
| Mineral oils                                                            |                                                                        | NBR, FKM, HNBR                                                                                                                                                                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524                   |  |
| Flame resistant without water                                           |                                                                        | FKM HFDU, HFDR                                                                                                                                                                                                                                                                       |                            | ISO 12022                   |  |
| Flame resistant with water                                              | (1)                                                                    | NBR, HNBR                                                                                                                                                                                                                                                                            | NBR, HNBR HFC ISO 12922    |                             |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

-max operating pressure = 180 bar -max fluid temperature = 50°C

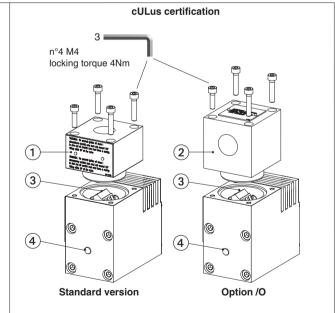
<sup>(1)</sup> Performance limitations in case of flame resistant fluids with water:


### 8 CERTIFICATION DATA

| Valve type                                                                        | QVHZA, QVKZA                                                     |                                                  | QVHZA <b>/M</b> , QVHZA <b>/M</b>                                                   | QVHZA <b>/UL</b>                                   | QVHZA <b>/UL</b> , QVHZA <b>/UL</b> |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------|--|
| Certifications                                                                    |                                                                  | ation Group II  EAC PESO                         | Multicertification Group I  ATEX IECEx                                              |                                                    | merican<br><b>Lus</b>               |  |
| Solenoid certified code                                                           | OZ                                                               | A-A                                              | OZAM-A                                                                              | OZA                                                | -A/EC                               |  |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO: P33813 | ES 10.0010x<br>IT. 08.B.01784                    | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x                                | 20170324                                           | - E366100                           |  |
| Method of protection                                                              | ATEX, EAC     Ex II 2G Ex d II     Ex II 2D Ex tb IIIC           | C T4/T3 Gb<br>T135°C/T200°C Db                   | ATEX Ex   M2 Ex db   Mb  IECEx                                                      | • UL 1203<br>Class I, Div.I, G<br>Class I, Zone I, | Groups C & D<br>, Groups IIA & IIE  |  |
|                                                                                   | • IECEX<br>Ex d IIC T4/T3<br>Ex tb IIIC T135                     |                                                  | Ex db I Mb                                                                          |                                                    |                                     |  |
|                                                                                   | • PESO<br>Ex II 2G Ex d II                                       | C T4/T3 Gb                                       |                                                                                     |                                                    |                                     |  |
| Temperature class                                                                 | T4                                                               | Т3                                               | -                                                                                   | T4                                                 | Т3                                  |  |
| Surface temperature                                                               | ≤ 135 °C                                                         | ≤ 200 °C                                         | ≤ 150 °C                                                                            | ≤ 135 °C                                           | ≤ 200 °C                            |  |
| Ambient temperature (2)                                                           | -40 ÷ +40 °C                                                     | -40 ÷ +70 °C                                     | -20 ÷ +60 °C                                                                        | -40 ÷ +55 °C                                       | -40 ÷ +70 °C                        |  |
| Applicable standards                                                              | EN 60079-1 IEC 600                                               |                                                  | IEC 60079-0 UL 1203 and 0<br>IEC 60079-1 CSA 22.2 n°30<br>IEC 60079-31 CSA 22.2 n°1 |                                                    | n°30-1986                           |  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) |                                                                  | <b>GK</b> = G<br><b>M</b> = M2<br><b>NPT</b> = 3 | 0x1,5                                                                               | 1/2"                                               | NPT                                 |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


## 9 EX PROOF SOLENOIDS WIRING



- $\ensuremath{\textcircled{\textbf{1}}}$  cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- 3) terminal board for cables wiring
- standard manual override



## Pay attention to respect the polarity

1 = Coil + PCB 3 poles terminal board sugge-2 = GND sted cable section up to 1,5 mm<sup>2</sup> 3 = Coil - (max AWG16), see section 10 note 1

alternative GND screw terminal connected to solenoid housing

FX400 PROPORTIONAL VALVES

#### 10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

#### **Multicertification Group I and Group II**

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

#### Multicertification

| Max ambient temperature [°C] | Tempera | Temperature class |        | Max surface temperature [°C] |        | nperature [°C] |
|------------------------------|---------|-------------------|--------|------------------------------|--------|----------------|
| max ambient temperature [ C] | Goup I  | Goup II           | Goup I | Goup II                      | Goup I | Goup II        |
| 40 °C                        | -       | T4                | 150 °C | 135 °C                       | 90 °C  | 90 °C          |
| 45 °C                        | -       | T4                | -      | 135 °C                       | -      | 95 °C          |
| 55 °C                        | -       | T3                | -      | 200 °C                       | -      | 110 °C         |
| 60 °C                        | -       | -                 | 150 °C | -                            | 110 °C | -              |
| 70 °C                        | N.A.    | T3                | N.A.   | 200 °C                       | N.A.   | 120 °C         |

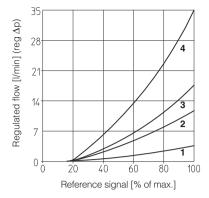
## cULus certification

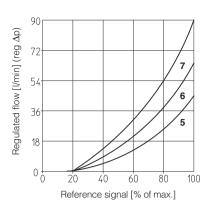
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature |
|------------------------------|-------------------|------------------------------|------------------------|
| 55 °C                        | T4                | 135 °C                       | 100 °C                 |
| 70 °C                        | T3                | 200 °C                       | 100 °C                 |


#### 11 CABLE GLANDS - only Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX600** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads


## 12 OPTIONS

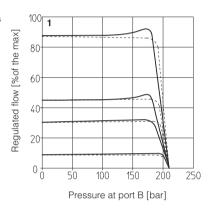

- D = This option provides a quick venting of the use port B when the valve is closed or de-energized. The valve must be connected in 3 way, with P port connected to tank. When the proportional throttle is fully closed, the valve's port B is internally connected to port P (tank), permitting a quickly decompression of the pressure in the use line. In the diagram aside are represented the venting times of QVHZA and QVKZA option /D respect to standard versions:
  - 1 = standard versions
  - 2 = option /D
- O = Horizontal cable entrance, to be selected in case of limited verical space.
- **WP** = Manual override protected by metallic cap.

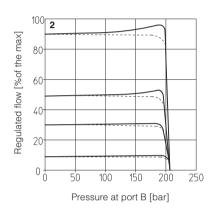


## 13.1 Regulation diagrams

- 1 = QVHZA-\*-06/3
- **2** = QVHZA-\*-06/12
- 3 = QVHZA-\*-06/18
- 4 = QVHZA-\*-06/36
- 5 = QVHZA-\*-06/45 6 = QVKZA-\*-10/65
- **7** = QVKZA-\*-10/90



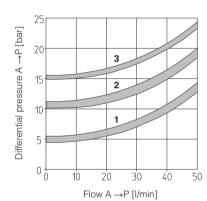


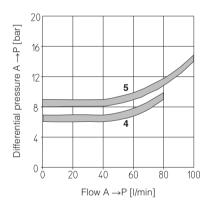


## 13.2 Regulated flow/outlet pressure diagrams

with inlet pressure = 210 bar

- 1 = QVHZA
- 2 = QVKZA

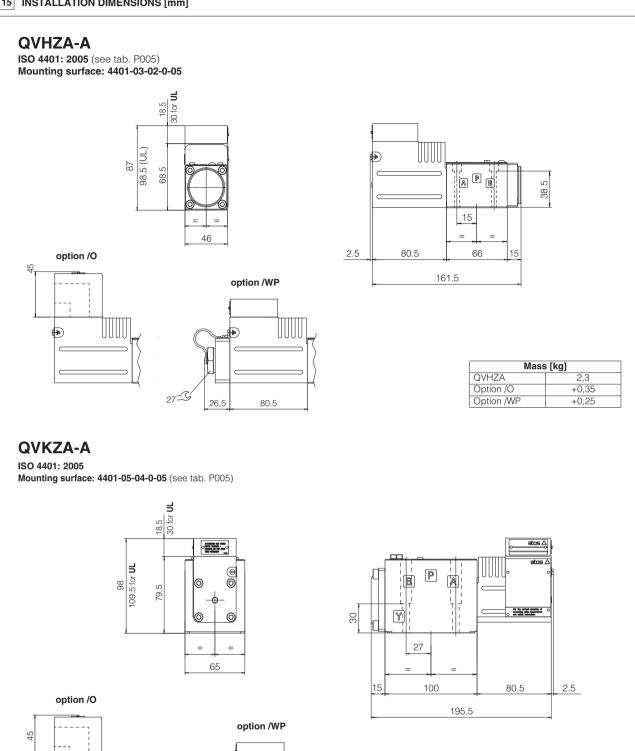
Dotted line for 3-way versions




## 13.3 Flow A $\rightarrow$ P/ $\triangle$ p diagrams

3-way configuration


- 1 = QVHZA-\*-06/3 QVHZA-\*-06/12 2 = QVHZA-\*-06/18 QVHZA-\*-06/36 3 = QVHZA-\*-06/45 4 = QVKZA-\*-10/65 5 = QVKZA-\*-10/90





## 14 FASTENING BOLTS AND SEALS

|          | QVHZA                                        | QVKZA                                         |
|----------|----------------------------------------------|-----------------------------------------------|
|          |                                              |                                               |
| <b>@</b> | Fastening bolts:                             | Fastening bolts:                              |
| l H      | 4 socket head screws M5x50 class 12.9        | 4 socket head screws M6x40 class 12.9         |
|          | Tightening torque = 8 Nm                     | Tightening torque = 15 Nm                     |
|          | Seals:                                       | Seals:                                        |
|          | 4 OR 108;                                    | 5 OR 2050;                                    |
|          | Diameter of ports A, B, P, T: Ø 7,5 mm (max) | Diameter of ports A, B, P, T: Ø 11,2 mm (max) |
|          |                                              |                                               |



## 16 RELATED DOCUMENTATION

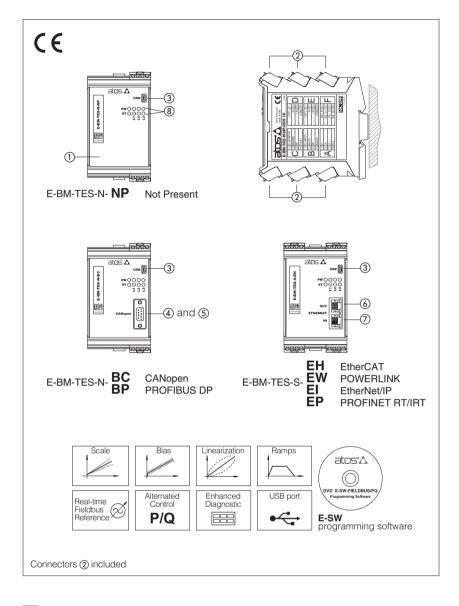
| X010  | Basics for electrohydraulics in hazardous environments                  |
|-------|-------------------------------------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEX, EAC, PESO |
| X030  | Summary of Atos ex-proof components certified to cULus                  |
| FX900 | Operating and manintenance information for ex-proof proportional valves |
| KX800 | Cable glands for ex-proof valves                                        |
| P005  | Mounting surfaces for electrohydraulic valves                           |

80.5

26,5

Mass [kg]

3,8 +0,35 +0,25


QVKZA

Option /O Option /WP



# **Digital E-BM-TES/LES drivers**

DIN-rail format, for proportional valves with one or two LVDT transducers

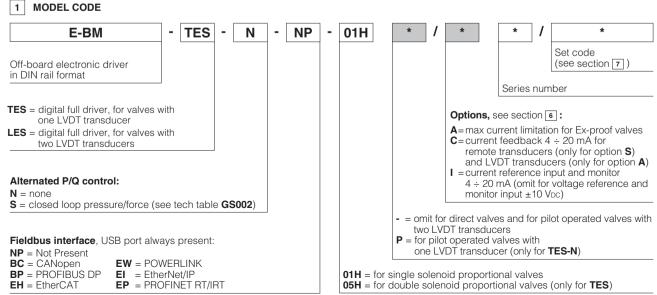


#### E-BM-TES/LES

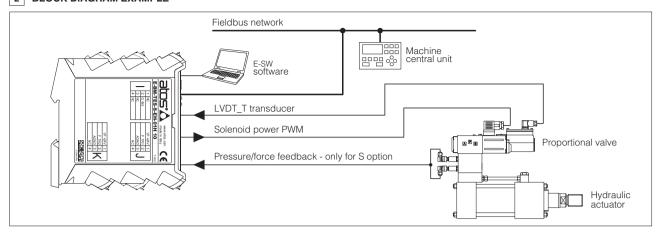
Digital drivers ① control in closed loop the position of the spool or poppet of direct and pilot operated proportional valves, according to the electronic reference input signal.

TES execution controls direct operated directional/flow valves with one LVDT transducer.

LES execution controls pilot operated directional valves with two LVDT transducers. Option S adds the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation (see section 4). Atos PC software allows to customize the driver configuration to the specific application requirements.


#### **Electrical Features:**

- up to 9 fast plug-in connectors (2)
- Mini USB port 3 always present
- DB9 fieldbus communication connector
   4) for CANopen and (3) PROFIBUS DP
- RJ45 ethernet communication connectors
   output and (?) input for EtherCAT, POWERLINK, EtherNet/IP, PROFINET
- 8 leds for diagnostics (8) (see 6.1)
- Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +50 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive


#### Software Features:

- Intuitive graphic interface
- Setting of valve's functional parameters: bias, scale, ramps, dither
- · Linearization function for hydraulic regulation
- Setting of PID gains
- Selection of analog IN / OUT range
- Complete diagnostic of driver status
- Internal oscilloscope function
- In field firmware update through USB port

301



## 2 BLOCK DIAGRAM EXAMPLE



#### 3 VALVES RANGE

| Valves       | Directional     |                   |        | Flow              | Directional | Cartridge        |
|--------------|-----------------|-------------------|--------|-------------------|-------------|------------------|
| Standard     | DHZO-T, DKZOR-T | DLHZO-T, DLKZOR-T | DPZO-T | QVHZO-T, QVKZOR-T | DPZO-L      | LIQZO-L, LIQZP-L |
| Data sheet   | F165            | F180              | F172   | F1412             | F175        | F330, F340       |
| Ex-proof     | DHZA-T, DKZA-T  | DLHZA-T, DLKZA-T  | DPZA-T | QVHZA-T, QVKZA-T  |             |                  |
| Data sheet   | FX120           | FX140             | FX220  | FX420             | -           | -                |
| Driver model |                 | E-BM-T            | E-I    | BM-LEB            |             |                  |

Option S not available

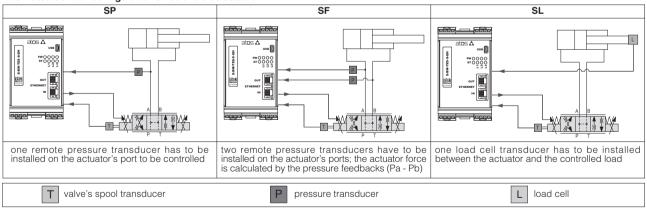
#### 4 ALTERNATED P/Q CONTROL - only for S option

S option on digital drivers adds the closed loop control of pressure (SP) or force (SF and SL) to the basic functions of proportional directional valves flow regulation.

The alternated P/Q control operates according to the two electronic reference signals by a dedicated algorithm that automatically selects which control will be active time by time. The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability or vibrations.

Flow regulation is active when the actual system pressure/force is lower than the relevant input reference signal - the valve works normally to regulate the flow by controlling in closed-loop the spool/poppet position through the integral LVDT transducer. Pressure/force control is activated when the actual system pressure/force, measured by remote transducers, grows up to the relevant input reference signal - the driver reduces the valve's flow regulation in order to keep steady the system pressure/force. If the pressure/force tends to decrease under its input reference signal, the flow control returns active.

The dynamic response of pressure/force control can be adapted to different system's characteristics, by setting the internal PID parameters using Atos PC software. Up to 4 different PIDs are selectable to optimize the system dynamic response accor-


flow Priority

flow regulation

reference value
actual value

## Alternated control configurations - software selectable

ding to different hydraulic working conditions



#### SP - flow/pressure control

Adds pressure control to standard flow control and permits to limit the max force in one direction controlling in closed loop the pressure acting on one side of the hydraulic actuator. A single pressure transducer has to be installed on hydraulic line to be controlled.

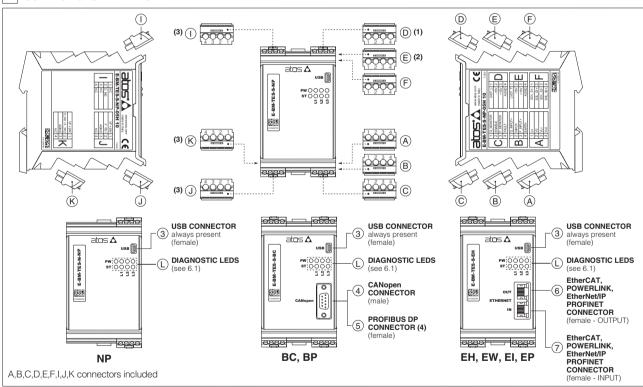
#### SF - flow/force control

Adds force control to standard flow control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on both hydraulic line.

#### SL - flow/force control

Adds force control to standard flow control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on hydraulic actuator.

## **General Notes:**


- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault see tech table EY105
- for additional information about alternated P/Q controls configuration please refer to tech table GS002
- Atos technical service is available for additional evaluations related to specific applications usage

#### 5 MAIN CHARACTERISTICS

| Power supplies                                | (see 8.1, 8.2)          | Nominal<br>Rectified and filtered                                                                                                                                             | : +24 VDC<br>: VRMS = 20 ÷ 32 VMA         | xx (ripple max 10 % Vpp)                   |                                                                       |
|-----------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|
| Max power consumption                         |                         | 50 W                                                                                                                                                                          |                                           |                                            |                                                                       |
| Current supplied to soleno                    | ids                     | IMAX = 3.0 A for standa<br>IMAX = 2.5 A for ex-pro                                                                                                                            |                                           |                                            |                                                                       |
| Analog input signals                          | (see 8.3, 8.4)          | Current: range ±20 n                                                                                                                                                          |                                           | Input impedance: Ri =                      | > 50 kΩ<br>= 500 Ω                                                    |
| Monitor outputs                               | (see 8.5, 8.6)          |                                                                                                                                                                               | voltage ±10 Vpc @<br>current ±20 mA @ i   | max 5 mA<br>max 500 $\Omega$ load resistan | ce                                                                    |
| Enable input<br>Digital inputs                | (see 8.7)<br>(see 8.11) | Range: 0 ÷ 5 Vpc (OFf                                                                                                                                                         | F state), 9 ÷ 24 VDC (ON                  | I state), 5 ÷ 9 VDC (not ac                | ccepted); Input impedance: Ri > 10 k $\Omega$                         |
| Fault output                                  | (see 8.8)               | external negative volta                                                                                                                                                       | age nòt allowed (eʻ.g. dı                 | ue to inductive loads)                     | ate < 1 V ) @ max 50 mA;                                              |
| Alarms                                        |                         | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, valve spool transducer malfunctions, alarms history storage function |                                           |                                            |                                                                       |
| Pressure/Force transducer (only for S option) | s power supply          | +24Vpc @ max 100 mA (E-ATR-8 see tech table <b>GS465</b> )                                                                                                                    |                                           |                                            |                                                                       |
| Format                                        |                         | Plastic box; IP20 protection degree; L 35 - H 7,5 mm DIN-rail mounting as per EN60715                                                                                         |                                           |                                            |                                                                       |
| Operating temperature                         |                         | -20 ÷ +50 °C (storage -25 ÷ +85 °C)                                                                                                                                           |                                           |                                            |                                                                       |
| Mass                                          |                         | Approx. 400 g                                                                                                                                                                 |                                           |                                            |                                                                       |
| Additional characteristics                    |                         | 8 leds for diagnostic; protection against reverse polarity of power supply                                                                                                    |                                           |                                            |                                                                       |
| Electromagnetic compatibili                   | ty (EMC)                | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                            |                                           |                                            |                                                                       |
| Compliance                                    |                         | RoHs Directive 2011/6<br>REACH Regulation (EG                                                                                                                                 | 65/EU as last update by<br>C) n°1907/2006 | 2015/65/EU                                 |                                                                       |
| Communication interface                       |                         | USB Atos ASCII coding                                                                                                                                                         | CANopen<br>EN50325-4 + DS408              | PROFIBUS DP<br>EN50170-2/IEC61158          | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |
| Communication physical layer                  |                         | not insulated<br>USB 2.0 + USB OTG                                                                                                                                            | optical insulated<br>CAN ISO11898         | optical insulated<br>RS485                 | Fast Ethernet, insulated<br>100 Base TX                               |
| Recommended wiring cab                        | le                      | LiYCY shielded cables: 0,5 mm² max 50 m for logic - 1,5 mm² max 50 m for power supply  Note: for transducers wiring cable please consult the transducers datasheet            |                                           |                                            |                                                                       |
| Max conductor size                            | (see 12)                | 2,5 mm²                                                                                                                                                                       |                                           |                                            |                                                                       |
|                                               |                         |                                                                                                                                                                               |                                           |                                            |                                                                       |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

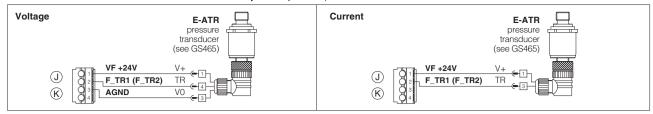
## 6 CONNECTIONS AND LEDS



- (1) D connector is available only for TES-N versions 01HP / 05HP and LES-\*
- (2) E connector is available only for TES-\* versions 01H / 05H and LES-\*
- (3) I, J and K connectors are available only for TES-S and LES-S
- (4) To interface with Siemens 6ES7972-0BA12-0XA connector, it is mandatory to use also one of the following adapters to avoid interference with the USB connector:
  - DG909MF1 the connector will be oriented upwards
  - DG909MF3 the connector will be oriented downwards

## 6.1 Diagnostic LEDs L

Eight leds show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.


| FIELDBUS | NP              | BC        | BP          | EH                   | EW        | EI          | EP          | PW L1 L2 L3  |
|----------|-----------------|-----------|-------------|----------------------|-----------|-------------|-------------|--------------|
| LEDS     | Not Present     | CANopen   | PROFIBUS DP | EtherCAT             | POWERLINK | EtherNet/IP | PROFINET    | I W LI LE LS |
| L1       | VALVE STATUS    |           |             | ALVE STATUS LINK/ACT |           |             | GREEN GREEN |              |
| L2       | NETWORK STATUS  |           |             | NETWORK STATUS       |           |             |             |              |
| L3       | SOLENOID STATUS |           | US          | LINK/ACT             |           |             |             |              |
| PW       | OFF = Power s   | upply OFF | ON = Pow    | ON = Power supply ON |           |             |             |              |
| ST       | OFF = Fault pre | esent     | ON = No fa  | No fault             |           |             |             | ST           |

## 6.2 Connectors - 4 pin

| CONNECTOR    | PIN | ALTERNATED<br>N none | P/Q CONTROL<br>S pressure/force | TECHNICAL SPECIFICATIONS                                                                                                                                                                                                                                           | NOTES                                         |
|--------------|-----|----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|              | A1  | V+                   |                                 | Power supply 24 Vpc (see 8.1)                                                                                                                                                                                                                                      | Input - power supply                          |
| Α            | A2  | V0                   |                                 | Power supply 0 Vpc (see 8.1)                                                                                                                                                                                                                                       | Gnd - power supply                            |
|              | АЗ  | VL+                  |                                 | Power supply 24 Vpc for driver's logic and communication (see 8.2)                                                                                                                                                                                                 | Input - power supply                          |
| A4           |     | VL0                  |                                 | Power supply 0 Vpc for driver's logic and communication (see 8.2)                                                                                                                                                                                                  | Gnd - power supply                            |
|              | B1  | Q_INPUT+             |                                 | Flow reference input signal: ±10 Vpc / ±20 mA maximum range Default are ±10 Vpc for standard and 4 ÷ 20 mA for /l option (see 8.3)                                                                                                                                 | Input - analog signal  Software selectable    |
|              | B2  | INPUT-               |                                 | Negative reference input signal for Q_INPUT+ and F_INPUT+                                                                                                                                                                                                          | Input - analog signal                         |
| В            |     | NC                   |                                 | Do not connect                                                                                                                                                                                                                                                     |                                               |
|              | ВЗ  |                      | F_INPUT+                        | Pressure/Force reference input signal ±10 Vpc / ±20 mA maximum range Default are ±10 Vpc for standard and 4 ÷ 20 mA for /l option (see 8.4)                                                                                                                        | Input - analog signal  Software selectable    |
|              | B4  | EARTH                |                                 | Connect to system ground                                                                                                                                                                                                                                           | COMMUNIC CONCUMENTS                           |
|              | C1  | Q_MONITOR            |                                 | Flow monitor output signal: ±10 Vbc / ±20 mA maximum range, referred to AGND. Default are ±10 Vbc for standard and 4 ÷ 20 mA for /I option (see 8.5)                                                                                                               | Output - analog signal<br>Software selectable |
|              | C2  | ENABLE               |                                 | Enable (24 Vpc) or disable (0 Vpc) the controller, referred to VL0 (see 8.7)                                                                                                                                                                                       |                                               |
|              |     | NC                   |                                 | Do not connect                                                                                                                                                                                                                                                     |                                               |
|              | СЗ  |                      |                                 | Pressure/Force monitor output signal: ±10 Vpc / ±20 mA maximum range,                                                                                                                                                                                              | Output - analog signal                        |
|              |     |                      | F_MONITOR                       | referred to AGND Default are ±10 Vpc for standard and 4 ÷ 20 mA for /l option (see 8.6)                                                                                                                                                                            | Software selectable                           |
|              | C4  | FAULT                |                                 | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0 (see 8.8)                                                                                                                                                                                                | Output - on/off signal                        |
|              | D1  | LVDT_L               |                                 | Main stage valve position transducer signal (see 8.9)                                                                                                                                                                                                              | Input - analog signal                         |
| D            | D2  | -15V                 |                                 | Main stage valve position transducer power supply -15V                                                                                                                                                                                                             | Output power supply                           |
| <b>D</b> (1) | D3  | +15V                 |                                 | Main stage valve position transducer power supply +15V                                                                                                                                                                                                             | Output power supply                           |
|              | D4  | AGND                 |                                 | Common gnd for transducer power and monitor outputs                                                                                                                                                                                                                | Common gnd                                    |
|              | E1  | LVDT_T               |                                 | Direct valve or pilot valve position transducer signal (see 8.9)                                                                                                                                                                                                   | Input - analog signal                         |
|              | E2  | -15V                 |                                 | Direct valve or pilot valve position transducer power supply -15V                                                                                                                                                                                                  | Output power supply                           |
| <b>E</b> (2) | E3  | +15V                 |                                 | Direct valve or pilot valve position transducer power supply +15V                                                                                                                                                                                                  | Output power supply                           |
|              | E4  | AGND                 |                                 | Common gnd for transducer power and monitor outputs                                                                                                                                                                                                                | Common gnd                                    |
|              | F1  | SOL_S1-              |                                 | Negative current to solenoid S1                                                                                                                                                                                                                                    | Output - power PWM                            |
| F            | F2  | SOL_S1+              |                                 | Positive current to solenoid S1                                                                                                                                                                                                                                    | Output - power PWM                            |
|              | F3  | SOL_S2-              |                                 | Negative current to solenoid S2                                                                                                                                                                                                                                    | Output - power PWM                            |
|              | F4  | SOL_S2+              |                                 | Positive current to solenoid S2                                                                                                                                                                                                                                    | Output - power PWM                            |
|              | l1  |                      | NC                              | Do not connect                                                                                                                                                                                                                                                     |                                               |
| I            | 12  |                      | D_IN0                           | NP execution: multiple pressure/force PID selection, referred to VLO (see 8.11) Fieldbus execution: general purpose digital input 0 ÷ 24Vbc, referred to VLO (see 8.11)                                                                                            | Input - on/off signal                         |
|              | 13  |                      | NC                              | Do not connect                                                                                                                                                                                                                                                     |                                               |
|              | 14  |                      | NC                              | Do not connect                                                                                                                                                                                                                                                     |                                               |
|              | J1  |                      | VF +24V                         | Power supply: +24Vpc or OFF (default OFF)                                                                                                                                                                                                                          | Output - power supply<br>Software selectable  |
|              | J2  |                      | F_TR1                           | 1st signal pressure/force transducer:<br>±10 Vbc / ±20 mA maximum range<br>Default are ±10 Vbc for standard and 4 ÷ 20 mA for /C option (see 8.10)                                                                                                                 | Input - analog signal<br>Software selectable  |
|              | J3  |                      | AGND                            | Common gnd for transducer power and signals                                                                                                                                                                                                                        | Common gnd                                    |
|              | J4  |                      | NC                              | Do not connect                                                                                                                                                                                                                                                     |                                               |
|              | K1  |                      | VF +24V                         | Power supply: +24Vpc or OFF (default OFF)                                                                                                                                                                                                                          | Output - power supply Software selectable     |
| K            | K2  |                      | F_TR2                           | 2nd signal pressure transducer (only for SF):<br>±10 Vpc / ±20 mA maximum range<br>Default are ±10 Vpc for standard and 4 ÷ 20 mA for /C option (see 8.10)<br>NP execution: multiple pressure/force PID selection (only for SP and SL), referred to VL0 (see 8.11) | Input - analog signal<br>Software selectable  |
|              |     |                      | D_IN1                           | Fieldbus execution: general purpose digital input 0 ÷ 24Vbc, referred to VL0 (see 8.11)                                                                                                                                                                            | Input - on/off signal                         |
|              | K3  |                      | AGND                            | Common gnd for transducer power and signals                                                                                                                                                                                                                        | Common gnd                                    |
|              | K4  |                      | NC                              | Do not connect                                                                                                                                                                                                                                                     |                                               |

<sup>(1)</sup> D connector is available only for TES-N versions 01HP / 05HP and LES-\* (2) E connector is available only for TES-\* versions 01H / 05H and LES-\*

#### 6.3 Pressure/force transducers connection - example - only for S option



#### **6.4 Communication connectors** ③ - ④ - ⑤ - ⑥ - ⑦

| 3   | 3 USB connector - Mini USB type B always present |                             |  |  |  |
|-----|--------------------------------------------------|-----------------------------|--|--|--|
| PIN | SIGNAL                                           | TECHNICAL SPECIFICATION (1) |  |  |  |
| 1   | +5V_USB                                          | Power supply                |  |  |  |
| 2   | D-                                               | Data line -                 |  |  |  |
| 3   | D+                                               | Data line +                 |  |  |  |
| 4   | ID                                               | Identification              |  |  |  |
| 5   | GND_USB                                          | Signal zero data line       |  |  |  |

| 4   | BC fieldbus execution, connector - DB9 - 9 pin |                       |  |  |  |  |
|-----|------------------------------------------------|-----------------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)             |                       |  |  |  |  |
| 2   | CAN_L                                          | Bus line (low)        |  |  |  |  |
| 3   | CAN_GND                                        | Signal zero data line |  |  |  |  |
| 5   | CAN_SHLD Shield                                |                       |  |  |  |  |
| 7   | CAN_H                                          | CAN_H Bus line (high) |  |  |  |  |

6 7 EH, EW, EI, EP fieldbus execution, connector - RJ45 - 8 pin

TECHNICAL SPECIFICATION (1)

white/orange

white/green

orange

| (5) | ⑤ BP fieldbus execution, connector - DB9 - 9 pin |                                       |  |  |  |  |
|-----|--------------------------------------------------|---------------------------------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)               |                                       |  |  |  |  |
| 1   | SHIELD                                           |                                       |  |  |  |  |
| 3   | LINE-B                                           | Bus line (low)                        |  |  |  |  |
| 5   | DGND                                             | Data line and termination signal zero |  |  |  |  |
| 6   | +5V                                              | Termination supply signal             |  |  |  |  |
| 8   | LINE-A                                           | Bus line (high)                       |  |  |  |  |

6 **RX-** Receiver - green

Transmitter

Transmitter

Receiver

PIN SIGNAL

2 **RX**+

3 **TX**-

TX+

(1) shield connection on connector's housing is recommended

#### 7 SET CODE

The basic calibration of electronic driver is factory preset, according to the proportional valve to be coupled. These pre-calibrations are identified by the set code at the end of driver's model code (see section 1). For correct set code selection, please include in the driver order also the complete code of the coupled proportional valve. For further information about set code, please contact Atos technical office.

## 8 SIGNALS SPECIFICATIONS

Atos digital drivers are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **F003** and in the user manuals included in the E-SW-\* programming software.

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, ISO 4413).

## 8.1 Power supply (V+ and V0)

The power supply (pin A1 and A2) must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 8.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply (pin A3 and A4) for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a  $10000 \, \mu\text{F}/40 \, \text{V}$  capacitance to single phase rectifiers or a  $4700 \, \mu\text{F}/40 \, \text{V}$  capacitance to three phase rectifiers.

The separate power supply for driver's logic, allow to remove solenoid power supply from pin A1 and A2 maintaining active the diagnostics, USB and fieldbus communications.

 $\bigwedge$  A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

## 8.3 Flow reference input signals (Q\_INPUT+)

The driver is designed to receive an analog reference input signal (pin B1) for the valve's spool position.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10~\rm Vpc$  for standard and  $4 \div 20~\rm mA$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10~\rm Vpc$  or  $\pm 20~\rm mA$ . Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24~\rm Vpc$ .

### 8.4 Pressure or force reference input signal (F\_INPUT+) - only for S option

Functionality of pressure or force input reference signal (pin B3), is used as reference for the driver pressure/force closed loop, see section  $\boxed{4}$ . Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10~{\rm Vpc}$  for standard and  $4 \div 20~{\rm mA}$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10~{\rm Vpc}$  or  $\pm 20~{\rm mA}$ . Drivers with fieldbus interface can be software set to receive reference signal directly by the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range  $0 \div 24~{\rm Vpc}$ .

GS240 PROPORTIONAL VALVES 305

#### 8.5 Flow monitor output signal (Q MONITOR)

The driver generates an analog output signal (pin C1) proportional to the actual spool position; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference, valve spool position).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA.

#### 8.6 Pressure or force monitor output signal (F\_MONITOR) - only for S option

The driver generates an analog output signal (C3) proportional to alternated pressure/force control; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, force reference).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA

## 8.7 Enable input signal (ENABLE)

To enable the driver, supply 24 Vpc on pin C2: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849. Enable input signal can be used as digital input by software selection.

#### 8.8 Fault output signal (FAULT)

Fault output signal (pin C4) indicates fault conditions of the driver (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24 Vpc. Fault status is not affected by the status of the Enable input signal.

Fault output signal can be used as digital output by software selection.

#### 8.9 Main stage and direct or pilot position transducer input signals (LVDT\_L and LVDT\_T)

Main stage (LVDT\_L pin D1) and direct or pilot (LVDT\_T pin E1) position transducer integrated to the valve have to be directly connected to the driver using ±15 Vpc supply output available at pin D2, D3 and pin E2, E3.

Note: transducer input signals working range is ±10 Vpc for standard or 4 ÷ 20 mA for /C option and **cannot** be reconfigured via software

(input signals setting depends to the driver set code).

#### 8.10 Remote pressure/force transducer input signals (F\_TR1 and F\_TR2) - only for S option

Analog remote pressure transducers or load cell can be directly connected to the driver.

Analog input signal is factory preset according to selected driver code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see tech table GS002).

#### 8.11 Multiple PID selection or digital input signals (D\_IN0 and D\_IN1) - only for S option

Two on-off input signals are available on the connectors I and K.

For NP executions pin I2 and/or pin K2 are used to select one of the four pressure (force) PID parameters setting, stored into the driver. Switching the active setting of pressure PID during the machine cycle allows to optimize the system dynamic response in different hydraulic working conditions (volume, flow, etc.). Supply a 24 Vpc or a 0 Vpc on pin I2 and/or pin K2, to select one of the PID settings as indicated by binary code table at side. Gray code can be selected by software. For fieldbus executions pin I2 and/or K2 can be used as generic purpose on-off input signals.

|     | PID SET SELECTION |        |        |        |  |
|-----|-------------------|--------|--------|--------|--|
| PIN | SET 1             | SET 2  | SET 3  | SET 4  |  |
| 12  | 0                 | 24 VDC | 0      | 24 VDC |  |
| K2  | 0                 | 0      | 24 VDC | 24 VDC |  |

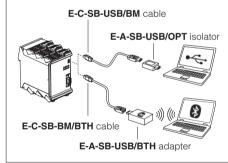
8.12 Possible combined options: /AC, /AI, /ACI, /CI - combined options /CI is available only for E-BM-TES/LES-S.

#### 9 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC PS (Serial) support: NP (USB) IR (Infrared) **E-SW-FIELDBUS** support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT) EW (POWERLINK) EI (EtherNet/IP) **EP (PROFINET)** 


support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ) E-SW-\*/PQ



WARNING: drivers USB port is not isolated! For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection



## **USB** or Bluetooth connection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

Free programming software, web download:

**E-SW-BASIC** web download = software can be downloaded upon web registration at www.atos.com; service and DVD not included

Upon web registration user receive via email the Activation Code (software free license) and login data to access Atos

Download Area

DVD programming software, to be ordered separately:

DVD first supply = software has to be activated via web registration at www.atos.com; 1 year service included E-SW-\*/PQ

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos

Download Area

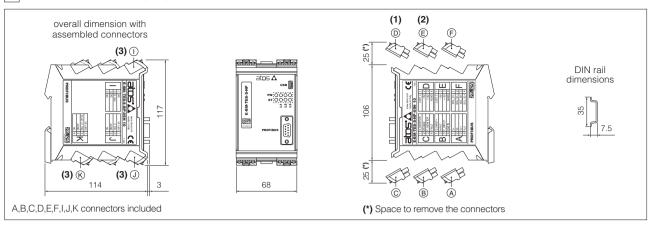
E-SW-\*-N/PQ DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

Atos Download Area: direct access to latest releases of E-SW software, manuals, USB drivers and fieldbus configuration files at www.atos.com

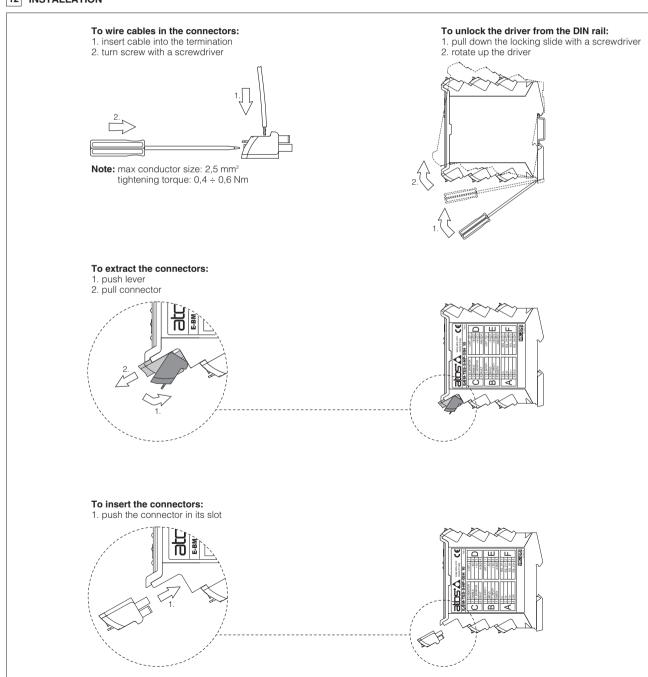
USB Adapters, Cables and Terminators, can be ordered separately

#### 10 MAIN SOFTWARE PARAMETER SETTINGS


For basic information about main setting parameters by E-SW programming software, see tech table GS003

For detailed descriptions of settings, wirings and installation procedures, please refer to the user manual included in the E-SW programming software:

E-MAN-BM-LES - user manual for E-BM-TES-N and E-BM-LES-N digital drivers

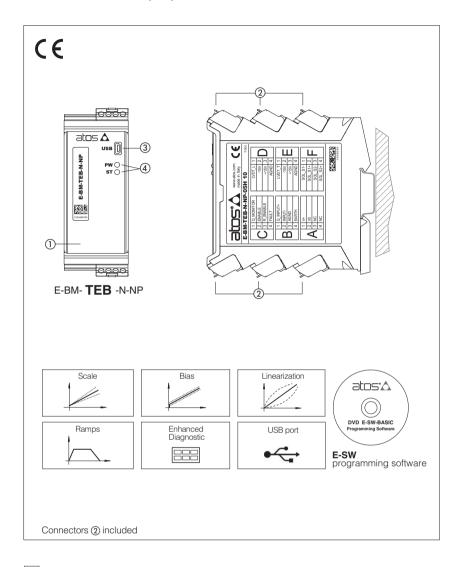

E-MAN-BM-LES-S - user manual for E-BM-TES-S and E-BM-LES-S digital drivers

## 11 OVERALL DIMENSIONS [mm]



- (1) D connector is available only for TES-N versions 01HP / 05HP and LES-\* (2) E connector is available only for TES-\* versions 01H / 05H and LES-\* (3) I , J and K connectors are available only for TES-S and LES-S

## 12 INSTALLATION




Note: all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot. (e.g. connector A can not be inserted into connector slot of B,C,D,E,F,I,J,K)



## **Digital E-BM-TEB/LEB drivers**

DIN-rail format, for proportional valves with one or two LVDT transducers

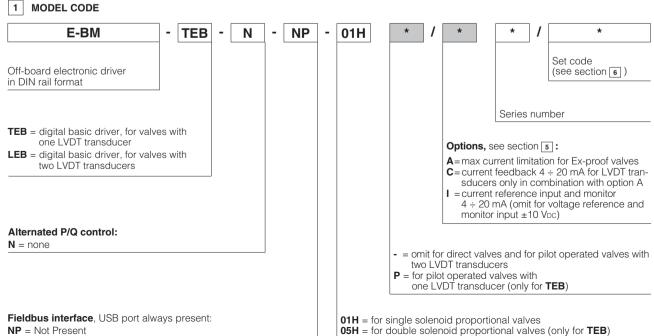


#### E-BM-TEB/LEB

Digital drivers ① control in closed loop the position of the spool or poppet of direct and pilot operated proportional valves, according to the electronic reference input signal.

TEB execution controls direct operated directional/flow valves with one LVDT transducer.

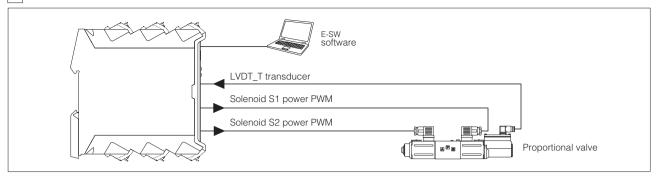
LEB execution controls pilot operated directional valves with two LVDT transducers.


Atos PC software allows to customize the driver configuration to the specific application requirements.

#### **Electrical Features:**

- 6 fast plug-in connectors ②
- Mini USB port (3) always present
- 2 leds for diagnostics 4 (see 5.1)
- Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +60 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive

#### Software Features:


- Intuitive graphic interface
- Setting of valve's functional parameters: bias, scale, ramps, dither
- Linearization function for hydraulic regulation
- Setting of PID gains
- Selection of analog IN / OUT range
- Complete diagnostic of driver status
- Internal oscilloscope function
- In field firmware update through USB port



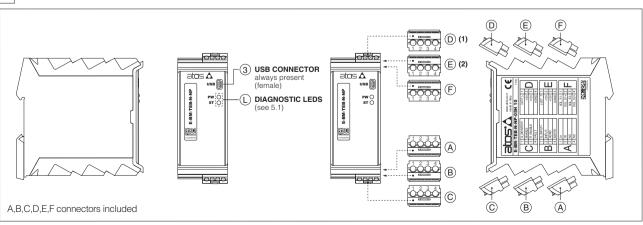
GS230 PROPORTIONAL VALVES

309

## 2 BLOCK DIAGRAM EXAMPLE



## 3 VALVES RANGE


| Valves       | Directional       |                   |        | Flow              | Directional | Cartridge        |
|--------------|-------------------|-------------------|--------|-------------------|-------------|------------------|
| Standard     | DHZO-T, DKZOR-T   | DLHZO-T, DLKZOR-T | DPZO-T | QVHZO-T, QVKZOR-T | DPZO-L      | LIQZO-L, LIQZP-L |
| Data sheet   | F165              | F180              | F172   | F412              | F175        | F330, F340       |
| Ex-proof     | DHZA-T, DKZA-T    | DLHZA-T, DLKZA-T  | DPZA-T | QVHZA-T, QVKZA-T  |             |                  |
| Data sheet   | FX120             | FX140             | FX220  | FX420             | -           | -                |
| Driver model | E-BM-TEB E-BM-LEB |                   |        |                   |             | BM-LEB           |

## 4 MAIN CHARACTERISTICS

| Power supply                      | (see 7.1)              | Nominal : +24 VDc<br>Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                                       |  |  |  |
|-----------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Max power consumption             |                        | 50 W                                                                                                                                                                          |  |  |  |
| Current supplied to soler         | noids                  | IMAX = 3.0 A for standard driver<br>IMAX = 2.5 A for ex-proof driver (/A option)                                                                                              |  |  |  |
| Analog input signal               | (see 7.2)              | Voltage: range $\pm 10$ VDc (24 VMAX tollerant) Input impedance: Ri > $50$ k $\Omega$ Input impedance: Ri = $500$ $\Omega$                                                    |  |  |  |
| Monitor output                    | (see 7.3)              | Output range: voltage ±10 Vpc @ max 5 mA current ±20 mA @ max 500 Ω load resistance                                                                                           |  |  |  |
| Enable input                      | (see 7.4)              | Range: $0 \div 5 \text{ Vpc}$ (OFF state), $9 \div 24 \text{ Vpc}$ (ON state), $5 \div 9 \text{ Vpc}$ (not accepted); Input impedance: Ri > 10 k $\Omega$                     |  |  |  |
| Repeat enable output Fault output | (see 7.5)<br>(see 7.6) | Output range: 0 ÷ 24 Vpc (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 50 mA; external negative voltage not allowed (e.g. due to inductive loads)                  |  |  |  |
| Alarms                            |                        | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, valve spool transducer malfunctions, alarms history storage function |  |  |  |
| Format                            |                        | Plastic box ; IP20 protection degree ; L 35 - H 7,5 mm DIN-rail mounting as per EN60715                                                                                       |  |  |  |
| Operating temperature             |                        | -20 ÷ +60 °C (storage -25 ÷ +85 °C)                                                                                                                                           |  |  |  |
| Mass                              |                        | Approx. 400 g                                                                                                                                                                 |  |  |  |
| Additional characteristics        | 6                      | 2 leds for diagnostic; protection against reverse polarity of power supply                                                                                                    |  |  |  |
| Electromagnetic compatib          | ility (EMC)            | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                            |  |  |  |
| Compliance                        |                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                      |  |  |  |
| Communication interface           | !                      | USB Atos ASCII coding                                                                                                                                                         |  |  |  |
| Communication physical            | layer                  | USB 2.0 + USB OTG not insulated                                                                                                                                               |  |  |  |
| Recommended wiring cable          |                        | LiYCY shielded cables: 0,5 mm² max 50 m for logic - 1,5 mm² max 50 m for power supply Note: for transducers wiring cable please consult the transducers datasheet             |  |  |  |
| Max conductor size                | (see 11)               | 2,5 mm²                                                                                                                                                                       |  |  |  |
|                                   |                        | ·                                                                                                                                                                             |  |  |  |

Note: a maximum time of 400 ms have be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

## 5 CONNECTIONS AND LEDS



- (1) D connector is available only for TEB-N versions 01HP / 05HP and LEB-N (2) E connector is available only for TEB-N versions 01H / 05H and LEB-N

## 5.1 Diagnostic LEDs (L)

Two leds show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.

| LEDS | DESCRIPTION            |                      | USB  |
|------|------------------------|----------------------|------|
| PW   | OFF = Power supply OFF | ON = Power supply ON | PW O |
| ST   | OFF = Fault present    | ON = No fault        | ST O |

## 5.2 Connectors - 4 pin

| CONNECTOR | PIN | SIGNALS   | TECHNICAL SPECIFICATIONS                                                                                                                                                | NOTES                                             |
|-----------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|           | A1  | V+        | Power supply 24 Vpc (see 7.1)                                                                                                                                           | Input - power supply                              |
| ^         | A2  | VO        | Power supply 0 Vpc (see 7.1)                                                                                                                                            | Gnd - power supply                                |
|           | A3  | NC        | Do not connect                                                                                                                                                          |                                                   |
|           | A4  | NC        | Do not connect                                                                                                                                                          |                                                   |
|           | B1  | Q_INPUT+  | Flow reference input signal: ±10 Vpc / ±20 mA maximum range Default are ±10 Vpc for standard and 4 ÷ 20 mA for /I option (see 7.2)                                      | Input - analog signal Software selectable         |
| D         | B2  | INPUT-    | Negative reference input signal for Q_INPUT+                                                                                                                            | Input - analog signal                             |
| Ь         | В3  | AGND      | Common gnd for monitor output                                                                                                                                           | Common gnd                                        |
|           | B4  | EARTH     | Connect to system ground                                                                                                                                                |                                                   |
|           | C1  | Q_MONITOR | Flow monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND Default are $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option (see 7.3) | Output - analog signal <b>Software selectable</b> |
|           | C2  | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the controller, referred to V0 (see 7.4)                                                                                             | Input - on/off signal                             |
|           | СЗ  | R_ENABLE  | Repeat enable, output repeater signal of enable input, referred to V0 (see 7.5)                                                                                         | Output - on/off signal                            |
|           | C4  | FAULT     | Fault (0 Vpc) or normal working (24 Vpc), referred to V0 (see 7.6)                                                                                                      | Output - on/off signal                            |
|           | D1  | LVDT_L    | Main stage valve position transducer signal (see 7.7)                                                                                                                   | Input - analog signal                             |
| D         | D2  | -15V      | Main stage valve position transducer power supply -15V                                                                                                                  | Output power supply                               |
|           | D3  | +15V      | Main stage valve position transducer power supply +15V                                                                                                                  | Output power supply                               |
|           | D4  | AGND      | Common gnd for transducer power                                                                                                                                         | Common gnd                                        |
|           | E1  | LVDT_T    | Direct valve or pilot valve position transducer signal (see 7.7)                                                                                                        | Input - analog signal                             |
| E (2)     | E2  | -15V      | Direct valve or pilot valve stage position transducer power supply -15V                                                                                                 | Output power supply                               |
| (2)       | E3  | +15V      | Direct valve or pilot valve tage position transducer power supply +15V                                                                                                  | Output power supply                               |
|           | E4  | AGND      | Common gnd for transducer power                                                                                                                                         | Common gnd                                        |
|           | F1  | SOL_S1-   | Negative current to solenoid S1                                                                                                                                         | Output - power PWM                                |
| F         | F2  | SOL_S1+   | Positive current to solenoid S1                                                                                                                                         | Output - power PWM                                |
| •         | F3  | SOL_S2-   | Negative current to solenoid S2                                                                                                                                         | Output - power PWM                                |
|           | F4  | SOL_S2+   | Positive current to solenoid S2                                                                                                                                         | Output - power PWM                                |

<sup>(1)</sup> D connector is available only for TEB-N versions 01HP / 05HP and LEB-N

## 6 SET CODE

The basic calibration of electronic driver is factory preset, according to the proportional valve to be coupled. These pre-calibrations are identified by the set code at the end of driver's model code (see section 1). For correct set code selection, please include in the driver order also the complete code of the coupled proportional valve. For further information about set code, please contact Atos technical office.

GS230 PROPORTIONAL VALVES 31

<sup>(2)</sup> E connector is available only for TEB-N versions 01H / 05H and LEB-N

## 7 SIGNALS SPECIFICATIONS

Atos digital drivers are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **F003** and in the user manuals included in the E-SW-\* programming software.

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, ISO 4413).

#### 7.1 Power supply (V+ and V0)

The power supply (pin A1 and A2) must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

🚹 As

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 7.2 Flow reference input signal (Q\_INPUT+)

The driver is designed to receive an analog reference input signal (pin B1) for the valve's spool position.

Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10 \text{ Vpc}$  for standard and  $4 \div 20 \text{ mA}$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10 \text{ Vpc}$  or  $\pm 20 \text{ mA}$ .

#### 7.3 Flow monitor output signal (Q\_MONITOR)

The driver generates an analog output signal (pin C1) proportional to the actual spool position; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, valve spool position).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA.

#### 7.4 Enable input signal (ENABLE)

To enable the driver, supply 24 Voc on pin C2: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition **does not comply** with norms IEC 61508 and ISO 13849.

#### 7.5 Repeat enable output signal (R\_ENABLE)

Repeat enable (pin C3) is used as output repeater signal of enable input signal (see 7.4).

#### 7.6 Fault output signal (FAULT)

Fault output signal (pin C4) indicates fault conditions of the driver (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24 Vpc. Fault status is not affected by the status of the Enable input signal.

#### 7.7 Main stage and direct or pilot position transducer input signals (LVDT\_L and LVDT\_T)

Main stage (LVDT\_L pin D1) and direct or pilot (LVDT\_T pin E1) position transducer integrated to the valve have to be directly connected to the driver using ±15 Vpc supply output available at pin D2, D3 and pin E2, E3.

Note: transducer input signals working range is ±10 Vpc for standard or 4 ÷ 20 mA for /C option and **cannot** be reconfigured via software (input signals setting depends to the driver set code).

#### 7.8 Possible combined options: /AC, /AI, /ACI

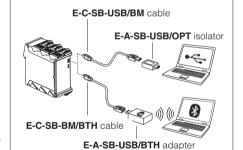
## 8 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table **GS500**):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared)
E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)


WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

E-SW-\*/PQ

**E-SW-BASIC** 

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection

solator adapter is highly recommended for PC protection



**USB** or Bluetooth connection

Free programming software, web downly

Free programming software, web download:

web download = software can be downloaded upon web registration at <a href="www.atos.com">www.atos.com</a>; service and DVD not included Upon web registration user receive via email the Activation Code (software free license) and login data to access Atos

Download Area

DVD programming software, to be ordered separately:

E-SW-\*/PQ DVD first supply = software has to be activated via web registration at <a href="www.atos.com">www.atos.com</a>; 1 year service included

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos

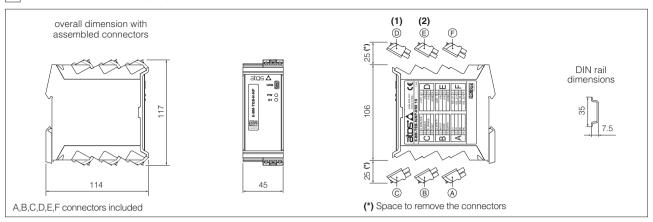
Download Area

E-SW-\*-N/PQ DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

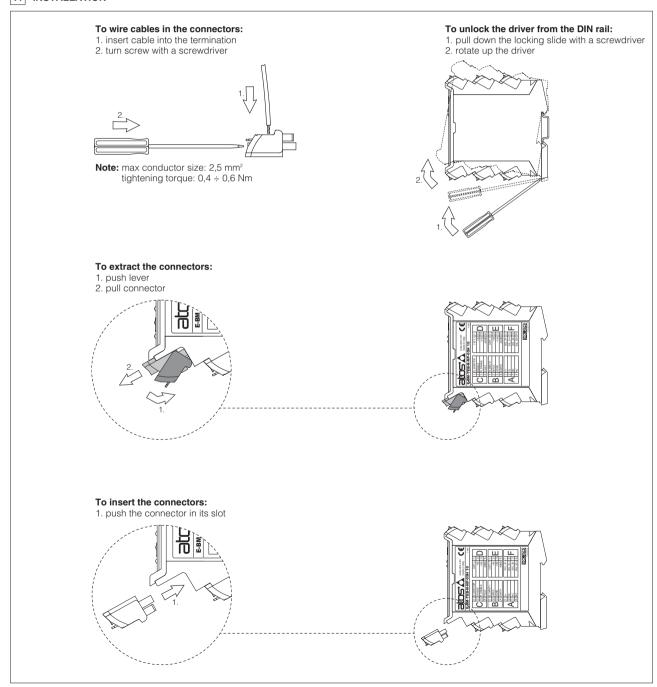
 $\textbf{Atos Download Area:} \ direct \ access \ to \ latest \ releases \ of \ E-SW \ software, \ manuals, \ USB \ drivers \ and \ fieldbus \ configuration \ files \ at \ \underline{www.atos.com}$ 

USB Adapters, Cables and Terminators, can be ordered separately


#### 9 MAIN SOFTWARE PARAMETER SETTINGS

For basic information about main setting parameters by E-SW programming software, see tech table GS003

For detailed descriptions of settings, wirings and installation procedures, please refer to the user manual included in the E-SW programming software:

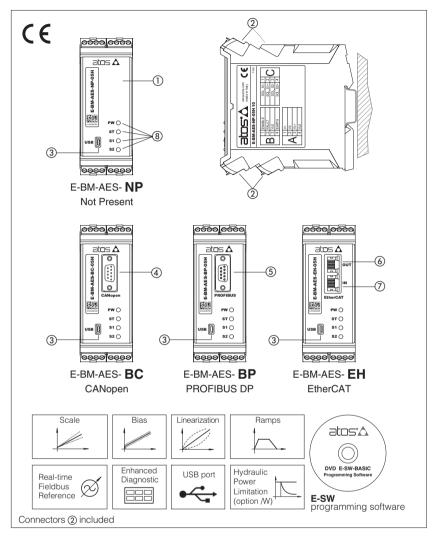

E-MAN-BM-LEB - user manual for E-BM-TEB and E-BM-LEB digital drivers

## 10 OVERALL DIMENSIONS [mm]



- (1) D connector is available only for TEB-N versions 01HP / 05HP and LEB-N (2) E connector is available only for TEB-N versions 01H / 05H and LEB-N

## 11 INSTALLATION




Note: all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot. (e.g. connector A can not be inserted into connector slot of B,C,D,E,F)



## **Digital electronic E-BM-AES drivers**

DIN-rail format, for proportional valves without transducer



#### E-BM-AES

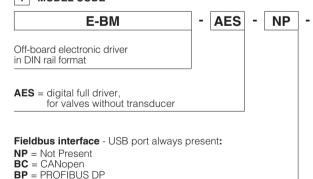
Digital drivers ① control the current to the solenoid of Atos proportional valves without transducer, according to the electronic reference input signal.

E-BM-AES operate direct and pilot operated proportional valves ZO-A without transducer.

Atos PC software allows to customize the driver configuration to the specific application requirements.

#### **Electrical Features:**

- 7 fast plug-in connectors (2)
- Mini USB port (3) always present
- DB9 CANopen (4) and PROFIBUS DP (5) communication connector
- RJ45 EtherCAT communication connectors (a) output and (7) input
- 4 leds for diagnostics (8) (see 4.1)
- ±5 Vpc output supply for external reference potentiometer
- Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +60 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive


#### Software Features:

- Intuitive graphic interface
- Setting of valve's functional parameters: bias, scale, ramps, dither, PID gains
- Linearization function for hydraulic regulation
- /W option max power limitation function
- Complete diagnostics of driver status
- Internal oscilloscope function
- In field firmware update through USB port

#### Fieldbus Features:

- Valve direct communication with machine control unit for digital reference, diagnostics and settings
- Fieldbus execution allow to operate the valves via fieldbus or via analog signals available on the connectors (see 4.2)





\* / \*
Set code (1)
Series number

#### Options:

A= max current limitation for Ex-proof valves

C= current feedback 4 ÷ 20 mA for remote transducer, only in combination with option W

I = current reference input 4 ÷ 20 mA (omit for standard voltage reference input ±10 Vpc)

**W**= power limitation function

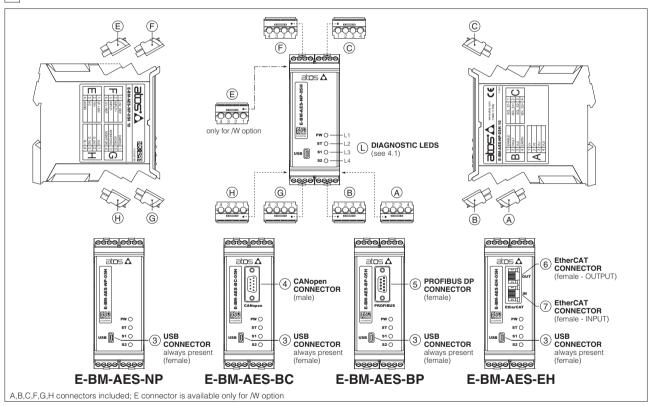
**01H** = for single solenoid proportional valves **05H** = for double solenoid proportional valves

(1) set code identifies the corrispondence between the driver and the relevant valve

## 2 VALVES RANGE

EH = EtherCAT

| Valves                 |                             | Pre                         | ssure          |                 |                | Direction            | al            | Cartridge                    | Flow                          |
|------------------------|-----------------------------|-----------------------------|----------------|-----------------|----------------|----------------------|---------------|------------------------------|-------------------------------|
| Standard<br>Data sheet | <b>RZMO</b><br>FS007, FS065 | <b>RZGO</b><br>FS015, FS070 | AGMZO<br>FS035 | AGRCZO<br>FS050 | DHRZO<br>TF040 | DHZO, DKZOR<br>FS160 | DPZO<br>FS170 | LICZO, LIMZO, LIRZO<br>FS300 | <b>QVHZO, QVKZOR</b><br>FS410 |
| Ex-proof               | RZMA                        | RZGA                        | AGMZA          | AGRCZA          | DHRZA          | DHZA, DKZA           | DPZA          | LICZA, LIMZA, LIRZA          | QVHZA, QVKZA                  |
| Data sheet             | FX010                       | FX040                       | FX010          | FX040           | FX070          | FX100                | FX200         | FX300                        | FX400                         |
| Driver model           |                             | E-BM-AES                    |                |                 |                |                      |               |                              |                               |


01H

### 3 MAIN CHARACTERISTICS

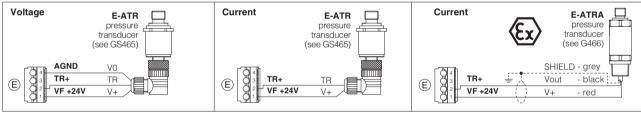
| Power supply (see 5.1, 5.2)                           | Nominal<br>Rectified and filtered                                                                                                                          | : +24 VDC<br>: VRMS = 20 ÷ 32 VMAX (ripp                     | le max 10 % VPP)                                                                |                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| Max power consumption                                 | 50 W                                                                                                                                                       |                                                              |                                                                                 |                              |
| Current supplied to solenoids                         |                                                                                                                                                            |                                                              | ndard proportional valves (3,2 $\Omega$ proof proportional valves (3,2 $\Omega$ |                              |
| Analog input signals (see 5.3)                        |                                                                                                                                                            | nge ±10 Vpc Input impedanc<br>nge ±20 mA Input impedanc      |                                                                                 |                              |
| Monitor output (see 5.4)                              | Voltage: maximum rar                                                                                                                                       | nge ±5 Vpc @max 5 mA                                         |                                                                                 |                              |
| Enable input (see 5.5)                                | Range: 0 ÷ 9 Vpc (OF                                                                                                                                       | F state), 15 ÷ 24 VDC (ON sta                                | te), 9 ÷ 15 VDC (not accepted);                                                 | Input impedance: Ri > 87 kΩ  |
| Output supply (see 5.8)                               | ±5 Vpc @ max 10 mA                                                                                                                                         | output supply for external po                                | tentiometer                                                                     |                              |
| Fault output (see 5.6)                                | Output range: 0 ÷ 24 external negative volta                                                                                                               | VDC (ON state ≅ VL+ [logic age not allowed (e.g. due to in   | power supply]; OFF state $\cong$ 0 \ ductive loads)                             | V) @ max 50 mA;              |
| Pressure transducer power supply (only for /W option) | +24Vpc @ max 100 mA (E-ATR-8 see tech table <b>GS465</b> )                                                                                                 |                                                              |                                                                                 |                              |
| Alarms                                                | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, power supplies level, pressure transducer failure |                                                              |                                                                                 |                              |
| Format                                                | Plastic box ; IP20 prote                                                                                                                                   | ection degree ; L 35 - H 7,5 m                               | m DIN-rail mounting as per EN6                                                  | 60715                        |
| Operating temperature                                 | -20 ÷ +60 °C (storage                                                                                                                                      | ÷-25 ÷ +85 °C)                                               |                                                                                 |                              |
| Mass                                                  | Approx. 330 g                                                                                                                                              |                                                              |                                                                                 |                              |
| Additional characteristics                            | Short circuit protection protection against reve                                                                                                           | n of solenoid current supply; cerse polarity of power supply | urrent control by P.I.D. with rapid                                             | d solenoid switching;        |
| Electromagnetic compatibility (EMC)                   | According to Directive                                                                                                                                     | 2014/30/UE (Immunity: EN 6                                   | 1000-6-2; Emission: EN 61000-6-                                                 | -3)                          |
| Compliance                                            | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                   |                                                              |                                                                                 |                              |
| Communication interface                               | USB<br>Atos ASCII coding                                                                                                                                   | CANopen<br>EN50325-4 + DS408                                 | PROFIBUS DP<br>EN50170-2/IEC61158                                               | EtherCAT<br>IEC61158         |
| Communication physical layer                          | not insulated<br>USB 2.0 + USB OTG                                                                                                                         | optical insulated<br>CAN ISO11898                            | optical insulated<br>RS485                                                      | Fast Ethernet<br>100 Base TX |
| Recommended wiring cable                              | LiYCY shielded cables                                                                                                                                      | : 0,5 mm² max 50 m for logic                                 | c - 1,5 mm² max 50 m for pow                                                    | er supply and solenoids      |
| Max conductor size (see 9)                            | 2,5 mm²                                                                                                                                                    |                                                              |                                                                                 |                              |

Note: a maximum time of 500 ms (depending on communication type) have be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

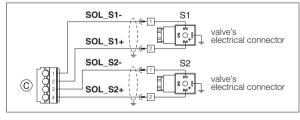
#### 4 CONNECTIONS AND LEDS



## 4.1 Diagnostic LEDs


Four leds show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.

| LED              | COLOR  | FUNCTION         | FLASH RATE | DESCRIPTION      |             |
|------------------|--------|------------------|------------|------------------|-------------|
| L1               | GREEN  | PW               | OFF        | Power supply OFF | NW 0 11     |
| LI               |        |                  | ON         | Power supply ON  | st O L1     |
| 12               | GREEN  | ST               | OFF        | Fault present    | USB S1 O L3 |
| LZ               | GILLIN | 31               | ON         | No fault         | \$20 T L4   |
| L3 and L4 YELLOW |        | YELLOW S1 and S2 | OFF        | PWM command OFF  |             |
| Lo and L4        | TELLOW | 31 4110 32       | ON         | PWM command ON   |             |


#### 4.2 Connectors - 4 pin

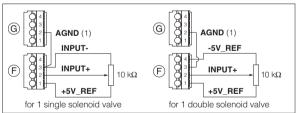
| CONNECTOR            | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS                                                                                                                            | NOTES                                         |
|----------------------|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                      | A1  | V+       | Power supply 24 Vpc (see 5.1)                                                                                                                       | Input - power supply                          |
| Α                    | A2  | V0       | Power supply 0 Vpc (see 5.1)                                                                                                                        | Gnd - power supply                            |
|                      | АЗ  | VL+      | Power supply 24 Vpc for driver's logic and communication (see 5.2)                                                                                  | Input - power supply                          |
|                      | A4  | VL0      | Power supply 0 Vpc for driver's logic and communication (see 5.2)                                                                                   | Gnd - power supply                            |
|                      | B1  | ENABLE   | Enable (24 VDC) or disable (0 VDC) the driver, referred to VL0 (see 5.5)                                                                            | Input - on/off signal                         |
| В                    | B2  | FAULT    | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0 (see 5.6)                                                                                 | Output - on/off signal                        |
|                      | В3  | VL0      | Ground for ENABLE and FAULT                                                                                                                         | Gnd - digital signals                         |
|                      | B4  | EARTH    | Connect to system ground                                                                                                                            |                                               |
|                      | C1  | SOL_S1-  | Negative current to solenoid S1                                                                                                                     | Output - power PWM                            |
|                      | C2  | SOL_S1+  | Positive current to solenoid S1                                                                                                                     | Output - power PWM                            |
|                      | СЗ  | SOL_S2-  | Negative current to solenoid S2                                                                                                                     | Output - power PWM                            |
|                      | C4  | SOL_S2+  | Positive current to solenoid S2                                                                                                                     | Output - power PWM                            |
|                      | E1  | VF +24V  | Power supply +24 VDC                                                                                                                                | Output - power supply                         |
| F                    | E2  | TR+      | Positive pressure transducer input signal: ±10 Vpc / ±20 mA maximum range (see 5.7) Default are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /C option | Input - analog signal<br>Software selectable  |
| available only       | E3  | NC       | Do not connect                                                                                                                                      |                                               |
| for <b>/W</b> option | E4  | AGND     | Common GND for transducer power, signals and external potentiometer                                                                                 |                                               |
|                      | F1  | +5V_REF  | External potentiometer power supply +5 Vpc @ 10mA (see 5.8)                                                                                         | Output - power supply                         |
| F                    | F2  | INPUT+   | Positive reference input signal: ±10 Vpc / ±20 mA maximum range (see 5.3) Default are ±10 Vpc for standard and 4 ÷ 20 mA for /I option              | Input - analog signal<br>Software selectable  |
| •                    | F3  | INPUT-   | Negative reference input signal for INPUT+                                                                                                          | Input - analog signal                         |
|                      | F4  | -5V_REF  | External potentiometer power supply -5 VDC @ 10mA (see 5.8)                                                                                         | Output - power supply                         |
|                      | G1  | EARTH    | Connect to system ground                                                                                                                            |                                               |
|                      | G2  | AGND     | Analog ground for MONITOR and external potentiometer                                                                                                | Gnd - analog signal                           |
| G                    | G3  | MONITOR2 | Only for /W option, 2nd monitor output signal: ±5 Vpc maximum range (see 5.4) Default is 0 ÷ 5 Vpc                                                  | Output - analog signal<br>Software selectable |
|                      | G4  | MONITOR  | Monitor output signal: ±5 Vpc maximum range (see 5.4) Default is ±5 Vpc (1V = 1A)                                                                   | Output - analog signal<br>Software selectable |
|                      | H1  | VL0      | Power supply 0 Vpc for digital input (see 5.2)                                                                                                      | Gnd - power supply                            |
| Н                    | H2  | D_IN1    | Digital input 0 ÷ 24Vpc, referred to VL0                                                                                                            | Input - on/off signal                         |
|                      | НЗ  | D_IN0    | Digital input 0 ÷ 24Vpc, referred to VL0                                                                                                            | Input - on/off signal                         |
|                      | H4  | VL+      | Power supply 24 Vpc for digital input (see 5.2)                                                                                                     | Output - power supply                         |

## Pressure transducer connections - only for /W option



## Coils connection




## **4.3** Communication connectors ③ - ④ - ⑤ - ⑥ - ⑦

| 3   | 3 USB connector - Mini USB type B always present |                                    |  |  |  |
|-----|--------------------------------------------------|------------------------------------|--|--|--|
| PIN | SIGNAL                                           | SIGNAL TECHNICAL SPECIFICATION (1) |  |  |  |
| 1   | +5V_USB                                          | Power supply                       |  |  |  |
| 2   | D-                                               | Data line -                        |  |  |  |
| 3   | D+                                               | Data line +                        |  |  |  |
| 4   | ID                                               | Identification                     |  |  |  |
| 5   | GND_USB                                          | Signal zero data line              |  |  |  |

| (5) | ⑤ BP fieldbus execution, connector - DB9 - 9 pin  |                                    |  |  |  |
|-----|---------------------------------------------------|------------------------------------|--|--|--|
| PIN | SIGNAL                                            | SIGNAL TECHNICAL SPECIFICATION (1) |  |  |  |
| 1   | SHIELD                                            |                                    |  |  |  |
| 3   | LINE-B Bus line (low)                             |                                    |  |  |  |
| 5   | <b>DGND</b> Data line and termination signal zero |                                    |  |  |  |
| 6   | +5V Termination supply signal                     |                                    |  |  |  |
| 8   | LINE-A                                            | Bus line (high)                    |  |  |  |

(1) shield connection on connector's housing is recommended

#### Potentiometer connection



(1) As alternative the AGND on pin E4 can be used (only /W option)

| 4   | (4) BC fieldbus execution, connector - DB9 - 9 pin |                                    |  |  |  |
|-----|----------------------------------------------------|------------------------------------|--|--|--|
| PIN | SIGNAL                                             | SIGNAL TECHNICAL SPECIFICATION (1) |  |  |  |
| 2   | CAN_L                                              | CAN_L Bus line (low)               |  |  |  |
| 3   | CAN_GND                                            | CAN_GND Signal zero data line      |  |  |  |
| 5   | CAN_SHLD Shield                                    |                                    |  |  |  |
| 7   | CAN_H                                              | CAN_H Bus line (high)              |  |  |  |

| 6 7 EH fieldbus execution, connector - RJ45 - 8 pin |        |             |       |                 |  |
|-----------------------------------------------------|--------|-------------|-------|-----------------|--|
| PIN                                                 | SIGNAL | TECHNICAL   | . SPE | ECIFICATION (1) |  |
| 1                                                   | TX+    | Transmitter | -     | white/orange    |  |
| 2                                                   | RX+    | Receiver    | -     | white/green     |  |
| 3                                                   | TX-    | Transmitter | -     | orange          |  |
| 6                                                   | RX-    | Receiver    | -     | green           |  |

#### 5 SIGNALS SPECIFICATIONS

Atos digital drivers are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **F003** and in the user manuals included in the E-SW-\* programming software.

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982)

#### 5.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers. In case of double power supply see 5.2.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 5.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic on pin A3 and A4, allow to remove solenoid power supply from pin A1 and A2 maintaining active the diagnostics, USB and fieldbus communications.

/ A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 5.3 Reference input signal (INPUT+)

The driver controls in closed loop the current to the valve proportionally to the external reference input signal. Reference input signal is factory preset according to selected valve code, defaults are  $\pm 10~\rm Vpc$  for standard and  $4 \div 20~\rm mA$  for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10~\rm Vpc$  or  $\pm 20~\rm mA$ . Drivers with fieldbus interface (BC, BP, EH) can be software set to receive reference signal directly from the machine control unit (fieldbus reference). Analog reference input signal can be used as on-off commands with input range 0 ÷ 24Vpc.

#### 5.4 Monitor output signals (MONITOR and MONITOR2)

The driver generates an analog output signal (MONITOR) proportional to the actual coil current of the valve; the monitor output signal can be software set to show other signals available in the driver (e.g. analog reference, fieldbus reference). Monitor output signal is factory preset according to selected valve code, default settings is ±5 Vpc (1V = 1A).

Output signal can be reconfigured via software, within a maximum range of ±5 Vpc.

The driver generates a second analog output signal (MONITOR2) proportional to the actual system pressure.

The output maximum range is ±5 Vpc; default setting is 0 ÷ 5 Vpc.

#### 5.5 Enable input signal (ENABLE)

To enable the driver, supply 24 Vpc on pin B1: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to active the communication and the other driver functions when the valve must be disabled for safety reasons. This condition does not comply with European Norms EN13849-1 (ex EN954-1).

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal broken for 4 ÷ 20 mA input, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24 Vpc.

Fault status is not affected by the Enable input signal.

#### 5.7 Remote pressure transducer input signal (TR+) - only for /W option

Analog pressure transducers can be directly connected to the driver.

Analog input signal is factory preset according to selected driver code, defaults are 0 ÷ 10 Vpc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA. Note: transducer feedback can be read as a digital information through fieldbus communication - software selectable.

#### 5.8 Output supply for external potentiometer (±5V\_REF) - not available for EH version

The reference analog signal can be generated by one external potentiometer directly connected to the driver, using the ±5 Vpc supply output available at pin F1 and F4.

Note: using an external potentiometer, the reference input signal must be set via software at ±5 Vpc (default ±10 Vpc, see 5.3)

## 5.9 Possible combined options: /AI, /AW, /IW, /AIW, /ACW, /CIW, /ACIW, /CW

#### 6 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared) E-SW-FIELDBUS support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET) support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated! For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection

Free programming software, web download:

E-SW-\*/PQ

# E-C-SB-USB/BM cable

USB connection



E-A-SB-USB/OPT isolator

E-SW-BASIC web download = software can be downloaded upon web registration at www.atos.com; service and DVD not included

Upon web registration user receive via email the Activation Code (software free license) and login data to access Atos

Download Area

DVD programming software, to be ordered separately:

E-SW-\*/PQ DVD first supply = software has to be activated via web registration at www.atos.com; 1 year service included

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos

E-SW-\*-N/PQ DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

Atos Download Area: direct access to latest releases of E-SW software, manuals, USB drivers and fieldbus configuration files at www.atos.com

USB Adapters, Cables and Terminators, can be ordered separately

#### 7 MAIN SOFTWARE PARAMETER SETTINGS

The following is a brief description of the main settings and features of digital drivers.

For a detailed descriptions of available settings, wirings and installation procedures, please refer to the user manual included in the E-SW programming software:

#### E-MAN-BM-AES - user manual for E-BM-AES

#### 7.1 Scale

Scale function allows to set the maximum current supplied to the solenoid, corresponding to the max valve regulation, at maximum reference signal value.

This regulation allows to adapt the maximum current supplied from the driver to the specific nominal current of the proportional valves to which the driver is coupled; it is also useful to reduce the maximum valve regulation in front of maximum reference signal.

Two different Scale regulations are available for double solenoid valves: ScaleA for positive reference signal and ScaleB for negative reference signal.

#### 7.2 Bias and Threshold

Proportional valves may be provided with a dead band in the hydraulic regulation corresponding to their switch-off status.

This dead band discontinuity in the valve's regulation can be compensated by activating the Bias function, which adds a fixed preset Bias value to the reference signal (analog or fieldbus external input).

The Bias function is activated when the reference signal overcomes the Threshold value, preset into the driver.

The Bias setting allows to calibrate the Bias current to the specific proportional valve to which the driver is coupled.

The Threshold setting is useful to avoid undesired valve regulation at zero reference signal when electric noise is present on the analog input signal: smaller threshold reduces the reference signal dead band, greater values are less affected by electric noise presence.

If fieldbus reference signal is active (see 5.3), threshold should be set to zero.

Two different Bias regulations are available for double solenoid valves: positive reference signals activate BiasA and negative reference signals activate BiasB.

Refer to the programming manuals for a detailed description of other software selectable Bias functions

#### 7.3 Offset

Proportional valves may be provided with zero overlapping in the hydraulic regulation corresponding to zero reference input signal (valve's central spool position).

The Offset function allows to calibrate the Offset current, required to obtain valve's spool central position, to the specific hydraulic system setup (e.g. valve applied to cylinder with differential areas).

#### 7.4 Ramps

The ramp generator allows to convert sudden change of electronic reference signal into smooth time-dependent increasing/decreasing of the current supplied to the solenoid.

Different ramp mode can be set:

- single ramp for any reference variation
- two ramps for increasing and for decreasing reference variations
- four ramps for positive/negative signal values and increasing/decreasing reference variations Ramp generator is useful for application where smooth hydraulic actuation is necessary to avoid machine vibration and shocks.

If the proportional valve is driven by a closed loop controller, the ramps can lead to unstable behaviour, for these applications ramp function can be software disabled (default setting).

## 7.5 Linearization - E-SW level 2 functionality

Linearization function allows to set the relation between the reference input signal and the controlled valve's regulation.

Linearization is useful for applications where it is required to linearize the valve's regulation in a defined working condition.

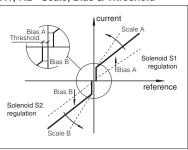
#### 7.6 Variable Dither

The dither is the frequency modulation of the current supplied to the solenoid. To reduce the hysteresis should be selected a lower value of frequency, despite a lower regulation stability, because a small vibration in the valve regulating parts considerably reduces static friction effects.

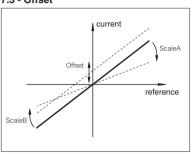
To improve the regulation stability, should be selected a high value of frequency, despite a higher hysteresis. This solution in some application can lead to vibration and noise. Normally, the right setting is a compromise and depends on system setup.

E-BM-AES drivers allow to realize a variable dither frequency that linearly depends on the demanded current: variable dither frequency allows an higher degree to optimize the valve hysteresis.

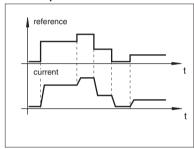
#### 7.7 Hydraulic Power Limitation - only for /W option


 $\label{eq:decomposition} \mbox{Digital E-BM-AES drivers with $\mathcal{M}$ option electronically perform hydraulic power limitation on: $\mathcal{M}$ and $\mathcal{M}$ option electronically perform hydraulic power limitation on: $\mathcal{M}$ option electronically perform hydraulic power limitation on $\mathcal{M}$ option electronically perform hydraulic power limitation on $\mathcal{M}$ option electronically perform hydraulic power limitation of $\mathcal{M}$ option electronically perform hydraulic power limitation on $\mathcal{M}$ option electronically perform hydraulic power limitation on $\mathcal{M}$ option electronically perform hydraulic performance hydraulic performance hydraulic performance hydraulic performance hydraulic performanc$ 

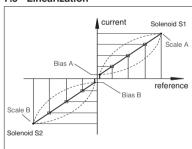
- direct and pilot operated flow control valves
- direct and pilot operated directional control valves + mechanical pressure compensator
- variable displacement pumps with proportional flow regulator (e.g. PVPC-\*-LQZ, tech table A170)


The driver receives the flow reference signal by the analog external input INPUT+ (see 5.3) and a pressure transducer, installed in the hydraulic system, has to be connected to the driver's analog input TR (see 5.7).

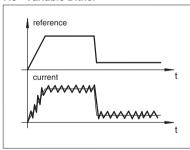
When the actual requested hydraulic power pxQ (TR x INPUT+) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:


#### 7.1, 7.2 - Scale, Bias & Threshold

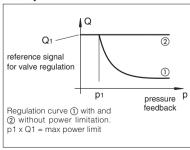



#### 7.3 - Offset



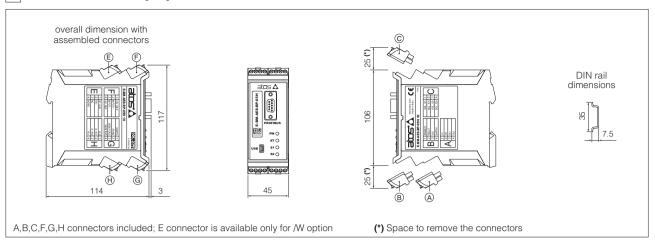

#### 7.4 - Ramps



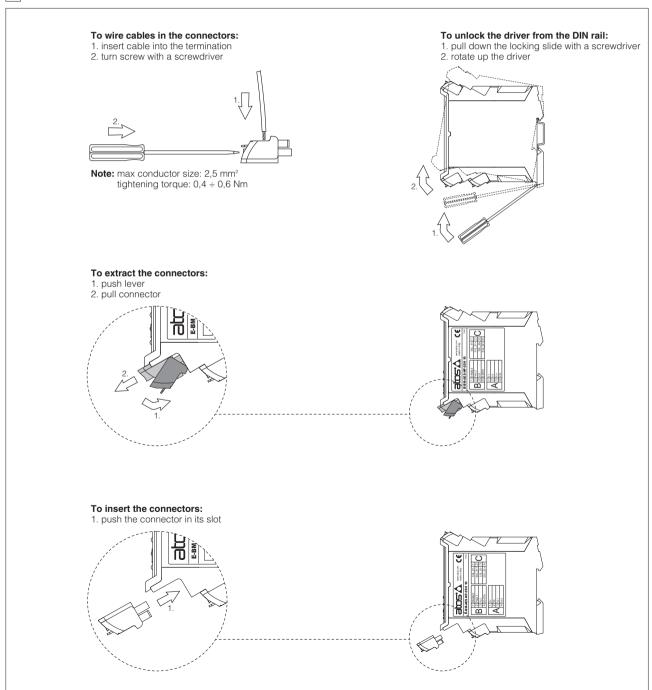

## 7.5 - Linearization



#### 7.6 - Variable Dither




#### 7.7 - Hydraulic Power Limitation

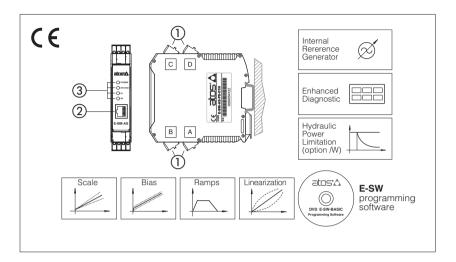



GS050

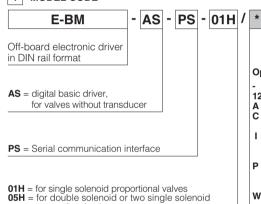
## 8 OVERALL DIMENSIONS [mm]



## 9 INSTALLATION




Note: all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot (eg. connector A can not be inserted into connector slot of B, C, E, F, G, H)




# **Digital electronic E-BM-AS drivers**

DIN-rail format, for proportional valves without transducer







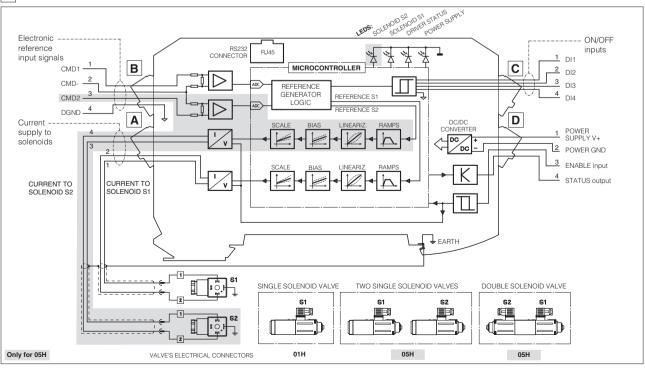
proportional valves

## E-BM-AS

Digital drivers control the current to the solenoid of Atos proportional valves without transducer, according to the electronic reference input signal.

The solenoid proportionally transforms the current into a force, acting on the valve spool or poppet, against a reacting spring, thus providing the hydraulic regulation.

E-BM-AS can drive up to two single or one double solenoid proportional valves.


#### **Electrical Features:**

- 4 fast plug-in connectors 1)
- RJ45 connector ② for RS232 Serial communication to program the driver with the Atos PC software
- 4 leds for diagnostics (3) (see section 10)
- ±5 Vpc output supply for external reference potentiometers (/P option)
- · Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +60 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive

## Software Features:

- · Intuitive graphic interface
- Setting of valve's functional parameters: bias, scale, ramps, dither
- · Linearization function for the hydraulic
- 2 selectable modes for electronic reference signal: external analog input or internal generation
- W option max power limitation function
- Complete diagnostics of driver status

#### 2 BLOCK DIAGRAM



Series number

12 = 12 VDC power supply

input ±10 VDC)

= standard 24 Vpc power supply

= max current limitation for ex-proof valves

= current feedback 4 ÷ 20 mA for remote transducer, only for **IW** 

current reference input 4 ÷ 20 mA (omit for standard voltage reference

electrical supply for external potentio-

meters to generate reference signal, not available with I option (see 4.4)

power limitation function, only for **05H** 

Options:

### 3 MAIN CHARACTERISTICS

| Power supply (see 4.1)                                    | Standard Nominal: +24 VDC Rectified and filtered: VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)  option /12 Nominal: +12 VDC Rectified and filtered: VRMS = 10 ÷ 14 VMAX (ripple max 10 % VPP)                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Max power consumption                                     | 50 W 01H single solenoid valve and 05H double solenoid valve<br>100 W 05H two single solenoid valves                                                                                                                                                                                                                             |  |  |  |  |
| Current supplied to solenoids                             | IMAX = 2.7 A with +24 VDC power supply for standard proportional valves (3,2 $\Omega$ solenoid)<br>IMAX = 3.3 A with +12 VDC power supply for proportional valves with /6 option (2,1 $\Omega$ solenoid)<br>IMAX = 2.5 A with +24 VDC power supply for ex-proof proportional valves (3,2 $\Omega$ solenoid) for <b>/A option</b> |  |  |  |  |
| Analog input signal (see 4.2)                             | Voltage: range $\pm 10$ VDC                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Enable and optical insulated ON/OFF inputs (see 4.5, 4.7) | Range : 0 ÷ 24 VDC ( OFF state: 0 ÷ 5 VDC ; ON state: 9 ÷ 24 VDC ) Input impedance: Ri > 10 k $\Omega$                                                                                                                                                                                                                           |  |  |  |  |
| Output supply (see 4.4)                                   | ±5 VDC @ max 10 mA: output supply for external potentiometers (only for /P option)                                                                                                                                                                                                                                               |  |  |  |  |
| Status output (see 4.6)                                   | Output range: 0 ÷ 24 VDC (ON state > [power supply - 2 V]; OFF state < 1 V) @ max 1,4 A                                                                                                                                                                                                                                          |  |  |  |  |
| Alarms                                                    | Solenoid not connected, short circuit and cable break with current reference signal                                                                                                                                                                                                                                              |  |  |  |  |
| Format                                                    | Plastic box ; IP20 protection degree ; L 35 - H 7,5 mm rail mounting as per EN60715                                                                                                                                                                                                                                              |  |  |  |  |
| Operating temperature                                     | -20 ÷ +60 °C<br>(-20 ÷ +40 °C for 05H version if drive two single solenoid proportional valves; storage -25 ÷ +85 °C)                                                                                                                                                                                                            |  |  |  |  |
| Mass                                                      | 130 g                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Additional characteristics                                | Short circuit protection of current output to solenoids; protection against reverse polarity of power supply                                                                                                                                                                                                                     |  |  |  |  |
| Electromagnetic compatibility (EMC)                       | According to Directive 2014/30/UE - Immunity: EN 61000-6-2 (2005); Emission: EN 61000-6-4 (2001)                                                                                                                                                                                                                                 |  |  |  |  |
| Compliance                                                | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                                                                                                                                                                         |  |  |  |  |
| Communication interface                                   | RS232 serial connection (not insulated), Atos protocol with ASCII coding (see section 9)                                                                                                                                                                                                                                         |  |  |  |  |
| Recommended wiring cable                                  | LiYCY shielded cables: 0,5 mm² for length up to 40 m [1,5 mm² for power supply and solenoids]                                                                                                                                                                                                                                    |  |  |  |  |
| Max conductor size (see section 12)                       | 2,5 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                              |  |  |  |  |

## 4 SIGNALS SPECIFICATIONS

#### 4.1 Power supply

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

/ A safety fuse is required in series to each power supply: 2,5 A time lag fuse for 01H single solenoid valve and 05H double solenoid valve 5 A time lag fuse for 05H two single solenoid valves

#### Option /12

This driver execution is designed to receive a 12 VDC power supply and it is commonly used in mobile application.

A safety fuse is required in series to each driver power supply:

A safety fuse is required in series to each power supply: 4 A time lag fuse for 01H single solenoid valve and 05H double solenoid valve 6,3 A time lag fuse for 05H two single solenoid valves

## 4.2 Reference Input Signals (pin B1 and B3, both referred to pin B2)

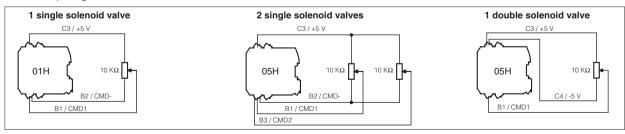
The driver proportionally transforms the external reference input signal into the current supplied to the solenoid.

The driver is designed to receive one (01H) or two (05H) analog reference inputs (CMD1 on pin B1, CMD2 on pin B3); both signals are referred to a common electric ground (CMD- on pin B2). CMD1 has to be used in case of 05H version that drives one double solenoid valve. CMD2 has to be used in case of 05H version that drives two single solenoid valves or transducer input for /W option (see 4.3)

The input range is software selectable among voltage (0 ÷ ±10 VDC) or current (4 ÷ 20 mA with cable break detection or 0 ÷ ±20 mA).

Defaults for standard:  $0 \div 10$  VDC for two position valves;  $0 \div \pm 10$  VDC for three position valves (see valve's tech. table). Default for /I option:  $4 \div 20$  mA (see valve's tech. table)

Other ranges can be set by software. Internal reference generation is software selectable (see 7.6).


Note: software selection of analog input range (voltage or current) is applied to both signals CMD1 and CMD2.

## 4.3 Pressure Input Signal (pin B3 referred to pin B2) only for, /W option)

When hydraulic power limitation is active (see 7.7), input signal CMD2 must be connected to an external pressure transducer installed on the hydraulic system; maximum input range 0 ÷ 10 VDC.

## 4.4 Output supply Signal for external reference potentiometers (/P option)

The reference analog signals can be generated by one (01H) or two (05H) external potentiometers directly connected to the driver, using the ±5 VDC supply output available at pin C3 and C4. Reference input signal can be set up via software to ±5 VDC, in order to match potentiometer output signal.



## 4.5 Enable Input Signal (pin D3 referred to pin D2)

Enable input signal allows to enable/disable the current supply to the solenoids, without removing the electrical power supply to the driver; it is used to maintain active the serial connection and the other driver functions when the valve must be disabled for safety reasons. To enable the driver, supply a 24VDC on pin D3 referred to pin D2.

#### 4.6 Status Output Signal (pin D4 referred to pin D2)

Status output signal indicates fault conditions of the driver (short circuits, solenoids not connected, cable broken for 4 ÷ 20mA input) and is not affected by Enable input signal status: fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC. When hydraulic power limitation function is active (see 7.7), status output signal can be software configured to indicate power limitation status: not active (0 VDC) or active (24 VDC).

#### 4.7 ON/OFF Input Signals (pin C1...C4 referred to DGND pin B4)

Analog Drivers Compatibility - default for series 12 or higher

The four ON/OFF digital input signals (DI) can be used to activate compatibility functionalities with E-BM-AC and E-ME-AC analog drivers (see section 5). If digital inputs are not connected, the driver behavior corresponds to an E-BM-AS series 11 or lower

Internal Reference Generation - software selectable

When the driver is configured in internal reference generation mode (see 7.6), the 4 ON/OFF input signals (DI) are used to select the active reference signal, among the available stored values. If the 4 ON/OFF input signals (DI) are not active, the driver can be commanded by external analog reference. The polarity of the digital inputs can be customized: active status = 24 VDC is the default setting.

Note: for /P option DI3 and DI4 are not available

#### 4.8 Possible combined options:

/12W, /12PW, /12CIW, /AW, /ACIW, /APW, /CIW, /PW only for 05H /12I, /12P, /AI, /AP for 01H and 05H

## 5 ANALOG DRIVERS COMPATIBILITY - only for E-BM-AS series 12 or higher

E-BM-AS digital inputs (DI1..DI4) activate compatibility functionalities with E-BM-AC and E-ME-AC analog drivers:

#### REFERENCE COMPATIBILITY

| Digita | Inputs Signals | Digital driver             | Analog driver | 24 Vpc to DI1:                                                      | 0 Vpc to DI1:   |
|--------|----------------|----------------------------|---------------|---------------------------------------------------------------------|-----------------|
| DI1    | 24 VDC         | E-BM-AS 01H<br>E-BM-AS 05H | E-BM-AC 01F   | 01H<br>Voltage 0 ÷ 5 VDC / 0 ÷ 100%<br>Current 4 ÷ 20 mA / 0 ÷ 100% |                 |
| DI2    | 0 VDC          |                            |               |                                                                     | See section 4.2 |
| DI3    | 0 VDC          |                            | E-ME-AC 01F   | 05H<br>Voltage ± 5 VDC / ± 100%                                     | See Section 4.2 |
| DI4    | 0 VDC          |                            | E-ME-AC 05F   | Current 4 ÷ 20 mA / 0 ÷ 100%                                        |                 |

Note: set 0 Vpc to DI1 and power-off/on the driver to restore latest settings

#### REFERENCE INVERSION

| Digital Inputs Signals |        | Digital driver | Analog driver | 24 VDC to DI2:                | 0 Vpc to DI2:                |
|------------------------|--------|----------------|---------------|-------------------------------|------------------------------|
| DI1                    | 24 VDC |                |               |                               | Voltage 0 ÷ 5 VDC / 0 ÷ 100% |
| DI2                    | 24 VDC | F-BM-AS 05H    | E-BM-AC 05F   | Voltage 0 ÷ 5 VDC / 0 ÷ -100% |                              |
| DI3                    | 0 VDC  | L-DIVI-A3 0311 | L-DIVI-AC 031 | Current 4 ÷ 20 mA / 0 ÷ -100% | Current 4 ÷ 20 mA / 0 ÷ 100% |
| DI4                    | 0 VDC  |                |               |                               |                              |

Note: to enable reference inversion, set 24 VDC to DI1 before driver power-on

#### **RAMP SWITCH OFF**

| Digital Inp | uts Signals | Digital driver | Analog driver | 24 VDC to DI3:  | 0 Vpc to DI3:   |
|-------------|-------------|----------------|---------------|-----------------|-----------------|
| DI1         | 24 VDC      |                |               |                 |                 |
| DI2         | 0 VDC       | E-BM-AS 01H    | E-ME-AC 01F   | Ramp excluded   | Ramp activated  |
| DI3         | 24 VDC      | E-BM-AS 05H    | E-ME-AC 05F   | Trainp excluded | Tramp activated |
| DI4         | 0 VDC       |                |               |                 |                 |

Notes: to enable ramp switch off, set 24 VDC to DI1 before driver power-on; DI3 not available for /P option

## 011F CONFIGURATION

| Digital inpu | uts dignals | Digital driver | Analog driver  | 24 VDC to DI4:             | 0 Vpc to DI4:            |
|--------------|-------------|----------------|----------------|----------------------------|--------------------------|
| DI1          | (*)         |                |                |                            |                          |
| DI2          | (*)         | E-BM-AS 05H    | E-BM-AC 011F   | Driver configuration 011F  | Driver configuration 05H |
| DI3          | (*)         | L-DIVI-A3 0311 | L-DIVI-AC OTTI | Driver configuration of fi | Driver configuration our |
| DI4          | 24 VDC      |                |                | (*) = don't care           | (*) = don't care         |

Notes: set 0 VDC to DI4 and power-off/on the driver to restore latest settings; DI4 not available for /P option

## 6 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via RS232 serial port to the digital driver (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

support: NP (USB) E-SW-BASIC PS (Serial) IR (Infrared) BP (PROFIBUS DP) **E-SW-FIELDBUS** support: BC (CANopen) EH (EtherCAT) EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET) E-SW-\*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

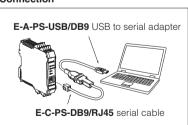


#### WARNING: drivers RS232 port is not isolated!

Free programming software, web download:

web download = software can be downloaded upon web registration at <a href="www.atos.com">www.atos.com</a>; service and DVD not included Upon web registration user receive via email the Activation Code (software free license) and login data to access Atos E-SW-BASIC

Download Area DVD programming software, to be ordered separately:


DVD first supply = software has to be activated via web registration at <a href="https://www.atos.com">www.atos.com</a>; 1 year service included Upon web registration user receive via email the Activation Code (software license) and login data to access Atos E-SW-\*/PQ

Download Area

DVD next supplies = only for supplies after the first; service not included, web registration not allowed Software has to be activated with Activation Code received upon first supply web registration E-SW-\*-N/PQ

Atos Download Area: direct access to latest releases of E-SW software, manuals, USB drivers and fieldbus configuration files at www.atos.com

USB Adapters, Cables and Terminators, can be ordered separately



PROPORTIONAL VALVES

### 7 MAIN SOFTWARE PARAMETER SETTINGS

The following is a brief description of the main settings and features of digital drivers. For a detailed descriptions of available settings, wirings and installation procedures, please refer to the user manual included in the E-SW programming software:

#### E-MAN-BM-AS - user manual for E-BM-AS

#### 7.1 Scale

Scale function allows to set the maximum current supplied to the solenoid, corresponding to the max valve regulation, at maximum reference signal value.

This regulation allows to adapt the maximum current supplied from the driver to the specific nominal current of the proportional valves to which the driver is coupled; it is also useful to reduce the maximum valve regulation in front of maximum reference signal.

For double solenoid valves two different Scale regulations are available:

ScaleA for positive reference signal and ScaleB for negative reference signal

#### 7.2 Bias and Threshold

Proportional valves may be provided with a dead band in the hydraulic regulation corresponding to their switch-off status.

This dead band discontinuity in the valve's regulation can be compensated by activating the Bias function, which adds a fixed preset Bias value to the reference signal (external input or internally generated).

The Bias function is activated when the reference signal overcome the Threshold value, preset into the driver.

The Bias setting allows to calibrate the Bias current supplied to the solenoid of the specific proportional valve to which the driver is coupled.

The Threshold setting is useful to avoid undesired valve regulation at zero reference signal when electric noise is present on the analog input signal: smaller threshold reduces the reference signal dead band, greater values are less affected by electric noise presence.

If internal reference generation is active (see 7.6), threshold should be set to 0.

For double solenoid valves two different Bias regulations are available: positive reference signal activates BiasA for solenoid S1 and negative reference signal activates BiasB for solenoid S2

#### 7.3 Ramps

The ramp generator allows to convert sudden change of electronic reference signal into smooth time-dependent increasing/decreasing of the current supplied to the solenoid. Different ramp mode can be set:

- single ramp for any reference variation
- two ramps for increasing and for decreasing reference variations
- four ramps for positive/negative signal values and increasing/decreasing reference variations Ramp generator is useful for application where smooth hydraulic actuation is necessary to avoid machine vibration and shocks.

If the proportional valve is driven by a closed loop controller, the ramps can lead to unstable behaviour, for these applications ramp function can be software disabled (default setting)

#### 7.4 Dither

The dither is an high frequency modulation of the current supplied to the solenoid, to reduce the hysteresis of the valve's regulation: a small vibration in the valve's regulating parts considerably reduces static friction effects.

Dither frequency can be set in a range from 80 to 500 Hz (default value is 200Hz).

Lower dither setting reduces the hysteresis but also reduces the regulation stability. In some application this can lead to vibration and noise: right setting usually depends on system setup. Default dither is a valid setting for a wide range of hydraulic applications

#### 7.5 Linearization

Linearization function allows to set the relation between the reference input signal and the current supplied to the solenoid.

Linearization is useful for applications where it is required to linearize the valve's regulation in a defined working condition (e.g. maximum pressure control at defined working flow)

#### 7.6 Internal Reference Generation

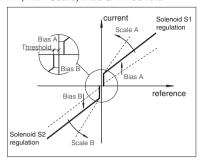
Internal generation of reference values is software selectable.

In this mode the 4 digital inputs of the driver (DI1..DI4) allow to activate the desired internal reference signal, among the different driver's stored values: external control unit can thus manage complex machine profile by simple switching the reference signal, by 4 digital inputs (see 4.7).

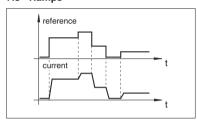
The digital inputs are software configurable into 2 different reference selection mode:

#### • Standard mode

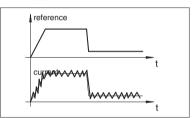
each digital input corresponds to a different value; up to 4 different internal values are available (2+2 with E-BM-AS-PS-05H driving two single solenoid valves)


#### Binary mode

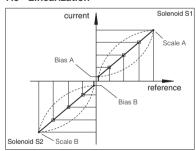
each digital input combination corresponds to a different value; up to 15 different internal values are available (3+3 with E-BM-AS-PS-05H when driving two single solenoid valves)


A dedicated ramp time value can be set by software for each available stored reference value.

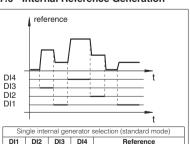
Note: with all input signals (DI) set to zero, the driver can be commanded by external analog reference also if internal reference generation is selected (for more information please refer to the programming manual E-MAN-BM-AS).


#### 7.1, 7.2 - Scale, Bias & Threshold




#### 7.3 - Ramps




#### 7.4 - Dither



#### 7.5 - Linearization



#### 7.6 - Internal Reference Generation



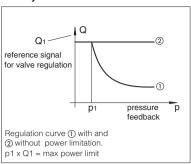
| JII | Single internal generator selection (standard mode) |     |     |              |  |  |  |
|-----|-----------------------------------------------------|-----|-----|--------------|--|--|--|
| DI1 | DI2                                                 | DI3 | DI4 | Reference    |  |  |  |
| OFF | OFF                                                 | OFF | OFF | External     |  |  |  |
| ON  | OFF                                                 | OFF | OFF | Generation 1 |  |  |  |
| (*) | ON                                                  | OFF | OFF | Generation 2 |  |  |  |
| (*) | (*)                                                 | ON  | OFF | Generation 3 |  |  |  |
| (*) | (*)                                                 | (*) | ON  | Generation 4 |  |  |  |

|                    | Double internal generator selection (standard mode) |                   |          |     |     |              |  |  |  |
|--------------------|-----------------------------------------------------|-------------------|----------|-----|-----|--------------|--|--|--|
| DI1 DI2 S1 DI3 DI4 |                                                     |                   |          |     |     | S2           |  |  |  |
|                    | OFF                                                 | OFF               | External | OFF | OFF | External     |  |  |  |
|                    | ON                                                  | ON OFF Generation |          | ON  | OFF | Generation 1 |  |  |  |
|                    | (*) ON Generation 2 (*) ON Generation 2             |                   |          |     |     |              |  |  |  |
|                    | (*) don't care                                      |                   |          |     |     |              |  |  |  |

#### **7.7 Hydraulic Power Limitation (/W option**, only for drivers E-BM-AS-PS-05H)

E-BM-AS drivers with /W option electronically perform hydraulic power limitation on:

- direct and pilot operated flow control valves
- direct and pilot operated directional control valves + mechanical pressure compensator
- variable displacement pumps with proportional flow regulator


(e.g. PVPC-\*-LQZ, tech. table A170)

The driver receives the flow reference signal by the analog external input CMD1 (see 4.2) or by the internal generator (see 7.6) and a pressure transducer, installed in the hydraulic system, has to be connected to the driver's analog input CMD2.

When the actual requested hydraulic power  $\mathbf{p}_{\mathbf{x}}\mathbf{Q}$  (CMD2xCMD1) reaches the max power limit (p1xQ1), internally set by software, the driver automatically reduces the flow regulation of the valve. The higher is the pressure feedback the lower is the valve's regulated flow:

Flow regulation = Min ( 
$$\frac{\text{PowerLimit [sw setting]}}{\text{Transducer Pressure [CMD2]}}$$
; Flow Reference [CMD1])

#### 7.7 - Hydraulic Power Limitation



#### 8 CONNECTIONS

The 4 fast plug-in connectors (A,B,C,D), included in the supply, provide simple wirings, easy driver's replacement and the possibility to test the signals directly on the connectors.

| CONNECTOR | PIN         | SIGNAL   | TECHNICAL SPECIFICATIONS                                                        |                                                                                 |                                                   | TES                                       |                                    |             |             |
|-----------|-------------|----------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------|-------------|-------------|
|           | A1          | - SOL S1 | Current to solenoid S1                                                          |                                                                                 |                                                   |                                           |                                    |             |             |
|           | A2          | 30L 31   | Current to solenoid 51                                                          | Output - power PWM                                                              |                                                   |                                           |                                    |             |             |
| Α         | А3          | 001.00   | DL S2 Current to solenoid S2 (only for 05H version)                             |                                                                                 |                                                   |                                           |                                    |             |             |
|           | A4          | SOL S2   |                                                                                 |                                                                                 |                                                   |                                           |                                    |             |             |
|           | B1          | CMD1     | Reference analog input: ±10 Vpc / ± 20 mA                                       | maximum range software selectable (see 4.2)                                     |                                                   |                                           |                                    |             |             |
|           |             |          | Standard                                                                        | /P option (see 4.4)                                                             |                                                   |                                           |                                    |             |             |
| В         | B2          | B2       | B2                                                                              | B2                                                                              | CMD-                                              | Zero signal, ground for reference signals | Reference for ±5 Vpc output (AGND) | Input - and | alog signal |
|           | ВЗ          | CMD2 (1) | Reference analog input: ±10 Vpc / ± 20 mA                                       | -                                                                               |                                                   |                                           |                                    |             |             |
|           | B4          | DGND     | Optical insulated ground for on/off inputs (D                                   |                                                                                 |                                                   |                                           |                                    |             |             |
|           |             |          | Standard                                                                        | /P option (see 4.4)                                                             | Standard                                          | Option /P                                 |                                    |             |             |
|           | C1          | DI1      |                                                                                 | Optical insulated on/off input 0 ÷ 24 Vpc                                       | Input - on/off signal  Input - Output - reference |                                           |                                    |             |             |
| С         | C2          | DI2      | Optical insulated on/off input 0 ÷ 24 Vpc                                       | referred to pin B4 DGND (see 4.7) For analog driver compatibility see section 5 |                                                   |                                           |                                    |             |             |
|           | СЗ          | DI3      | referred to pin B4 DGND (see 4.7) For analog driver compatibility see section 5 | +5 Vpc @ 10 mA output supply to pin B2 (AGND)                                   |                                                   |                                           |                                    |             |             |
|           | C4          | DI4      |                                                                                 | -5 VDC @ 10 mA output supply to pin B2 (AGND)                                   | on/off                                            | analog                                    |                                    |             |             |
|           | D1          | V+       | Power supply 24 Vpc (see 4.1)                                                   |                                                                                 |                                                   | vor oungle                                |                                    |             |             |
| D         | D2 V0 Power |          | Power supply 0 Vbc                                                              |                                                                                 | Input - power supply                              |                                           |                                    |             |             |
| U         | D3          | ENABLE   | Enable (24 Vpc) or disable (0 Vpc) the driver (see 4.5)                         |                                                                                 | Input - on/off signal                             |                                           |                                    |             |             |
|           | D4          | STATUS   | Fault (default) or software selected output (see 4.6)                           |                                                                                 |                                                   | Output - on/off signal                    |                                    |             |             |

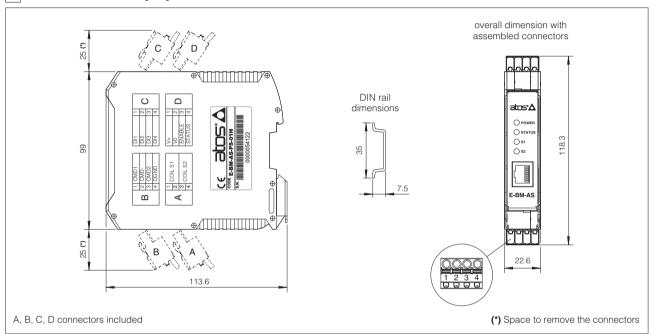
 $\textbf{(1)} \ \text{Only for 05H version, when used to drive two single solenoid valves or transducer input for /W option}$ 

WARNING: if CMD2 is not used has to be connect to CMD- (ground)

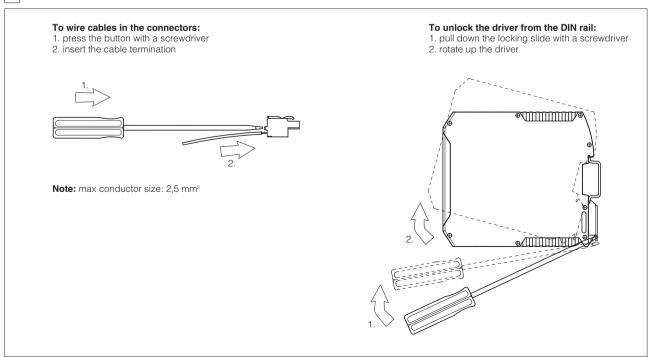
#### 9 RJ45 CONNECTOR

|     |        | RJ45 CONNECTOR                | RJ45 connector                 |
|-----|--------|-------------------------------|--------------------------------|
| PIN | SIGNAL | DESCRIPTION                   | (IEC 60603 standard)           |
| 1   | /      | Not connected                 | for RS232 serial communication |
| 2   | /      | Not connected                 | ⇒ atOs Δ.<br>Opomer            |
| 3   | /      | Not connected                 | OSTATUS<br>OST                 |
| 4   | GND    | Signal zero data line         |                                |
| 5   | RX     | Driver receiving data line    | 5                              |
| 6   | TX     | Driver transmitting data line | 8 BM-AS                        |
| 7   | /      | Not connected                 |                                |
| 8   | /      | Not connected                 | 0000                           |

G030


325

## 10 DIAGNOSTIC LEDS


Four leds show driver operative conditions for immediate basic diagnostics. Please refer to the driver user manual for detailed information.

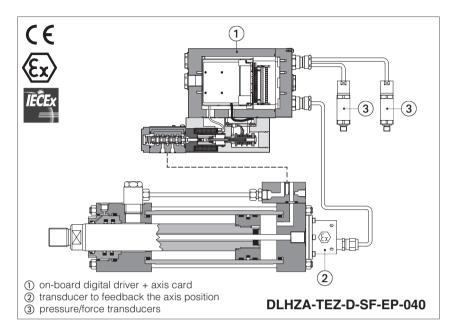
| LED       | COLOR  | FUNCTION         | FLASH RATE    | DESCRIPTION                   |                          |
|-----------|--------|------------------|---------------|-------------------------------|--------------------------|
| 1.1       | GREEN  | POWER            | OFF           | Power supply OFF              |                          |
| L1        | GILLIN | TOWEN            | ON            | Power supply ON               |                          |
|           |        |                  | OFF or ON     | Fault conditions              |                          |
| L2        | GREEN  | STATUS           | Slow blinking | Driver disabled               |                          |
|           |        |                  | Fast blinking | Driver enabled                | atos 🛕 -                 |
|           |        |                  | OFF           | PWM command OFF               | L1 — OPOWER L2 — OSTATUS |
| L3 and L4 | YELLOW | YELLOW S1 and S2 | ON            | PWM command ON                | L3 — Os1                 |
|           |        |                  | Slow blinking | Coil not connected            | L4 — Os2                 |
|           |        |                  | Fast blinking | Short circuit on the solenoid |                          |

## 11 OVERALL DIMENSIONS [mm]



## 12 INSTALLATION






| Ex-d                                                                         |                                                                     | Size          | Qmax [I/min] | Table | Pag         |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|--------------|-------|-------------|--|
| TECHNICAL INFORMATION                                                        | N                                                                   | Size          | Qmax [i/min] | lable | Pug         |  |
| Basics for electrohydraulics                                                 | in hazardous environments                                           |               |              | X010  | 547         |  |
| Summary of Atos ex-proof components multicertified to ATEX, IECEx, EAC, PESO |                                                                     |               |              |       |             |  |
| Programming tools for digital electronics                                    |                                                                     |               |              |       |             |  |
| Fieldbus features                                                            |                                                                     |               |              | GS510 | 585         |  |
| Mounting surface for electr                                                  | ohydraulic valves                                                   |               |              | P005  | 593         |  |
| Mounting surface and cavi                                                    | ties for cartridge valves                                           |               |              | P006  | 597         |  |
| AXIS CONTROLS                                                                |                                                                     |               |              |       |             |  |
| servoproportional direction                                                  | nals                                                                |               |              |       |             |  |
| DLHZA-TEZ, DLKZA-TEZ                                                         | direct, zero overlap, sleeve execution, on-board driver & axis card | 06 ÷ 10       | 50 ÷ 100     | FX610 | 331         |  |
| DHZA-TEZ, DKZA-TEZ                                                           | direct, zero overlap, on-board driver & axis card                   | 06 ÷ 10       | 60 ÷ 150     | FX620 | 349         |  |
| DPZA-LEZ                                                                     | piloted, zero overlap, on-board driver & axis card                  | 10 ÷ 27       | 180 ÷ 800    | FX630 | 365         |  |
| electronics, DIN-rail EN 60                                                  | 715                                                                 |               |              |       |             |  |
| Z-BM-TEZ/A                                                                   |                                                                     |               |              |       |             |  |
| Z-BM-LEZ/A                                                                   | off-board driver & axis card for servoproportional directionals     |               |              |       | 383         |  |
| Z-BM-KZ                                                                      | off-board axis card for servoproportional directionals              |               |              | GS340 | 395         |  |
| P/Q CONTROLS servoproportional & high p                                      |                                                                     | 00 + 10       | 50 - 100     |       |             |  |
| DLHZA-TES, DLKZA-TES                                                         | direct, zero overlap, sleeve execution, on-board driver             | 06 ÷ 10       | 50 ÷ 100     |       |             |  |
| DHZA-TES, DKZA-TES                                                           | direct, positive or zero overlap, on-board driver                   | 06 ÷ 10       | 60 ÷ 150     | FX500 | 405         |  |
| DPZA-LES                                                                     | piloted, positive or zero overlap, on-board driver                  | 10 ÷ 27       | 180 ÷ 800    |       |             |  |
| LIQZA-LES                                                                    | 3 way cartridge, piloted, on-board driver                           | 25 ÷ 80       | 500 ÷ 5000   |       |             |  |
| electronics, DIN-rail EN 60                                                  | 715                                                                 |               |              |       |             |  |
| E-BM-TES/A<br>E-BM-LES/A                                                     | off-board driver for servoproportional & high performar             | nce direction | nals         | GS240 | 301         |  |
| ACCESSORIES                                                                  |                                                                     |               |              |       |             |  |
| E-ATRA-7                                                                     | pressure transducer with amplified analog output signa              | lc            |              | GX800 | <b>52</b> 1 |  |
| BA                                                                           | single station subplates, mounting surfaces ISO 4401,               | 6264 and 5    | 781          | K280  | 523         |  |
| BA-214, BA-314, BA-244 multi-station subplates, mounting surface ISO 4401    |                                                                     |               |              |       |             |  |
| BA-214/AL                                                                    | multi-station subplates, mounting surface ISO 4401, a               | luminium      |              | K295  | 531         |  |
| CABLE GLANDS                                                                 | for proportional and on-off valves, standard or armour              |               |              | KX800 | 535         |  |
|                                                                              |                                                                     |               |              |       |             |  |
| Operating and maintenant                                                     | N<br>ce information for ex-proof proportional valves                |               |              | FX900 | 603         |  |
| . 5                                                                          | b b b                                                               |               |              |       |             |  |



# Ex-proof digital servoproportionals with on-board axis card

direct, sleeve execution, with LVDT transducer and zero spool overlap - ATEX and IECEx

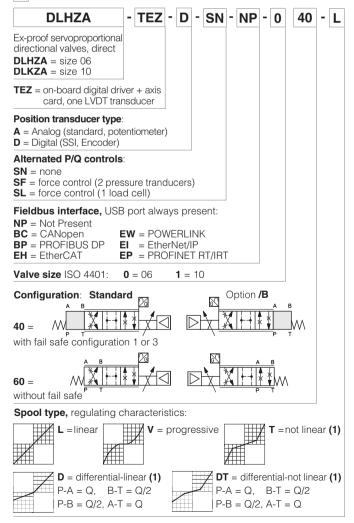


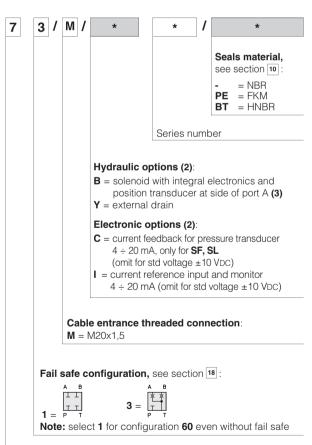
#### **DLHZA-TEZ, DLKZA-TEZ**

Ex-proof digital servoproportional valves equipped with on-board driver plus axis card, LVDT position transducer and zero spool overlap to perform the position control of any linear or rotative hydraulic actuator.

They are certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The controlled actuator has to be equipped with integral or external ex-proof transducer (analog, potentiometer, SSI or Encoder) to feedback the axis position.


The valve can be operated by an external or internally generated reference position signal, see section 2.

Options SF, SL add the alternated pressure/force control to the basic position one, see section 3.

DLHZA: Size: 06 -ISO 4401 Max flow: 50 l/min Max pressure: 350 bar DLKZA: Size: 10 -ISO 4401 Max flow: 100 l/min Max pressure: 315 bar

# 1 MODEL CODE





 Spool size:
 0(L)
 1(L)
 1(V)
 3(L)
 3(V)
 5(L,T)
 7(L,T,V,D,DT)

 DLHZA
 = 4
 7
 8
 14
 20
 28
 40

 DLKZA
 = 60
 60
 100

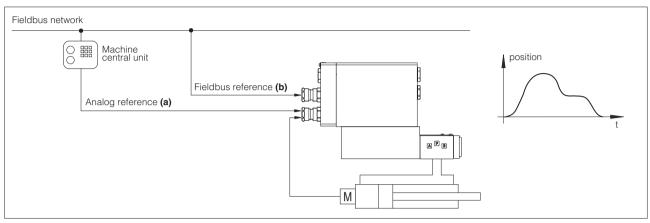
 Nominal flow (I/min) at Δp 70bar P-T

(1) Only for configuration 40 (2) For possible combined options, see section 16

(3) In standard configuration the solenoid with on-board digital driver and position transducer are at side port B

#### 2 POSITION REFERENCE MODE

#### 2.1 External reference generation


Axis controller regulates in closed loop the actuator position according to an external reference position signal and to the position feedback from the actuator transducer.

The external reference signal can be software selected among:

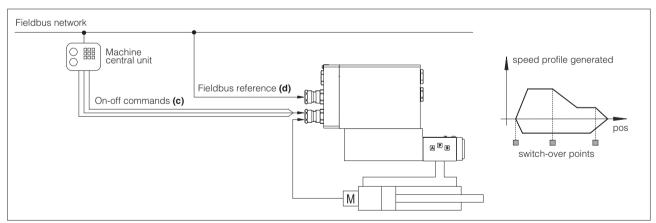
Analog reference (a) - the controller receives in real time the reference signal from the machine electronic central unit by means analog input on the terminal board.

Fieldbus reference (b) - the controller receives in real time the reference signal from the machine electronic central unit by means digital fieldbus communication.

For fieldbus communication details, please refer to the controller user manual.



#### 2.2 Internal reference generation


Axis controller regulates in closed loop the actuator position according to an internally generated reference position signal and to the position feedback from the actuator transducer.

The internal reference signal is generated by a pre-programmed cycle; only start, stop and switch-over commands are required from the machine electronic central unit by means:

- on-off commands (c)
- fieldbus commands (d)

Atos PC software allows to design a customized sequence of motion phases adapted to the specific application requirements: a range of predefined standard sequences are available in the Z-SW software.

Start/stop/switch-over commands and reference generation type can be set for each phase in order to realize an automatic cycle according to the application requests. Refer to the controller user manual for further details on commands and reference generation type.



## Start / stop / switch-over commands examples

External digital input on-off commands, on terminal board, are used to start/stop the cycle generation or to change the motion phase on-off commands, by fieldbus communication, are used to start/stop the cycle generation or to change the motion phase switch by position switch-over from actual to following motion phase occurs when the actual position reaches a programmed value switch-over from actual to following motion phase occurs after a fixed time, starting from the actual phase activation

## Reference generation types examples

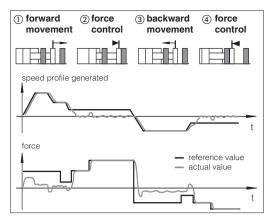
Absolute a target position reference signal is internally generated for each motion phase; maximum speed and acceleration can be set to obtain a smooth and precise position control

Relative as 'Absolute' but the target position corresponds to the actuator position plus a fixed quote internally set by software

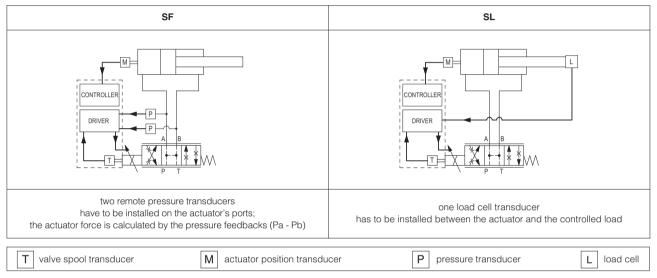
Time as 'Absolute' type but the controller automatically determines the speed and acceleration in order to reach the target absolute

position in the fixed time internally set by software

# 3 ALTERNATED POSITION / FORCE CONTROL


**SF** and **SL** options add the alternated force closed loop control to the actuator standard position control. Pressure or force remote transducers have to be installed on the actuator and interfaced to the valve driver, see below functional schemes.

The position/force controls are operated according to two separate reference signals and a dedicated algorithm automatically selects which control is active time by time.


The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability and vibrations.

Position control is active (see phase ① and ③ at side) when the actuator force is lower than the relevant reference signal - the valve controls the actuator position by closed-loop regulation.

Force control is active (see phase ② and ④ at side) when the actuator actual force, measured by remote transducers, grows up to the relevant reference signal - the controller reduces the valve's regulation in order to limit the actuator force; if the force tends to decrease under its reference signal, the position control returns active.



#### Alternated control configurations



# SF – position/force control

Adds force control to standard position control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on A and B hydraulic lines.

# SL - position/force control

Adds force control to standard position control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on the hydraulic actuator.

#### **General Notes:**

- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault
- Atos technical office is available for additional evaluations related to specific applications

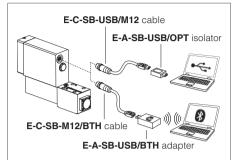
#### 4 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the Z-SW-\* programming software.

## 5 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos Z-SW programming software connected via USB port to the digital controller (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the controller is connected to the central machine unit via fieldbus.

**Z-SW-FULL** support: NP (USB)


BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT) EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

Note: Z-SW programming software supports valves with option SF, SL for alternated control



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection (see tech table **GS500**)





 $\Lambda$ 

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

## 6 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 7 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                           | Any position                                          |                                                       |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                       |                                                       |                                                       |  |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table                                                                                         | 150 years, see technical table P007                   |                                                       |  |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+60^{\circ}$ C                                                                    | <b>/PE</b> option = $-20^{\circ}$ C ÷ $+60^{\circ}$ C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+60^{\circ}$ C |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+70^{\circ}$ C                                                                    | <b>/PE</b> option = $-20^{\circ}$ C ÷ $+70^{\circ}$ C | <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C |  |  |  |
| Surface protection                     | Zinc coating with black passiv                                                                                         | ation - salt spray test (ISO 9227) :                  | > 200 h                                               |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" |                                                       |                                                       |  |  |  |
|                                        | RoHs Directive 2011/65/EU as REACH Regulation (EC) n°190                                                               | . ,                                                   |                                                       |  |  |  |

#### 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model                      | Valve model                            |      |                             |      |              |        | DLF    | łΖΑ   |                             |           |         |       |        | DLKZA      |       |        |           |           |        |        |
|----------------------------------|----------------------------------------|------|-----------------------------|------|--------------|--------|--------|-------|-----------------------------|-----------|---------|-------|--------|------------|-------|--------|-----------|-----------|--------|--------|
| Pressure limits                  | o [bor]                                |      | ports <b>P, A, B</b> = 350; |      |              |        |        |       | ports <b>P, A, B</b> = 315; |           |         |       |        |            |       |        |           |           |        |        |
| Pressure iiriik                  | s [bar]                                |      |                             |      | <b>T</b> = 2 | 10 (25 | 0 with | exter | nal dra                     | ain /Y    | )       |       |        | <b>T</b> = | 210 ( | (250 v | vith e    | xterna    | al dra | in /Y) |
| Spool type                       |                                        | L0   | L1                          | V1   | L3           | V3     | L5     | T5    | L7                          | <b>T7</b> | V7      | D7    | DT7    | L3         | ТЗ    | L7     | <b>T7</b> | <b>V7</b> | D7     | DT7    |
| Max flow [l/m                    | in]                                    |      |                             |      |              |        |        |       |                             |           |         |       |        |            |       |        |           |           |        |        |
|                                  | at $\Delta p = 30$ bar                 | 2,5  | 4,5                         | 8    | 9            | 13     | 1      | 8     |                             | 26        |         | 26    | ÷13    | 4          | 0     |        | 60        |           | 60-    | ÷33    |
| ∆p P-T                           | at $\Delta p = 70$ bar                 | 4    | 7                           | 12   | 14           | 20     | 2      | 8     |                             | 40        |         | 40    | ÷20    | 6          | 0     |        | 100       |           | 100    | ÷50    |
|                                  | max permissible flow                   | 5    | 9                           | 16   | 18           | 26     | 3      | 2     |                             | 50        |         | 50    | ÷28    | 7          | 0     |        | 100       |           | 100    | ÷50    |
| Δp max P-T                       | [bar]                                  | 120  | 120                         | 120  | 120          | 120    | 10     | 00    |                             | 100       |         | 1     | 00     | 9          | 0     |        | 70        |           | 7      | 70     |
| Leakage [cm <sup>3</sup> ,       | /min] at P = 100 bar (1)               | <100 | <200                        | <100 | <300         | <150   | <500   | <200  | <900                        | <200      | <200    | <700  | <200   | <1000      | <400  | <1500  | <400      | <400      | <1200  | <400   |
| Response tim                     | e <b>(2)</b> [ms]                      |      |                             |      |              |        | ≤      | 13    |                             |           |         |       |        |            |       |        | ≤ 20      |           |        |        |
| Hysteresis [% of max regulation] |                                        |      |                             |      |              |        | ≤ (    | ),1   |                             |           |         |       |        |            |       |        | ≤0,1      |           |        |        |
| Repeatibility                    | eatibility [% of max regulation] ± 0,1 |      |                             |      |              |        |        |       | ± 0, -                      | l         |         |       |        |            |       |        |           |           |        |        |
| Thermal drift                    |                                        |      |                             |      |              |        | zero   | point | displa                      | aceme     | ent < 1 | 1% at | ΔT = 4 | 40°C       |       |        |           |           |        |        |

- (1) referred to spool in neutral position and 50°C oil temperature
- (2) 0-100% step signal

# 9 ELECTRICAL CHARACTERISTICS

| Power supplies                                           | Nominal<br>Rectified and filtered  | : +24 VDC<br>: VRMS = 20 ÷ 32 VMAX                                                  | (ripple max 10 % VPP)                                 |                                                                       |  |  |  |
|----------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Max power consumption                                    | 35 W                               |                                                                                     |                                                       |                                                                       |  |  |  |
| Analog input signals                                     |                                    | /oltage: range $\pm 10$ VDC (24 VMAX tollerant)                                     |                                                       |                                                                       |  |  |  |
| Monitor outputs                                          | '                                  | Output range: voltage ±10 VDC @ max 5 mA current ±20 mA @ max 500 Ω load resistance |                                                       |                                                                       |  |  |  |
| Enable input                                             | Range: 0 ÷ 5 VDC (OFF              | state), 9 ÷ 24 VDC (ON s                                                            | state), 5 ÷ 9 VDC (not acc                            | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |  |
| Fault output                                             |                                    | VDC (ON state > [power<br>age not allowed (e.g. du                                  |                                                       | te < 1 V ) @ max 50 mA;                                               |  |  |  |
| Position transducers power supply                        |                                    | nA and +5 VDC @ max 1<br>A minimum load resistar                                    | 00 mA are software selecte 700 $\Omega$               | ctable;                                                               |  |  |  |
| Pressure/Force transducer power supply (only for SF, SL) | +24VDC @ max 100 m                 | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                         |                                                       |                                                                       |  |  |  |
| Alarms                                                   |                                    | ed/short circuit, cable b<br>r malfunctions, alarms h                               |                                                       | nce signal, over/under temperature,                                   |  |  |  |
| Insulation class                                         |                                    |                                                                                     | tures of the solenoid coi<br>982 must be taken into a |                                                                       |  |  |  |
| Protection degree to DIN EN60529                         | IP66 / IP67 with mating            | connectors                                                                          |                                                       |                                                                       |  |  |  |
| Duty factor                                              | Continuous rating (ED=             | =100%)                                                                              |                                                       |                                                                       |  |  |  |
| Tropicalization                                          | Tropical coating on ele            | ectronics PCB                                                                       |                                                       |                                                                       |  |  |  |
| Additional characteristics                               |                                    |                                                                                     | upply; 3 leds for diagnos                             | stic; spool position control by P.I.D. ower supply                    |  |  |  |
| Electromagnetic compatibility (EMC)                      | According to Directive             | 2014/30/UE (Immunity:                                                               | EN 61000-6-2; Emission                                | n: EN 61000-6-3)                                                      |  |  |  |
| Communication interface                                  | USB Atos ASCII coding              | CANopen<br>EN50325-4 + DS408                                                        | PROFIBUS DP<br>EN50170-2/IEC61158                     | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |  |
| Communication physical layer                             | not insulated<br>USB 2.0 + USB OTG | optical insulated<br>CAN ISO11898                                                   | optical insulated<br>RS485                            | Fast Ethernet, insulated 100 Base TX                                  |  |  |  |
|                                                          |                                    |                                                                                     |                                                       |                                                                       |  |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the controller energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid   | temperature      | FKM seals (/PE option) = -20°C | · +60°C, with HFC hydraulic fluid<br>÷ +80°C<br>C ÷ +60°C, with HFC hydraulic flu |                             |  |  |
|----------------------------|------------------|--------------------------------|-----------------------------------------------------------------------------------|-----------------------------|--|--|
| Recommended viscosity      |                  | 20÷100 mm²/s - max allowed ra  | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                   |                             |  |  |
| Max fluid                  | normal operation | ISO4406 class 18/16/13 NAS1    | see also filter section at                                                        |                             |  |  |
| contamination level        | longer life      | ISO4406 class 16/14/11 NAS1    | 638 class 5                                                                       | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid            |                  | Suitable seals type            | Classification                                                                    | Ref. Standard               |  |  |
| Mineral oils               |                  | NBR, FKM, HNBR                 | HL, HLP, HLPD, HVLP, HVLPD                                                        | DIN 51524                   |  |  |
| Flame resistant without wa | ter              | FKM                            | HFDU, HFDR                                                                        | ISO 10000                   |  |  |
| Flame resistant with water |                  | NBR, HNBR                      | HFC                                                                               | ISO 12922                   |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

#### 11 CERTIFICATION DATA

| Valve type                          |                    | DLHZA, DLKZA                                             |                      |             |                               |              |
|-------------------------------------|--------------------|----------------------------------------------------------|----------------------|-------------|-------------------------------|--------------|
| Certifications                      |                    | Multicertification Group II  ATEX IECEx                  |                      |             |                               |              |
| Solenoid certified code             |                    |                                                          | OZ                   | A-TEZ       |                               |              |
| Type examination certificate (1)    | ATEX: TUV IT       | • ATEX: TUV IT 18 ATEX 068 X • IECEx: IECEx TPS 19.0004X |                      |             |                               | 4X           |
| Method of protection                |                    | b IIC T6/T5/T4 (                                         | Gb<br>00°C/T135°C Db |             | T6/T5/T4 Gb<br>T85°C/T100°C/T | 135°C Db     |
| Temperature class                   | Т                  | 6                                                        | Т                    | 5           |                               | T4           |
| Surface temperature                 | ≤ 85               | 5 °C                                                     | ≤ 10                 | 00 °C       | ≤ '                           | 135 °C       |
| Ambient temperature (2)             | -40 ÷ +40 °C       |                                                          | -40 ÷                | +55 °C      | -40 -                         | ÷ +70 °C     |
| Applicable Standards                | EN 60079-0         | EN 60079-0 EN 60079-1                                    |                      | IEC 60079-0 | IEC 60079-1                   | IEC 60079-31 |
| Cable entrance: threaded connection | <b>M</b> = M20x1,5 |                                                          |                      |             |                               |              |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The controller and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

## 13 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800**Note: a Loctite sealant type 545, should be used on the cable gland entry threads

## 14 HYDRAULIC OPTIONS

- B = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 17.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

# 15 ELECTRONIC OPTIONS

- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.
  It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SF, SL

Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDc or ±20 mA.

# 16 POSSIBLE COMBINED OPTIONS

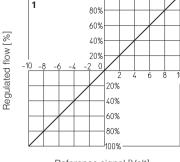
For SN: /BI, /BY, /IY

For SF, SL: /BI, /BY, /IY, /CI, /BCI, CIY, BCIY

# 17 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

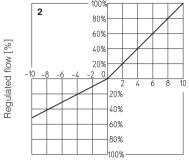
# 17.1 Regulation diagrams

1 = Linear spools L


2 = Differential - linear spool D7

3 = Differential non linear spool DT7

4 = Non linear spool T5 (only for DLHZA)

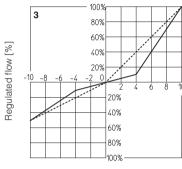

5 = Non linear spool, T3 (only for DLKZA) and T7

6 = Progressive spool V

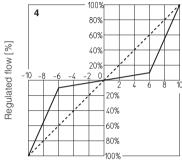


100%

Reference signal [Volt]




Reference signal [Volt]


T5 and T7 spool types are specific for fine low flow control in the range from 0 to 60% (T5) and 0 to 40% (T3 and T7) of max spool stroke.

The non linear characteristics of the spool is compensated by the electronic driver, so the final valve regulation is resulting linear respect the reference signal (dotted line).

DT7 has the same characteristic of T7 but it is specific for applications with cylinders with area ratio 1:2



Reference signal [Volt]

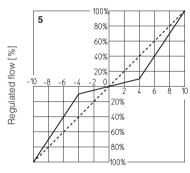


Reference signal [Volt]

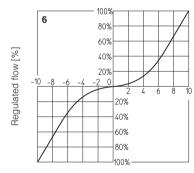
#### Note:

Hydraulic configuration vs. reference signal:

Standard:

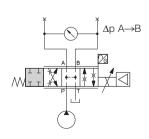

Reference signal 
$$0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} P \rightarrow A/B \rightarrow T$$

Reference signal 
$$\begin{array}{cc} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{array} \} P \rightarrow B / A \rightarrow T$$

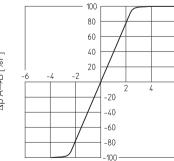

option /B:

option /B:  
Reference signal 
$$0 \div +10 \text{ V}$$
  
 $12 \div 20 \text{ mA}$   $P \rightarrow B / A \rightarrow T$ 

Reference signal 
$$\begin{pmatrix} 0 \div -10 \text{ V} \\ 12 \div 4 \text{ mA} \end{pmatrix}$$
  $P \rightarrow A / B \rightarrow T$ 




Reference signal [Volt]




Reference signal [Volt]

## 17.2 Pressure gain



Δp A→B [%P]

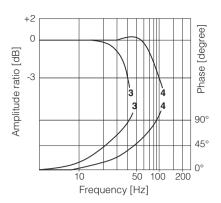


## 17.3 Bode diagrams

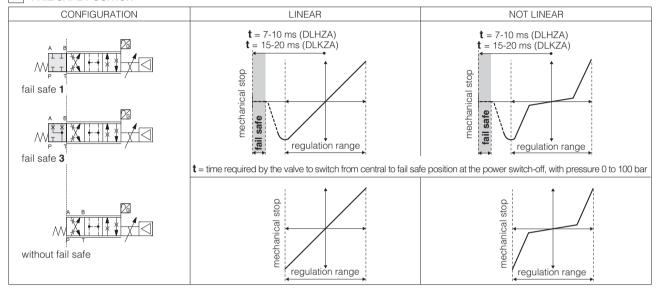
Stated at nominal hydraulic conditions

## DLHZA:

 $1 = \pm 100\%$  nominal stroke


 $2 = \pm$  5% nominal stroke

#### DLKZA:


 $3 = \pm 100\%$  nominal stroke

4 = ± 5% nominal stroke





# 18 FAIL SAFE POSITION



| Fail safe connections         |                                   | $P \rightarrow A$ | $P \rightarrow B$ | $A \rightarrow T$ | $B \to T$ |
|-------------------------------|-----------------------------------|-------------------|-------------------|-------------------|-----------|
| Leakage [cm³/min]             | Fail safe 1                       | 50                | 70                | 70                | 50        |
| at P = 100 bar (1)            | Fail safe 3                       | 50                | 70                | -                 | -         |
| Flow [I/min] (2) DLHZA        | low [I/min] (2) DLHZA Fail safe 3 |                   | -                 | 15÷30             | 10÷20     |
| Flow [I/min] <b>(2)</b> DLKZA | i ali sale s                      | =                 | -                 | 40÷60             | 25÷40     |

(1) Referred to spool in fail safe position and 50°C oil temperature

(2) Referred to spool in fail safe position at  $\Delta p = 35$  bar per edge

#### 19 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982).

#### 19.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 19.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for controller's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

The separate power supply for controller's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 19.3 Position reference input signal (P INPUT+)

Functionality of P\_INPUT+ signal (pin 10), depends on controller's reference mode, see section 2:

External analog reference generation (see 2.1): input is used as reference for the controller axis position closed loop.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

Fieldbus/internal reference generation (see 2.2): analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

#### 19.4 Pressure or force reference input signal (F\_INPUT+) - only for SF, SL

Functionality of F INPUT+ signal (pin 12), depends on selected controllers' reference mode and alternated control options, see section 3: SF, SL controls and external analog reference selected: input is used as reference for the controller pressure/force closed loop. Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. SN control or fieldbus/internal reference selected: analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

#### 19.5 Position monitor output signal (P\_MONITOR)

The controller generates an analog output signal (pin 9) proportional to the actual axis position; the monitor output signal can be software set to show other signals available in the controller (e.g. analog reference, fieldbus reference, position error, valve spool position). Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

#### 19.6 Pressure or force monitor output signal (F\_MONITOR) - only for SF, SL

The controller generates an analog output signal (pin 11) according to alternated pressure/force control option:

SN control: output signal is proportional to the actual valve spool position

SF, SL controls: output signal is proportional to the actual pressure/forcel applied to the cylinder's rod end

Monitor output signals can be software set to show other signals available in the controller (e.g. analog reference, force reference).

The output range and polarity are software selectable within the maximum range ±10 Vpc or ±20 mA.

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA.

# 19.7 Enable input signal (ENABLE)

To enable the controller, a 24VDC voltage has to be applied on pin 6.

When the Enable signal is set to zero the controller can be software set to perform one of the following actions:

- maintain the actuator actual position in close loop control
- move towards a predefined position in closed loop control and maintains the reached position (hold position)
- move forward or backward in open loop (only the valve's closed loop remain active)

# 19.8 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the controller (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC.

Fault status is not affected by the Enable input signal.

Fault output signal can be used as digital output by software selection.

#### 19.9 Position transducer input signal

A position transducer must be always directly connected to the controller. Select the correct controller execution depending on the desired transducer interface: digital SSI or Encoder (D execution), potentiometer or a generic transducer with analog interface (A execution). Position digital input signal is factory preset to binary SSI, it can be reconfigured via software selecting between binary/gray SSI and Encoder. Position analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to position transducer characteristics to select the transducer type according to specific application requirements (see 20.1).

# 19.10 Remote pressure/force transducer input signals - only for SF, SL

Analog remote pressure transducers or load cell can be directly connected to the controller.

Analog input signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see 20.2).

> FX610 AXIS & P/Q CONTROLS

## 20 ACTUATOR'S TRANSDUCER CHARACTERISTICS

#### 20.1 Position transducers

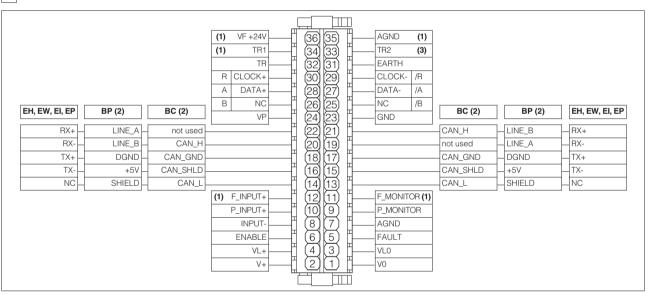
The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the controllers, depending to the system requirements: potentiometer or analog signal (A execution), SSI or Encoder (D execution). Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest performances.

Transducers with analog interface grant simple and cost effective solutions.

#### 20.2 Pressure/force transducers

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducer, see section 3. Alternated pressure/force controls require to install pressure transducers or load cell to measure the actual pressure/force values.

Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force controls (see tech table **GX800** for pressure transducers details). Load cell transducers allow the user to get high accuracy and precise regulations for alternated position/force control.


The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

20.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

|                      |               | Pressure/Force    |                        |                     |                   |  |
|----------------------|---------------|-------------------|------------------------|---------------------|-------------------|--|
| Execution            | A             |                   | 1                      | D                   |                   |  |
| Input type           | Potentiometer | Analog            | SSI (3)                | Incremental Encoder | Analog            |  |
| Power supply (1)     | ±10 VDC       | +24 VDC           | +5 VDC / +24 VDC       | +5 VDC / +24 VDC    | +24 VDC           |  |
| Controller Interface | ±10V          | 0 ÷ 10V 4 ÷ 20 mA | Serial SSI binary/gray | TTL 5Vpp - 150 KHz  | ±10 Vpc 4 ÷ 20 mA |  |
| Max speed            | 0,5 m/s       | 1 m/s             | 2 m/s                  | 2 m/s               | -                 |  |
| Max Resolution       | < 0.4 % FS    | < 0.2 % FS        | 1 μm                   | 1 μm (@ 0.15 m/s)   | < 0.4 % FS        |  |
| Linearity error (2)  | ± 0.1% FS     | < ±0.03% FS       | < ± 0.01 % FS          | < ± 0.001 % FS      | < ±0.25% FS       |  |
| Repeatability (2)    | ± 0.05% FS    | < ± 0.005% FS     | < ± 0.001 % FS         | < ± 0.001 % FS      | < ±0.1% FS        |  |

(1) Power supply provided by Atos controller (2) Percentage of total stroke (3) For Balluff BTL7 with SSI interface only special code SA433 is supported

#### 21 TERMINAL BOARD OVERVIEW



- (1) Connections available only for SF, SL
- (2) For BC and BP executions the fieldbus connections have an internal pass-through connection
- (3) Connection available only for SF

# 22 ELECTRONIC CONNECTIONS

## 22.1 Main connections signals

| CABLE<br>ENTRANCE | PIN | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                                                    | NOTES                                             |
|-------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1   | V0        | Power supply 0 Vpc                                                                                                                                                                                          | Gnd - power supply                                |
|                   | 2   | V+        | Power supply 24 Vbc                                                                                                                                                                                         | Input - power supply                              |
|                   | 3   | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                                                     | Gnd - power supply                                |
|                   | 4   | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                                                    | Input - power supply                              |
|                   | 5   | FAULT     | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                                                                                                   | Output - on/off signal                            |
|                   | 6   | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                                              | Input - on/off signal                             |
|                   | 7   | AGND      | Analog ground                                                                                                                                                                                               | Gnd - analog signal                               |
| Δ                 | 8   | INPUT-    | Negative reference input signal for P_INPUT+ and F_INPUT+                                                                                                                                                   | Input - analog signal                             |
| $\wedge$          | 9   | P_MONITOR | Position monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /I option                                         | Output - analog signal <b>Software selectable</b> |
|                   | 10  | P_INPUT+  | Position reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                                           | Input - analog signal <b>Software selectable</b>  |
|                   | 11  | F_MONITOR | Pressure/Force (SF, SL controls) or valve spool position (SN control) monitor output signal: ±10 Vpc / ±20mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Output - analog signal Software selectable        |
|                   | 12  | F_INPUT+  | Pressure/Force reference input signal (SF, SL controls): $\pm 10$ Vpc / $\pm 20$ mA max. range Defaults are: $\pm 10$ Vpc for standard and $4 \div 20$ mA for /I option                                     | Input - analog signal<br>Software selectable      |
|                   | 31  | EARTH     | Internally connected to driver housing                                                                                                                                                                      |                                                   |

# 22.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view                             | B |
|-------------------|-----|---------|--------------------------|-----------------------------------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 2                                     |   |
|                   | 2   | ID      | Identification           | [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ |   |
| B                 | 3   | GND_USB | Signal zero data line    |                                         |   |
|                   | 4   | D-      | Data line -              | 4 - (famels)                            |   |
|                   | 5   | D+      | Data line +              | (female)                                |   |

## 22.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>•</b> •        | 16  | CAN_SHLD | Shield                      |
| ( ) 1             | 18  | CAN_GND  | Signal zero data line       |
| <b>O</b> .        | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| ENTRANCE | PIN | SIGNAL              | TECHNICAL SPECIFICATIONS                          |
|----------|-----|---------------------|---------------------------------------------------|
| C2       | 13  | CAN_L               | Bus line (low)                                    |
|          | 15  | CAN_SHLD            | Shield                                            |
|          | 17  | CAN_GND             | Signal zero data line                             |
| <u> </u> | 19  | not used            | Pass-through connection (1)                       |
|          | 21  | CAN_H               | Bus line (high)                                   |
| C2       | 17  | CAN_GND<br>not used | Signal zero data line Pass-through connection (1) |

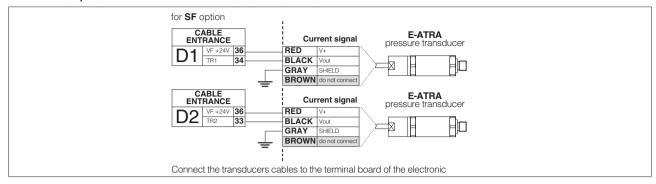
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 22.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>~</b> 4        | 16  | +5V    | Power supply                          |
| (;1               | 18  | DGND   | Data line and termination signal zero |
| <b>.</b>          | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
|                   | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 22.5 EH, EW, EI, EP fieldbus execution connections

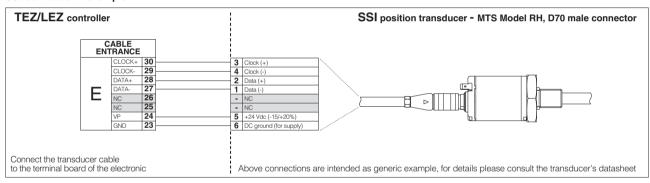

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| ( ) 1             | 18  | TX+    | Transmitter              |
| <b>O</b> .        | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (2)               | 17  | TX+    | Transmitter              |
|                   | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

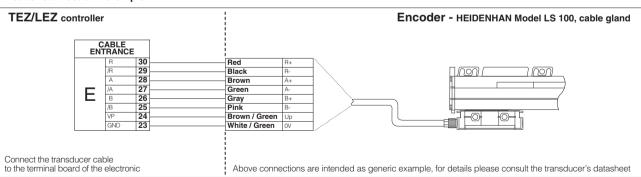
# 22.6 Remote pressure transducer connections - only for SF, SL

| CABLE<br>ENTRANCES | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS                                | NOTES                                            | SL - Single tr<br>Voltage | ansducer (1)<br>Current | SF - Double tr<br>Voltage | ansducers (1)<br>Current |
|--------------------|-----|---------|---------------------------------------------------------|--------------------------------------------------|---------------------------|-------------------------|---------------------------|--------------------------|
| D1                 | 33  | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal <b>Software selectable</b> | /                         | /                       | Connect                   | Connect                  |
| וטו                | 34  | TR1     | 1st signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal  Software selectable       | Connect                   | Connect                 | Connect                   | Connect                  |
| D2                 | 35  | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect                   | /                       | Connect                   | /                        |
|                    | 36  | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect                   | Connect                 | Connect                   | Connect                  |

#### E-ATRA remote pressure transducer connection - see tech table GX800



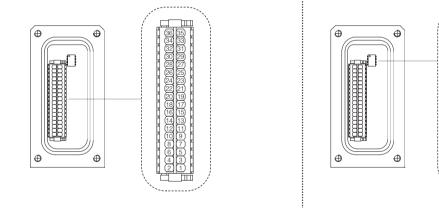

## 22.7 D execution - Digital position transducers connections


| CABLE    | PIN |        | SSI - default transduce                                 | <b>r</b> (1)                              | Encoder (1) |                                                         |                                           |  |
|----------|-----|--------|---------------------------------------------------------|-------------------------------------------|-------------|---------------------------------------------------------|-------------------------------------------|--|
| ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATION                                 | NOTES                                     | SIGNAL      | TECHNICAL SPECIFICATION                                 | NOTES                                     |  |
|          | 30  | CLOCK+ | Serial syncronous clock (+)                             |                                           | R           | Input channel R                                         |                                           |  |
|          | 29  | CLOCK- | Serial syncronous clock (-)                             | Input - digital signal                    | /R          | Input channel /R                                        |                                           |  |
|          | 28  | DATA+  | Serial position data (+)                                | iriput - digital signal                   | Α           | Input channel A                                         | Input - digital signal                    |  |
|          | 27  | DATA-  | Serial position data (-)                                |                                           | /A          | Input channel /A                                        |                                           |  |
|          | 26  | NC     | Not connect                                             | Do not connect                            | В           | Input channel B                                         |                                           |  |
|          | 25  | NC     | Not connect                                             | Do not connect                            | /B          | Input channel /B                                        |                                           |  |
| _        | 24  | VP     | Power supply:<br>+24Vbc , +5Vbc or OFF<br>(default OFF) | Output - power supply Software selectable | VP          | Power supply:<br>+24Vpc , +5Vpc or OFF<br>(default OFF) | Output - power supply Software selectable |  |
|          | 23  | GND    | Common gnd for transducer powerand signals              | Common gnd                                | GND         | Common gnd for transducer power and signals             | Common gnd                                |  |

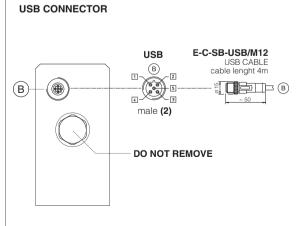
(1) Digital position transducer type is software selectable: Encoder or SSI, see 19.9

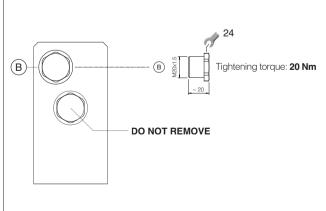
## SSI connection - example




## **Encoder connection - example**




## 22.8 A execution - Analog position transducers connector


| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATION                      | NOTES                                     |
|-------------------|-----|--------|----------------------------------------------|-------------------------------------------|
|                   | 32  | TR     | Signal transducer                            | Input - analog signal                     |
| E                 | 24  | VP     | Power supply:<br>+24Vpc or OFF (default OFF) | Output - power supply Software selectable |
|                   | 23  | GND    | Common gnd for transducer power and signals  | Common gnd                                |

# 23 CONNECTIONS LAYOUT **CABLE ENTRANCE OVERVIEW** BC. BP ΝP EH, EI, EW, EP all versions Cables entrance description: (A) main connections (B) (D1) (P) B USB connector always present (factory plugged) (D2) ©1) fieldbus (input) P © fieldbus (output) (D2) (D1) pressure transducer 1 pressure transducer 2 (E) position transducer (P) threaded plug (front) (rear) (rear) TERMINAL BOARD AND FIELDBUS TERMINATOR **FRONT** Remove the 4 screws of driver's rear cover to access terminal board and fieldbus terminator n°4 M6 Tightening torque 15 Nm RFAR WARNING: the above operation must be performed in a safety area Terminal board - see section 21 Fieldbus terminator only for BC and BP executions (1) BC - CANopen setting: Termination enabled OFF 2 💷 3 OFF 4 3 □ ON 4 **BP - PROFIBUS DP setting:** Termination enabled Switch









**METALLIC PROTECTION CAP** - supplied with the valves

(1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF

FX610

(2) Pin layout always referred to driver's view

343

# 23.1 Cable glands and threaded plug for SN - see tech table KX800

| Communication                                            | То | be ordere         | ed separat | tely                | Cable entrance                                                                                     |                                                                                          |
|----------------------------------------------------------|----|-------------------|------------|---------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |            | ed plug<br>entrance | overview                                                                                           | Notes                                                                                    |
| NP                                                       | 2  | A - E             | none       | none                | (P) (P) (P) (P) (A) (E) (A) (E) (A) (E) (A) (E) (A) (E) (A) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E | Cable entrance A, E are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | C1<br>A - E       | 1          | C2                  | PP P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                             | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | C1 - C2<br>A - E  | none       | none                |                                                                                                    | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |

# 23.2 Cable glands and threaded plug for ${\rm SL}$ - see tech table ${\rm KX800}$

| Communication                                            | То | be ordere              | ed separat | ely                  | Cable entrance                      |                                                                                              |
|----------------------------------------------------------|----|------------------------|------------|----------------------|-------------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance      |            | ed plug<br> entrance | overview                            | Notes                                                                                        |
| NP                                                       | 3  | D1<br>A - E            | none       | none                 | 5) P<br>P P<br>A E                  | Cable entrance A, E, D1 are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1<br>C1<br>A - E      | 1          | C2                   | (1) (2) (3) (2) (A) (E) (A) (E)     | Cable entrance A, E, C1, C2, D1 are open for costumers Cable entrance P are factory plugged  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1<br>C1 - C2<br>A - E | none       | none                 | 0) P 0) P<br>0) 22 0) 22<br>A E A E | Cable entrance A, E, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

# 23.3 Cable glands and threaded plug for SF - see tech table KX800

| Communication                                            | То | be ordere                   | ed separat | ely                 | Cable entrance                  |                                                                                          |
|----------------------------------------------------------|----|-----------------------------|------------|---------------------|---------------------------------|------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance           |            | ed plug<br>entrance | overview                        | Notes                                                                                    |
| NP                                                       | 4  | D1<br>D2<br>A - E           | none       | none                | 60 P<br>60 C<br>(A) E           | Cable entrance A, E, D1, D2 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 5  | D1 - D2<br>C1<br>A - E      | 1          | C2                  | 000<br>000<br>000<br>000<br>000 | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 6  | D1 - D2<br>C1 - C2<br>A - E | none       | none                | 000 000<br>000 000<br>00 000    | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |

#### 24 MAIN SOFTWARE PARAMETER SETTINGS

For a detailed descriptions of the available settings, wirings and installation procedures, please refer to the user manuals included in the Z-SW programming software:

**Z-MAN-RA-LEZ** - user manual for **TEZ** and **LEZ** with **SN** 

Z-MAN-RA-LEZ-S - user manual for TEZ and LEZ with SF, SL

#### 24.1 External reference and transducer parameters

Allow to configure the controller reference and transducer inputs, analog or digital, to match the specific application requirements:

- Scaling parameters define the correspondence of these signals with the specific actuator stroke or force to be controlled

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions
 - Homing parameters define the startup procedure to initialize incremental transducer (e.g. Encoder)

#### 24.2 PID control dynamics parameters

Allow to optimize and adapt the controller closed loop to the wide range of hydraulic system characteristics:

- PID parameters each part of the closed loop algorithm (proportional, integral, derivative, feed forward, fine positioning, etc) can be

modified to match the application requirements

# 24.3 Monitoring parameters

Allow to configure the controller monitoring function of the positioning error (difference between actual reference and feedback) and detects anomalous conditions:

- Monitoring parameters maximum allowed errors can be set for both static and dynamic positioning phases, and dedicated waiting times can

be set to delay the activation of the alarm condition and relevant reaction (see 24.4)

#### 24.4 Fault parameters

Allow to configure how the controller detects and reacts to alarm conditions:

- Diagnostics parameters define different conditions, threshold and delay time to detect alarm conditions

- Reaction parameters define different actions to be performed in case of alarm presence (stop at actual or preprogrammed position,

emergency forward/backward, controller disabling, etc.)

#### 24.5 Valve characteristics compensation

Allow to modify the valve regulation to match the actuator/system characteristics and to obtain the best overall performances:

- Valve parameters modify the standard valve regulation by means of deadband compensation, curve linearization and differentiated gain

for positive and negative regulation

#### 24.6 Motion phases parameters

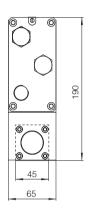
When the internal reference generation is active a pre-programmed cycle can be generated; start/stop/switch-over commands and reference generation types parameters can be set to design a customized sequence of motion phases adapted to the specific application requirements (see 2.2).

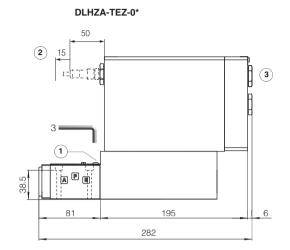
# 25 FASTENING BOLTS AND SEALS

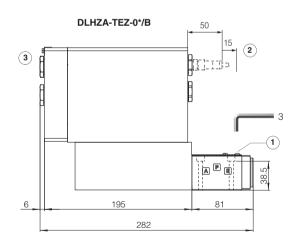
|   | DLHZA                                                                                                                       | DLKZA                                                                                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |

FX610

AXIS & P/Q CONTROLS


345


# **DLHZA-TEZ**


ISO 4401: 2005

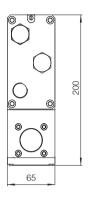
Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)

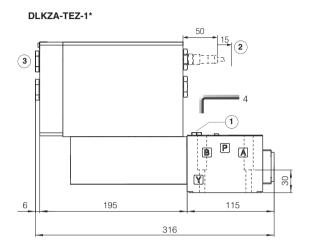
| Mass      | [kg] |
|-----------|------|
| DLHZA-TEZ | 7,2  |

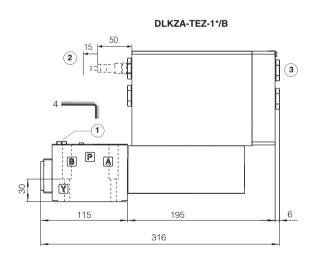







- 1 = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# **DLKZA-TEZ**


ISO 4401: 2000

Mounting surface: 4401-05-04-0-05 (see table P005) (for /Y surface 4401-05-05-0-05 without X port)

| Mass [kg] |   |  |
|-----------|---|--|
| DLKZA-TEZ | 9 |  |

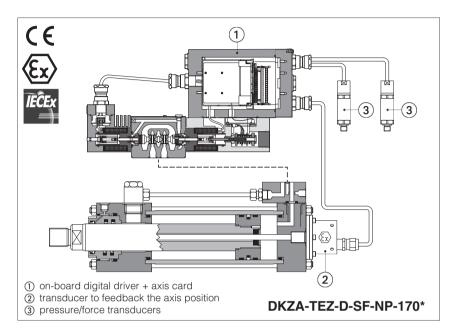






- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)

# 27 RELATED DOCUMENTATION


| X010  | Basics for electrohydraulics in hazardous environments                  | GS510 | Fieldbus                                      |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
| FX900 | Operating and manintenance information for ex-proof proportional valves | KX800 | Cable glands for ex-proof valves              |
| GS500 | Programming tools                                                       | P005  | Mounting surfaces for electrohydraulic valves |
|       |                                                                         |       |                                               |



# Ex-proof digital servoproportionals with on-board axis card

70 -

direct, with LVDT transducer and zero spool overlap - ATEX and IECEx

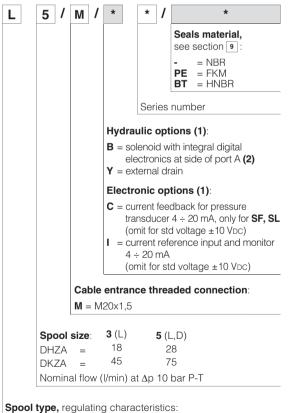


#### DHZA-TEZ. DKZA-TEZ

Ex-proof digital servoproportional valves equipped with on-board driver plus axis card, LVDT position transducer and zero spool overlap to perform the position control of any linear or rotative hydraulic actuator.

They are certified for safe operations in hazardous environments with potentially explosive atmosphere.

 Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D


The controlled actuator has to be equipped with integral or external ex-proof transducer (analog, potentiometer, SSI or Encoder) to feedback the axis position.

The valve can be operated by an external or internally generated reference position signal, see section 2.

Options SF, SL add the alternated pressure/force control to the basic position one, see section 3.

DHZA: Size: 06 -ISO 4401 Max flow: 60 l/min Max pressure: 350 bar DKZA: Size: 10 -ISO 4401 Max flow: 150 l/min Max pressure: 315 bar

# MODEL CODE - TEZ - D - SN **DHZA** NP 0 Ex-proof servoproportional directional valves, direct DHZA = size 06 **DKZA** = size 10 TEZ = on-board digital driver + axis card, one LVDT transducer Position transducer type: A = Analog (standard, potentiometer)D = Digital (SSI, Encoder) Alternated P/Q controls: **SF** = force control (2 pressure tranducers) SL = force control (1 load cell) Fieldbus interface, USB port always present: **NP** = Not Present **BC** = CANopen **EW** = POWERLINK **BP** = PROFIBUS DP **EI** = EtherNet/IP **EH** = EtherCAT **EP** = PROFINET RT/IRT Valve size ISO 4401: **0** = 06 **1** = 10



**D** = differential-progressive

P-A = Q, B-T = Q/2P-B = Q/2, A-T = Q

(1) For possible combined options, see section 15

Configuration: Standard

70 =

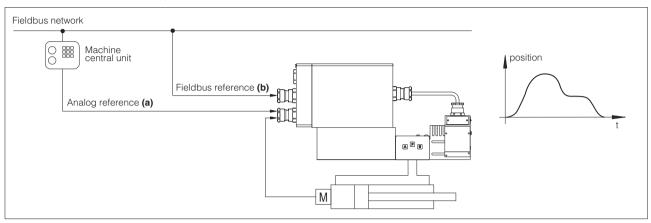
(2) In standard configuration the solenoid with on-board digital driver and position transducer are at side port B

Option /B

L = linear

#### 2 POSITION REFERENCE MODE

#### 2.1 External reference generation


Axis controller regulates in closed loop the actuator position according to an external reference position signal and to the position feedback from the actuator transducer.

The external reference signal can be software selected among:

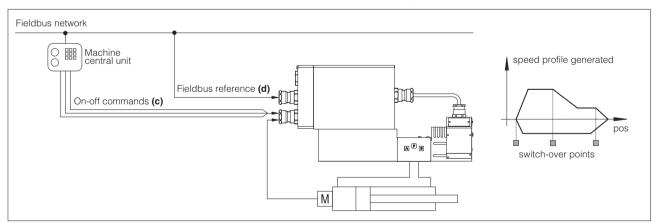
Analog reference (a) - the controller receives in real time the reference signal from the machine electronic central unit by means analog input on the terminal board

Fieldbus reference (b) - the controller receives in real time the reference signal from the machine electronic central unit by means digital fieldbus communication

For fieldbus communication details, please refer to the controller user manual.



#### 2.2 Internal reference generation


Axis controller regulates in closed loop the actuator position according to an internally generated reference position signal and to the position feedback from the actuator transducer.

The internal reference signal is generated by a pre-programmed cycle; only start, stop and switch-over commands are required from the machine electronic central unit by means:

- on-off commands (c)
- fieldbus commands (d)

Atos PC software allows to design a customized sequence of motion phases adapted to the specific application requirements: a range of predefined standard sequences are available in the Z-SW software.

Start/stop/switch-over commands and reference generation type can be set for each phase in order to realize an automatic cycle according to the application requests. Refer to the controller user manual for further details on commands and reference generation type



## Start / stop / switch-over commands examples

External digital input Switch by position Switch by time

on-off commands, on terminal board, are used to start/stop the cycle generation or to change the motion phase External fieldbus input on-off commands, by fieldbus communication, are used to start/stop the cycle generation or to change the motion phase switch-over from actual to following motion phase occurs when the actual position reaches a programmed value switch-over from actual to following motion phase occurs after a fixed time, starting from the actual phase activation

# Reference generation types examples

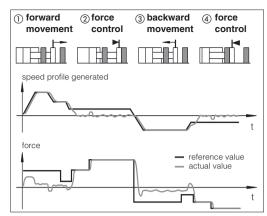
a target position reference signal is internally generated for each motion phase; maximum speed and acceleration can be set Absolute to obtain a smooth and precise position control

Relative as 'Absolute' but the target position corresponds to the actuator position plus a fixed quote internally set by software

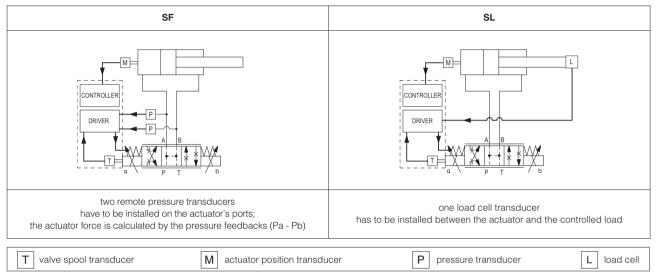
Time as 'Absolute' type but the controller automatically determines the speed and acceleration in order to reach the target absolute

position in the fixed time internally set by software

# 3 ALTERNATED POSITION / FORCE CONTROL


**SF** and **SL** options add the alternated force closed loop control to the actuator standard position control. Pressure or force remote transducers have to be installed on the actuator and interfaced to the valve driver, see below functional schemes.

The position/force controls are operated according to two separate reference signals and a dedicated algorithm automatically selects which control is active time by time.


The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability and vibrations.

Position control is active (see phase ① and ③ at side) when the actuator force is lower than the relevant reference signal - the valve controls the actuator position by closed-loop regulation.

Force control is active (see phase ② and ④ at side) when the actuator actual force, measured by remote transducers, grows up to the relevant reference signal - the controller reduces the valve's regulation in order to limit the actuator force; if the force tends to decrease under its reference signal, the position control returns active.



#### Alternated control configurations



## SF - position/force control

Adds force control to standard position control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on A and B hydraulic lines.

# SL - position/force control

Adds force control to standard position control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on the hydraulic actuator.

#### **General Notes:**

- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault
- Atos technical office is available for additional evaluations related to specific applications

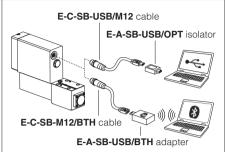
## 4 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the Z-SW-\* programming software.

## 5 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos Z-SW programming software connected via USB port to the digital controller (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the controller is connected to the central machine unit via fieldbus.

**Z-SW-FULL** support: NP (USB)


BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

Note: Z-SW programming software supports valves with option SF, SL for alternated control



**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection (see tech table **GS500**)





 $\bigwedge$ 

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

## 6 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 7 GENERAL CHARACTERISTICS

| Assembly position                                                                        | Any position                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401                                                   | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |
| MTTFd valves according to EN ISO 13849                                                   | 150 years, see technical table P007                                                                                                                                                                    |  |  |  |  |
| Ambient temperature range                                                                | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$               |  |  |  |  |
| Storage temperature range                                                                | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection                                                                       | Zinc coating with black passivation - salt spray test (ISO 9227) > 200 h                                                                                                                               |  |  |  |  |
| Compliance                                                                               | Explosion proof protection, see section 11 Flame proof enclosure "Ex d" Dust ignition protection by enclosure "Ex t"                                                                                   |  |  |  |  |
| RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |                                                                                                                                                                                                        |  |  |  |  |

# 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve mode             | )                  |                                                                                                           | DHZA                                          |                      | DKZA                                                                                                      |                                               |     |  |
|------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|--|
| Pressure limits [bar]  |                    | ports <b>P</b> , <b>A</b> , <b>B</b> = 350;<br><b>T</b> = 210 (250 with external drain /Y); <b>Y</b> = 10 |                                               |                      | ports <b>P</b> , <b>A</b> , <b>B</b> = 315;<br><b>T</b> = 210 (250 with external drain //); <b>Y</b> = 10 |                                               |     |  |
| Spool type             |                    | L3                                                                                                        | L5                                            | D5                   | L3                                                                                                        | L5                                            | D5  |  |
| Nominal flow [I/min]   |                    |                                                                                                           |                                               |                      |                                                                                                           |                                               |     |  |
| [l/min]                | at ∆p= 10 bar      | 18                                                                                                        | 28                                            | 28                   | 45                                                                                                        | 75                                            | 75  |  |
| Δρ Ρ-Τ                 | at ∆p= 30 bar      | 30                                                                                                        | 50                                            | 50                   | 80                                                                                                        | 130                                           | 130 |  |
|                        | x permissible flow | 40                                                                                                        | 60                                            | 60                   | 90                                                                                                        | 150                                           | 150 |  |
| Δp max P-T             | [bar]              | 70                                                                                                        | 50                                            | 50                   | 40                                                                                                        | 40                                            | 40  |  |
| Response time [ms] (1) |                    | ≤ 18                                                                                                      |                                               | ≤ 25                 |                                                                                                           |                                               |     |  |
| Leakage [cm³]          |                    | <500 (at P                                                                                                | <500 (at P = 100 bar); <1500 (at P = 350 bar) |                      |                                                                                                           | <800 (at P = 100 bar); <2500 (at P = 315 bar) |     |  |
| Hysteresis             |                    | ≤0,2 [% of max regulation]                                                                                |                                               |                      |                                                                                                           |                                               |     |  |
| Repeatability          |                    | ± 0,1 [% of max regulation]                                                                               |                                               |                      |                                                                                                           |                                               |     |  |
| Thermal dri            | ft                 |                                                                                                           |                                               | zero point displacem | ent < 1% at $\Delta T = 40$                                                                               | )°C                                           | ·   |  |

# 9 ELECTRICAL CHARACTERISTICS

| Power supplies                                           | Nominal : +24 VDC   Rectified and filtered : VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)                                                                |                                                       |                                                                 |                                                                       |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Max power consumption                                    | 35 W                                                                                                                                                  |                                                       |                                                                 |                                                                       |  |  |
| Analog input signals                                     | Voltage: range $\pm 10$ VDC (24 VMAX tollerant) Input impedance: Ri > $50$ k $\Omega$ Current: range $\pm 20$ mA Input impedance: Ri = $500$ $\Omega$ |                                                       |                                                                 |                                                                       |  |  |
| Monitor outputs                                          | '                                                                                                                                                     | oltage ±10 VDC @ ma<br>urrent ±20 mA @ ma             | $_{	ext{X}}$ 5 mA $_{	ext{X}}$ 500 $_{	ext{Q}}$ load resistance |                                                                       |  |  |
| Enable input                                             | Range: 0 ÷ 5 VDC (OFF                                                                                                                                 | state), 9 ÷ 24 VDC (ON s                              | state), 5 ÷ 9 VDC (not acc                                      | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |
| Fault output                                             |                                                                                                                                                       | VDC (ON state > [power<br>age not allowed (e.g. du    | 112                                                             | te < 1 V ) @ max 50 mA;                                               |  |  |
| Position transducers power supply                        |                                                                                                                                                       | nA and +5 VDC @ max 1<br>A minimum load resistar      | 00 mA are software selecte 700 $\Omega$                         | ctable;                                                               |  |  |
| Pressure/Force transducer power supply (only for SF, SL) | +24VDC @ max 100 mA (E-ATRA-7 see tech table <b>GX800</b> )                                                                                           |                                                       |                                                                 |                                                                       |  |  |
| Alarms                                                   |                                                                                                                                                       | ed/short circuit, cable b<br>r malfunctions, alarms h |                                                                 | nce signal, over/under temperature,                                   |  |  |
| Insulation class                                         | ' '                                                                                                                                                   | 0                                                     | tures of the solenoid coi<br>982 must be taken into a           | 7                                                                     |  |  |
| Protection degree to DIN EN60529                         | IP66 / IP67 with mating                                                                                                                               | connectors                                            |                                                                 |                                                                       |  |  |
| Duty factor                                              | Continuous rating (ED=                                                                                                                                | =100%)                                                |                                                                 |                                                                       |  |  |
| Tropicalization                                          | Tropical coating on ele                                                                                                                               | ectronics PCB                                         |                                                                 |                                                                       |  |  |
| Additional characteristics                               |                                                                                                                                                       |                                                       | upply; 3 leds for diagnos                                       | stic; spool position control by P.I.D. ower supply                    |  |  |
| Electromagnetic compatibility (EMC)                      | According to Directive                                                                                                                                | 2014/30/UE (Immunity:                                 | EN 61000-6-2; Emission                                          | n: EN 61000-6-3)                                                      |  |  |
| Communication interface                                  | USB Atos ASCII coding                                                                                                                                 | CANopen<br>EN50325-4 + DS408                          | PROFIBUS DP<br>EN50170-2/IEC61158                               | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |
| Communication physical layer                             | not insulated<br>USB 2.0 + USB OTG                                                                                                                    | optical insulated<br>CAN ISO11898                     | optical insulated<br>RS485                                      | Fast Ethernet, insulated<br>100 Base TX                               |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the controller energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | temperature      | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                                                 |                             |  |  |
|-------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|--|--|
| Recommended viscosity         |                  | 20÷100 mm²/s - max allowed ra                                                                                                                                                                                                                                                                                                          | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s |                             |  |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                                            | ISO4406 class 18/16/13 NAS1638 class 7          |                             |  |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                                            | 638 class 5                                     | www.atos.com or KTF catalog |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                                                                    | Classification                                  | Ref. Standard               |  |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD                      | DIN 51524                   |  |  |
| Flame resistant without water |                  | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                                         |                                                 | - ISO 12922                 |  |  |
| Flame resistant with water    |                  | NBR, HNBR                                                                                                                                                                                                                                                                                                                              | HFC                                             | 130 12922                   |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

## 11 CERTIFICATION DATA

| Valve type              |                       | DHZA, DKZA                                                                                                                                                   |                                         |              |                 |             |              |  |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------|-------------|--------------|--|
| Certifications          |                       |                                                                                                                                                              | Multicertification Group II  ATEX IECEx |              |                 |             |              |  |
| Solenoid certified co   | ode                   |                                                                                                                                                              |                                         | OZ           | A-TEZ           |             |              |  |
| Type examination co     | ertificate (1)        | ATEX: TUV IT 18 ATEX 068 X     IECEx: IECE                                                                                                                   |                                         |              | Ex TPS 19.0004X |             |              |  |
| Method of protection    | n                     | • ATEX 2014/34/EU Ex II 2G Ex db IIC T6/T5/T4 Gb Ex II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX Ex db IIC T6/T5/T4 Gb Ex tb IIIC T85°C/T100°C/T135°C Db |                                         |              | 35°C Db         |             |              |  |
| Temperature class       | Single solenoid valve | T6                                                                                                                                                           | -                                       | T5           |                 | T4          | -            |  |
| Temperature class       | Double solenoid valve | -                                                                                                                                                            | T4                                      |              | -               | -           | Т3           |  |
| Surface temperature     |                       | ≤ 85 °C                                                                                                                                                      | ≤ 135 °C                                | ≤ 10         | 00 °C           | ≤ 135 °C    | ≤ 200 °C     |  |
| Ambient temperature (2) |                       | -40 ÷ +40 °C                                                                                                                                                 |                                         | -40 ÷ +70 °C |                 |             |              |  |
| Applicable Standards    |                       | EN 60079-0                                                                                                                                                   | EN 60079-1                              | EN 60079-31  | IEC 60079-0     | IEC 60079-1 | IEC 60079-31 |  |
| Cable entrance: three   | eaded connection      | <b>M</b> = M20x1,5                                                                                                                                           |                                         |              |                 |             |              |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The controller and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> Grounding: section of external ground wire = 4 mm<sup>2</sup>

#### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Max ambient temperature [°C] Temperature class |        | Min. cable temperature [°C] |  |
|------------------------------|------------------------------------------------|--------|-----------------------------|--|
| 40 °C                        | T6                                             | 85 °C  | 80 °C                       |  |
| 55 °C                        | T5                                             | 100 °C | 90 °C                       |  |
| 70 °C                        | T4                                             | 135 °C | 110 °C                      |  |

# 13 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800 Note:** a Loctite sealant type 545, should be used on the cable gland entry threads

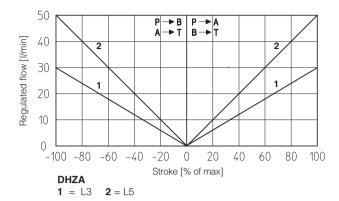
## 14 HYDRAULIC OPTIONS

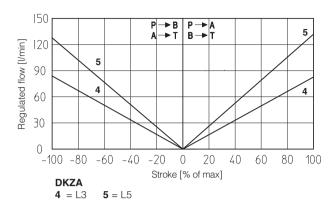
- **B** = Solenoid, integral electronics and position transducer at side of port A of the main stage. For hydraulic configuration vs reference signal, see 17.1
- Y = Option /Y is mandatory if the pressure in port T exceeds 210 bar

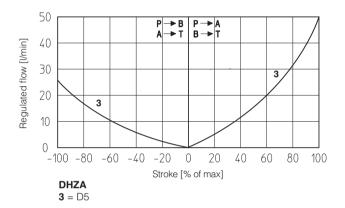
# 15 ELECTRONIC OPTIONS

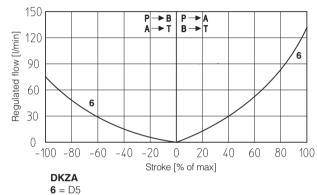
- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC.
  Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.
  It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SF, SL

Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA.


# 16 POSSIBLE COMBINED OPTIONS


For SN: /BI, /BY, /IY


For SF, SL: /BI, /BY, /IY, /CI, /BCI, CIY, BCIY


# 17 DIAGRAMS - based on mineral oil ISO VG 46 at 50 °C

# 17.1 Regulation diagrams (values measure at Δp 30 bar P-T)









## Note:

Hydraulic configuration vs. reference signal for configurations 71 and 73 (standard and option /B)

 $\text{Reference signal } \begin{array}{l} 0 \ \div \ +10 \ \text{V} \\ 12 \ \div \ 20 \ \text{mA} \end{array} \Big\} P \rightarrow \text{A / B} \rightarrow \text{T} \qquad \text{Reference signal } \begin{array}{l} 0 \ \div \ -10 \ \text{V} \\ 12 \ \div \ 4 \ \text{mA} \end{array} \Big\} P \rightarrow \text{B / A} \rightarrow \text{T}$ 

#### 18 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g., fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982).

#### 18.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

#### 18.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for controller's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700 µF/40 V capacitance to three phase rectifiers.

The separate power supply for controller's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

#### 18.3 Position reference input signal (P INPUT+)

Functionality of P\_INPUT+ signal (pin 10), depends on controller's reference mode, see section 2:

External analog reference generation (see 2.1); input is used as reference for the controller axis position closed loop.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

Fieldbus/internal reference generation (see 2.2); analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

#### 18.4 Pressure or force reference input signal (F\_INPUT+) - only for SF, SL

Functionality of F\_INPUT+ signal (pin 12), depends on selected controllers' reference mode and alternated control options, see section 3: SF, SL controls and external analog reference selected: input is used as reference for the controller pressure/force closed loop. Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. SN control or fieldbus/internal reference selected: analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

#### 18.5 Position monitor output signal (P\_MONITOR)

The controller generates an analog output signal (pin 9) proportional to the actual axis position; the monitor output signal can be software set to show other signals available in the controller (e.g. analog reference, fieldbus reference, position error, valve spool position). Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

# 18.6 Pressure or force monitor output signal (F\_MONITOR) - only for SF, SL

The controller generates an analog output signal (pin 11) according to alternated pressure/force control option:

SN control: output signal is proportional to the actual valve spool position

SF, SL controls: output signal is proportional to the actual pressure/forcel applied to the cylinder's rod end

Monitor output signals can be software set to show other signals available in the controller (e.g. analog reference, force reference).

The output range and polarity are software selectable within the maximum range ±10 VDC or ±20 mA.

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option. Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

# 18.7 Enable input signal (ENABLE)

To enable the controller, a 24VDC voltage has to be applied on pin 6.

When the Enable signal is set to zero the controller can be software set to perform one of the following actions:

- maintain the actuator actual position in close loop control
- move towards a predefined position in closed loop control and maintains the reached position (hold position)
- move forward or backward in open loop (only the valve's closed loop remain active)

## 18.8 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the controller (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC.

Fault status is not affected by the Enable input signal.

Fault output signal can be used as digital output by software selection.

#### 18.9 Position transducer input signal

A position transducer must be always directly connected to the controller. Select the correct controller execution depending on the desired transducer interface: digital SSI or Encoder (D execution), potentiometer or a generic transducer with analog interface (A execution). Position digital input signal is factory preset to binary SSI, it can be reconfigured via software selecting between binary/gray SSI and Encoder. Position analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to position transducer characteristics to select the transducer type according to specific application requirements (see 19.1).

# 18.10 Remote pressure/force transducer input signals - only for SF, SL

Analog remote pressure transducers or load cell can be directly connected to the controller.

Analog input signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see 19.2).

## 19 ACTUATOR'S TRANSDUCER CHARACTERISTICS

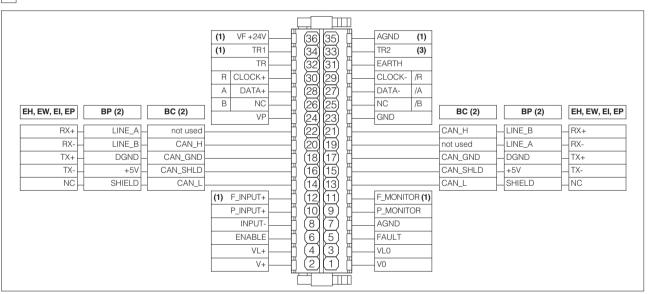
#### 19.1 Position transducers

The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the controllers, depending to the system requirements: potentiometer or analog signal (A execution), SSI or Encoder (D execution). Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest performances.

Transducers with analog interface grant simple and cost effective solutions.

#### 19.2 Pressure/force transducers

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducer, see section 3. Alternated pressure/force controls require to install pressure transducers or load cell to measure the actual pressure/force values. Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force controls (see tech table **GX800** for pressure transducers details). Load cell transducers allow the user to get high accuracy and precise regulations for alternated position/force control.


The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

19.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

|                      |                       | Pressure/Force    |                        |                     |                   |
|----------------------|-----------------------|-------------------|------------------------|---------------------|-------------------|
| Execution            | Execution A           |                   | I                      | ס                   | SF, SL            |
| Input type           | Potentiometer Analog  |                   | SSI (3)                | Incremental Encoder | Analog            |
| Power supply (1)     | ±10 VDC               | +24 VDC           | +5 VDC / +24 VDC       | +5 VDC / +24 VDC    | +24 VDC           |
| Controller Interface | ±10V                  | 0 ÷ 10V 4 ÷ 20 mA | Serial SSI binary/gray | TTL 5Vpp - 150 KHz  | ±10 Vpc 4 ÷ 20 mA |
| Max speed            | 0,5 m/s 1 m/s         |                   | 2 m/s                  | 2 m/s               | -                 |
| Max Resolution       | < 0.4 % FS < 0.2 % FS |                   | 1 μm                   | 1 μm (@ 0.15 m/s)   | < 0.4 % FS        |
| Linearity error (2)  | ± 0.1% FS             | < ±0.03% FS       | < ± 0.01 % FS          | < ± 0.001 % FS      | < ±0.25% FS       |
| Repeatability (2)    | ± 0.05% FS            | < ± 0.005% FS     | < ± 0.001 % FS         | < ± 0.001 % FS      | < ±0.1% FS        |

(1) Power supply provided by Atos controller (2) Percentage of total stroke (3) For Balluff BTL7 with SSI interface only special code SA433 is supported

## 20 TERMINAL BOARD OVERVIEW



FX620

- (1) Connections available only for SF, SL
- (2) For BC and BP executions the fieldbus connections have an internal pass-through connection
- (3) Connection available only for SF

AXIS & P/Q CONTROLS

357

# 21 ELECTRONIC CONNECTIONS

# 21.1 Main connections signals

| CABLE<br>ENTRANCE | PIN                  | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                                                    | NOTES                                             |
|-------------------|----------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                   | 1                    | V0        | Power supply 0 Vpc                                                                                                                                                                                          | Gnd - power supply                                |
|                   | 2                    | V+        | Power supply 24 VDC                                                                                                                                                                                         | Input - power supply                              |
|                   | 3                    | VL0       | Power supply 0 Vpc for driver's logic and communication                                                                                                                                                     | Gnd - power supply                                |
|                   | 4                    | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                                                    | Input - power supply                              |
|                   | 5                    | FAULT     | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                                                                                                   | Output - on/off signal                            |
|                   | 6                    | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                                              | Input - on/off signal                             |
|                   | 7 AGND Analog ground |           | Gnd - analog signal                                                                                                                                                                                         |                                                   |
| Δ                 | 8                    | INPUT-    | Negative reference input signal for P_INPUT+ and F_INPUT+                                                                                                                                                   | Input - analog signal                             |
| $\wedge$          | 9                    | P_MONITOR | Position monitor output signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range, referred to AGND Defaults are: $\pm 10$ Vpc for standard and $4 \div 20$ mA for /I option                                         | Output - analog signal <b>Software selectable</b> |
|                   | 10                   | P_INPUT+  | Position reference input signal: $\pm 10$ Vpc / $\pm 20$ mA maximum range<br>Defaults are: $\pm 10$ Vpc for standard and $4 \div 20$ mA for /I option                                                       | Input - analog signal <b>Software selectable</b>  |
|                   | 11                   | F_MONITOR | Pressure/Force (SF, SL controls) or valve spool position (SN control) monitor output signal: ±10 Vpc / ±20mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /l option | Output - analog signal Software selectable        |
|                   | 12                   | F_INPUT+  | Pressure/Force reference input signal (SF, SL controls): $\pm 10$ Vpc / $\pm 20$ mA max. range Defaults are: $\pm 10$ Vpc for standard and 4 $\div$ 20 mA for /l option                                     | Input - analog signal <b>Software selectable</b>  |
|                   | 31                   | EARTH     | Internally connected to driver housing                                                                                                                                                                      |                                                   |

# 21.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN                     | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view                               | B |  |  |
|-------------------|-------------------------|---------|--------------------------|-------------------------------------------|---|--|--|
|                   | 1                       | +5V_USB | Power supply             | 1 - 2                                     |   |  |  |
|                   | 2                       | ID      | Identification           | ( T )   S   S   S   S   S   S   S   S   S |   |  |  |
| B                 | 3                       | GND_USB | Signal zero data line    |                                           |   |  |  |
|                   | 4                       | D-      | Data line -              | (famala)                                  |   |  |  |
|                   | 5 <b>D+</b> Data line + |         | (female)                 |                                           |   |  |  |

## 21.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>~</b> 4        | 16  | CAN_SHLD | Shield                      |
| (;1               | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

|  | CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |  |
|--|-------------------|-----|----------|-----------------------------|--|
|  |                   | 13  | CAN_L    | Bus line (low)              |  |
|  |                   | 15  | CAN_SHLD | Shield                      |  |
|  | C2                | 17  | CAN_GND  | Signal zero data line       |  |
|  |                   | 19  | not used | Pass-through connection (1) |  |
|  |                   | 21  | CAN_H    | Bus line (high)             |  |

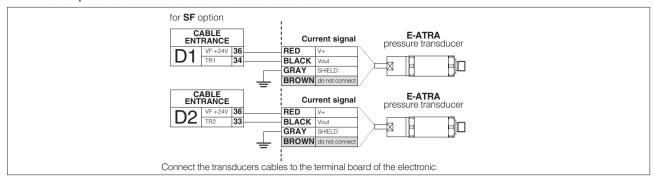
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 21.4 BP fieldbus execution connections

| CABLE PIN ENTRANCE |    | SIGNAL | TECHNICAL SPECIFICATIONS              |
|--------------------|----|--------|---------------------------------------|
|                    | 14 | SHIELD |                                       |
| <b>~</b> 4         | 16 | +5V    | Power supply                          |
| (;1                | 18 | DGND   | Data line and termination signal zero |
| •                  | 20 | LINE_B | Bus line (low)                        |
|                    | 22 | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |  |
|-------------------|-----|--------|---------------------------------------|--|
|                   | 13  | SHIELD |                                       |  |
|                   | 15  | +5V    | Power supply                          |  |
| C2                | 17  | DGND   | Data line and termination signal zero |  |
| <u> </u>          | 19  | LINE_A | Bus line (high)                       |  |
|                   | 21  | LINE_B | Bus line (low)                        |  |

# 21.5 EH, EW, EI, EP fieldbus execution connections

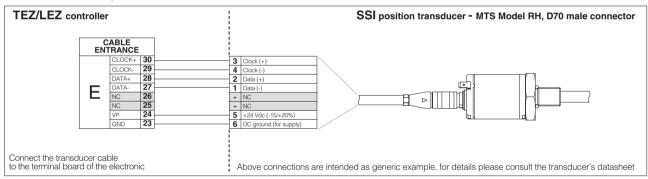

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| (;1               | 18  | TX+    | Transmitter              |
| <b>O</b> .        | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| C2                | 17  | TX+    | Transmitter              |
| <b>-</b>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

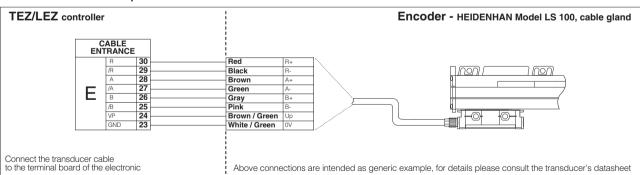
# 21.6 Remote pressure transducer connections - only for SF, SL

| CABLE<br>ENTRANCES | PIN | SIGNAL  |                                                         |                                                  | SL - Single tr<br>Voltage | ansducer (1)<br>Current | SF - Double transducers (1)<br>Voltage Current |         |
|--------------------|-----|---------|---------------------------------------------------------|--------------------------------------------------|---------------------------|-------------------------|------------------------------------------------|---------|
| D1                 | 33  | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal <b>Software selectable</b> | /                         | /                       | Connect                                        | Connect |
| וטו                | 34  | TR1     | 1st signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable        | Connect                   | Connect                 | Connect                                        | Connect |
| D2                 | 35  | AGND    | Common gnd for transducer power and signals             | Common gnd                                       | Connect                   | /                       | Connect                                        | /       |
|                    | 36  | VF +24V | Power supply +24Vpc                                     | Output - power supply                            | Connect                   | Connect                 | Connect                                        | Connect |

#### E-ATRA remote pressure transducer connection - see tech table GX800




# 21.7 D execution - Digital position transducers connections

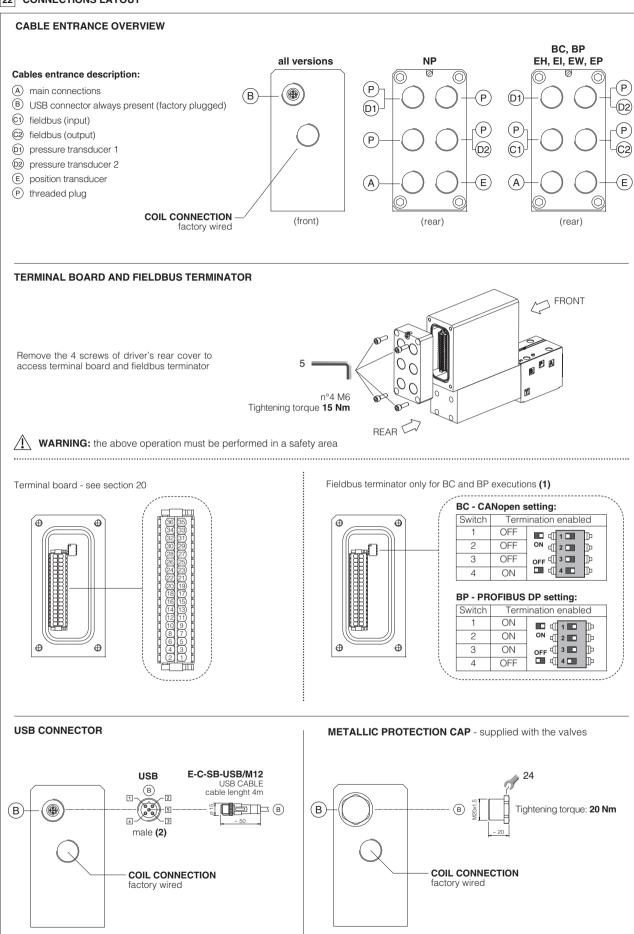

| CABLE<br>ENTRANCE | PIN  |        | SSI - default transduce                                | <b>r</b> (1)                              | Encoder (1) |                                                         |                                           |  |
|-------------------|------|--------|--------------------------------------------------------|-------------------------------------------|-------------|---------------------------------------------------------|-------------------------------------------|--|
| ENTRANCE          | FIIN | SIGNAL | TECHNICAL SPECIFICATION                                | NOTES                                     | SIGNAL      | TECHNICAL SPECIFICATION                                 | NOTES                                     |  |
|                   | 30   | CLOCK+ | Serial syncronous clock (+)                            |                                           | R           | Input channel R                                         |                                           |  |
|                   | 29   | CLOCK- | Serial syncronous clock (-)                            | Input - digital signal                    | /R          | Input channel /R                                        |                                           |  |
|                   | 28   | DATA+  | Serial position data (+)                               | iriput - digital signal                   | Α           | Input channel A                                         | Input - digital signal                    |  |
|                   | 27   | DATA-  | Serial position data (-)                               |                                           | /A          | Input channel /A                                        |                                           |  |
|                   | 26   | NC     | Not connect                                            | Do not connect                            | В           | Input channel B                                         |                                           |  |
|                   | 25   | NC     | Not connect                                            | Do not connect                            | /B          | Input channel /B                                        |                                           |  |
|                   | 24   | VP     | Power supply:<br>+24Vpc, +5Vpc or OFF<br>(default OFF) | Output - power supply Software selectable | VP          | Power supply:<br>+24Vpc , +5Vpc or OFF<br>(default OFF) | Output - power supply Software selectable |  |
|                   | 23   | GND    | Common gnd for transducer powerand signals             | Common gnd                                | GND         | Common gnd for transducer power and signals             | Common gnd                                |  |

<sup>(1)</sup> Digital position transducer type is software selectable: Encoder or SSI, see 18.9

# SSI connection - example



## **Encoder connection - example**




## 21.8 A execution - Analog position transducers connector

| CABLE<br>ENTRANCE | PIN           | SIGNAL | TECHNICAL SPECIFICATION                      | NOTES                                     |
|-------------------|---------------|--------|----------------------------------------------|-------------------------------------------|
|                   | 32            | TR     | Signal transducer                            | Input - analog signal                     |
| E                 | 24            | VP     | Power supply:<br>+24Vpc or OFF (default OFF) | Output - power supply Software selectable |
|                   | 23 <b>GND</b> |        | Common gnd for transducer power and signals  | Common gnd                                |

FX620

359



- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 22.1 Cable glands and threaded plug for $\ensuremath{\text{SN}}$ - see tech table $\ensuremath{\text{KX800}}$

| Communication                                            | То | be ordere         | d separat | ely                  | Cable entrance                                                               |                                                                                          |
|----------------------------------------------------------|----|-------------------|-----------|----------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |           | ed plug<br> entrance | overview                                                                     | Notes                                                                                    |
| NP                                                       | 2  | A - E             | none      | none                 | (P)                                      | Cable entrance A, E are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | C1<br>A - E       | 1         | C2                   | PP P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | C1 - C2<br>A - E  | none      | none                 | PP PP (3) (3) (3) (4) (4) (5) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6 | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |

# 22.2 Cable glands and threaded plug for SL - see tech table KX800

| Communication                                            | То | be ordere              | d separat | ely                 | Cable entrance                                                                         |                                                                                              |
|----------------------------------------------------------|----|------------------------|-----------|---------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance      |           | ed plug<br>entrance | overview                                                                               | Notes                                                                                        |
| NP                                                       | 3  | D1<br>A - E            | none      | none                | 61 P<br>P P<br>A E                                                                     | Cable entrance A, E, D1 are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1<br>C1<br>A - E      | 1         | C2                  | (1) (2) (3) (2) (4) (5) (2) (4) (5) (2) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6 | Cable entrance A, E, C1, C2, D1 are open for costumers Cable entrance P are factory plugged  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1<br>C1 - C2<br>A - E | none      | none                |                                                                                        | Cable entrance A, E, C1, C2, D1 are open for costumers  Cable entrance P are factory plugged |

# 22.3 Cable glands and threaded plug for SF - see tech table KX800

| Communication                                            | To be ordered separately |                             |                                   | ely  | Cable entrance                   | Notes                                                                                    |  |
|----------------------------------------------------------|--------------------------|-----------------------------|-----------------------------------|------|----------------------------------|------------------------------------------------------------------------------------------|--|
| interfaces                                               | Cable gland              |                             | Threaded plug quantity   entrance |      | overview                         |                                                                                          |  |
| NP                                                       | 4                        | D1<br>D2<br>A - E           | none                              | none | 60 (P)<br>(P) (P)<br>(A) (E)     | Cable entrance A, E, D1, D2 are open for costumers  Cable entrance P are factory plugged |  |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 5                        | D1 - D2<br>C1<br>A - E      | 1                                 | C2   | 99<br>99<br>99<br>90<br>40<br>40 | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |  |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 6                        | D1 - D2<br>C1 - C2<br>A - E | none                              | none | 000 000<br>000 000<br>AE AE      | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |  |

#### 23 MAIN SOFTWARE PARAMETER SETTINGS

For a detailed descriptions of the available settings, wirings and installation procedures, please refer to the user manuals included in the Z-SW programming software:

Z-MAN-RA-LEZ - user manual for TEZ and LEZ with SN Z-MAN-RA-LEZ-S - user manual for TEZ and LEZ with SF, SL

#### 23.1 External reference and transducer parameters

Allow to configure the controller reference and transducer inputs, analog or digital, to match the specific application requirements:

- Scaling parameters define the correspondence of these signals with the specific actuator stroke or force to be controlled

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions
 - Homing parameters define the startup procedure to initialize incremental transducer (e.g. Encoder)

#### 23.2 PID control dynamics parameters

Allow to optimize and adapt the controller closed loop to the wide range of hydraulic system characteristics:

- PID parameters each part of the closed loop algorithm (proportional, integral, derivative, feed forward, fine positioning, etc) can be

modified to match the application requirements

#### 23.3 Monitoring parameters

Allow to configure the controller monitoring function of the positioning error (difference between actual reference and feedback) and detects anomalous conditions:

- Monitoring parameters maximum allowed errors can be set for both static and dynamic positioning phases, and dedicated waiting times can

be set to delay the activation of the alarm condition and relevant reaction (see 23.4)

#### 23.4 Fault parameters

Allow to configure how the controller detects and reacts to alarm conditions:

- Diagnostics parameters define different conditions, threshold and delay time to detect alarm conditions

- Reaction parameters define different actions to be performed in case of alarm presence (stop at actual or preprogrammed position,

emergency forward/backward, controller disabling, etc.)

#### 23.5 Valve characteristics compensation

Allow to modify the valve regulation to match the actuator/system characteristics and to obtain the best overall performances:

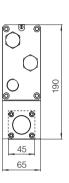
- Valve parameters modify the standard valve regulation by means of deadband compensation, curve linearization and differentiated gain

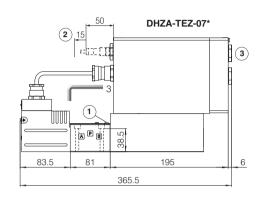
for positive and negative regulation

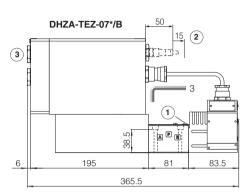
## 23.6 Motion phases parameters

When the internal reference generation is active a pre-programmed cycle can be generated; start/stop/switch-over commands and reference generation types parameters can be set to design a customized sequence of motion phases adapted to the specific application requirements (see 2.2).

## 24 FASTENING BOLTS AND SEALS


|   | DHZA                                                                                                                        | DKZA                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | Fastening bolts: 4 socket head screws M5x50 class 12.9 Tightening torque = 8 Nm                                             | Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm                                           |
| 0 | Seals: 4 OR 108; Diameter of ports A, B, P, T: Ø 7,5 mm (max) 1 OR 2025 Diameter of port Y: Ø = 3,2 mm (only for /Y option) | Seals: 5 OR 2050; Diameter of ports A, B, P, T: Ø 11,2 mm (max) 1 OR 108 Diameter of port Y: Ø = 5 mm (only for /Y option) |


# **DHZA-TEZ**

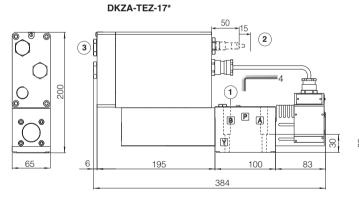

ISO 4401: 2005

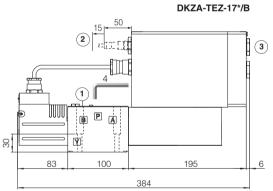
Mounting surface: 4401-03-02-0-05 (see table P005) (for /Y surface: 4401-03-03-0-05 without port X)

| Mass [kg]   |     |  |  |  |
|-------------|-----|--|--|--|
| DHZA-TEZ-07 | 8,9 |  |  |  |









# **DKZA-TEZ**

ISO 4401: 2005

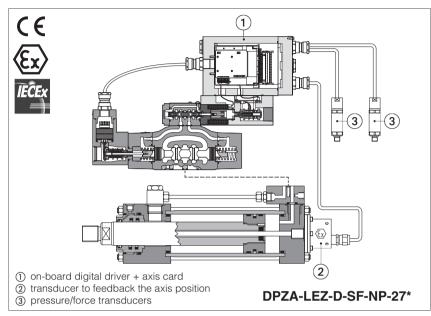
Mounting surface: 4401-05-04-0-05 (see table P005) (for /Y surface: 4401-05-05-0-05 without port X)

| Mass [kg]   |      |  |  |  |  |
|-------------|------|--|--|--|--|
| DKZA-TEZ-17 | 10,7 |  |  |  |  |





- (1) = Air bleed off
- (2) = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# 26 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS510 | Fieldbus                                      |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
| FX900 | Operating and manintenance information for ex-proof proportional valves | KX800 | Cable glands for ex-proof valves              |
| GS500 | Programming tools                                                       | P005  | Mounting surfaces for electrohydraulic valves |
|       |                                                                         |       |                                               |



# Ex-proof digital servoproportionals with on-board axis card

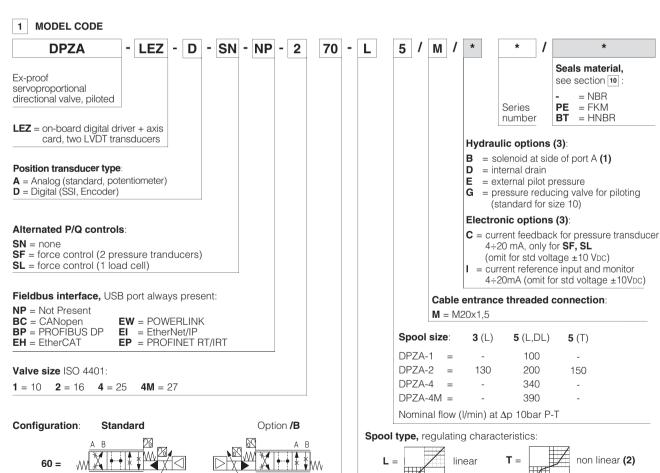
piloted, with two LVDT transducers and zero spool overlap - ATEX and IECEx



#### **DPZA-LEZ**

Ex-proof digital servoproportional valves equipped with on-board driver plus axis card, two LVDT position transducers (pilot valve and main stage) and zero spool overlap to perform the position control of any linear or rotative hydraulic actuator.

They are certified for safe operations in hazardous environments with potentially explosive atmosphere.


#### Multicertification ATEX and IECEx for gas group II 2G and dust category II 2D

The controlled actuator has to be equipped with integral or external ex-proof transducer (analog, potentiometer, SSI or Encoder) to feedback the axis position.

The valve can be operated by an external or internally generated reference position signal, see section  $[\mathbf{z}]$ .

Options SF, SL add the alternated pressure/force control to the basic position one, see section 3.

Size: **10** ÷ **27** ISO 4401 Max flow: **180** ÷ **800 l/min** Max pressure: **350 bar** 



(1) In standard configuration the solenoid with on-board digital driver and position transducer are at side A of main stage (side B of pilot valve)

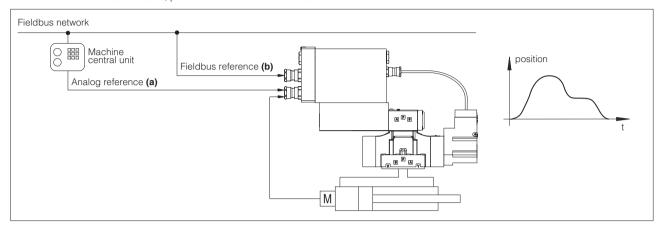
FX630

- (2) Only for configuration 70
- (3) For possible combined options consult Atos technical office

differential-linear P-A = Q, B-T = Q/2 P-B = Q/2, A-T = Q

# 2 POSITION REFERENCE MODE

# 2.1 External reference generation


Axis controller regulates in closed loop the actuator position according to an external reference position signal and to the position feedback from the actuator transducer.

The external reference signal can be software selected among:

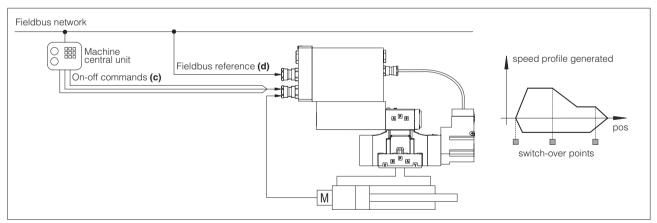
Analog reference (a) - the controller receives in real time the reference signal from the machine electronic central unit by means analog input on the terminal board.

Fieldbus reference (b) - the controller receives in real time the reference signal from the machine electronic central unit by means digital fieldbus communication.

For fieldbus communication details, please refer to the controller user manual.



# 2.2 Internal reference generation


Axis controller regulates in closed loop the actuator position according to an internally generated reference position signal and to the position feedback from the actuator transducer.

The internal reference signal is generated by a pre-programmed cycle; only start, stop and switch-over commands are required from the machine electronic central unit by means:

- on-off commands (c)
- fieldbus commands (d)

Atos PC software allows to design a customized sequence of motion phases adapted to the specific application requirements: a range of predefined standard sequences are available in the Z-SW software.

Start/stop/switch-over commands and reference generation type can be set for each phase in order to realize an automatic cycle according to the application requests. Refer to the controller user manual for further details on commands and reference generation type.



# Start / stop / switch-over commands examples

External digital input on-off commands, on terminal board, are used to start/stop the cycle generation or to change the motion phase external fieldbus input on-off commands, by fieldbus communication, are used to start/stop the cycle generation or to change the motion phase exited by position switch-over from actual to following motion phase occurs when the actual position reaches a programmed value switch-over from actual to following motion phase occurs after a fixed time, starting from the actual phase activation

# Reference generation types examples

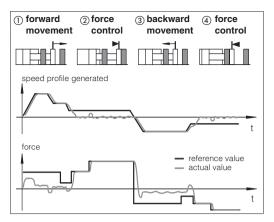
Absolute a target position reference signal is internally generated for each motion phase; maximum speed and acceleration can be set to obtain a smooth and precise position control

Relative as 'Absolute' but the target position corresponds to the actuator position plus a fixed quote internally set by software

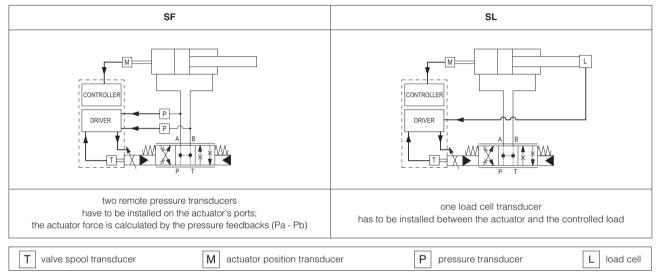
Time as 'Absolute' type but the controller automatically determines the speed and acceleration in order to reach the target absolute

position in the fixed time internally set by software

# 3 ALTERNATED POSITION / FORCE CONTROL


**SF** and **SL** options add the alternated force closed loop control to the actuator standard position control. Pressure or force remote transducers have to be installed on the actuator and interfaced to the valve driver, see below functional schemes.

The position/force controls are operated according to two separate reference signals and a dedicated algorithm automatically selects which control is active time by time.


The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability and vibrations.

Position control is active (see phase ① and ③ at side) when the actuator force is lower than the relevant reference signal - the valve controls the actuator position by closed-loop regulation.

Force control is active (see phase ② and ④ at side) when the actuator actual force, measured by remote transducers, grows up to the relevant reference signal - the controller reduces the valve's regulation in order to limit the actuator force; if the force tends to decrease under its reference signal, the position control returns active.



# Alternated control configurations



# SF - position/force control

Adds force control to standard position control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on A and B hydraulic lines.

# SL - position/force control

Adds force control to standard position control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on the hydraulic actuator.

# **General Notes:**

- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault
- Atos technical office is available for additional evaluations related to specific applications

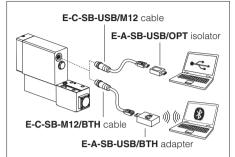
# 4 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table **FX900** and in the user manuals included in the Z-SW-\* programming software.

# 5 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos Z-SW programming software connected via USB port to the digital controller (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the controller is connected to the central machine unit via fieldbus.

**Z-SW-FULL** support: NP (USB)


BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

Note: Z-SW programming software supports valves with option SF, SL for alternated control



**WARNING:** drivers **USB** port is not isolated! For E-C-SB-USB/M12 cable, the use **\( \)** of isolator adapter is highly recommended for PC protection (see tech table **GS500**)





 $\Lambda$ 

WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

# 6 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These executions allow to operate the valves through fieldbus or analog signals available on the terminal board.

# 7 GENERAL CHARACTERISTICS

| Assembly position                      | Any position                                                                                                                                                   |       |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                               |       |  |  |
| MTTFd valves according to EN ISO 13849 | 150 years, see technical table P007                                                                                                                            |       |  |  |
| Ambient temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C                                                                                                       |       |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ | +70°C |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (ISO 9227) > 200 h                                                                                       |       |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                         |       |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                    |       |  |  |

# 8 HYDRAULIC CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

| Valve model          |                             | DPZA-*-1                    | DPZA-*-2      |                            | DPZA-*-4      | DPZA-*-4M                     |          |
|----------------------|-----------------------------|-----------------------------|---------------|----------------------------|---------------|-------------------------------|----------|
| Pressure limits      | [bar]                       | p                           | orts P, A, B, | <b>X</b> = 350; <b>T</b> = | = 250 (10 for | option /D); $\mathbf{Y} = 10$ | );       |
| Spool type           |                             | L5, DL5 L3 L5, DL5 T5 L5, D |               |                            | DL5           |                               |          |
| Nominal flow [l/min] |                             |                             |               |                            |               |                               |          |
|                      | $\Delta p = 10 \text{ bar}$ | 100                         | 130           | 200                        | 150           | 340                           | 390      |
| Δρ Ρ-Τ               | $\Delta p = 30 \text{ bar}$ | 160                         | 220           | 350                        | 260           | 590                           | 670      |
|                      | Max permissible flow        | 180                         | 320           | 440                        | 360           | 680                           | 800      |
| Δp max P-T           | [bar]                       | 50                          | 60            | 60                         | 60            | 60                            | 60       |
| Piloting pressure    | [bar]                       | min. =                      | 25; max =     | 350 (option /G             | advisable fo  | or pilot pressure > 2         | 100 bar) |
| Piloting volume      | [cm <sup>3</sup> ]          | 1,4                         |               | 3,7                        |               | 9,0                           | 11,3     |
| Piloting flow (1)    | [l/min]                     | 1,7                         |               | 3,7                        |               | 6,8                           | 8        |
| Leakage              | Pilot [cm³/min]             | 100/300                     |               | 150/450                    |               | 200/600                       | 200/600  |
| (2)                  | Main stage [I/min]          | 0,4/1,2                     |               | 0,6/2,5                    |               | 1,0/4,0                       | 1,0/4,0  |
| Response time (1)    | [ms]                        | ≤ 30                        |               | ≤ 30                       |               | ≤ 35                          | ≤ 40     |
| Hysteresis           |                             | ≤ 0,1 [% of max regulation] |               |                            |               |                               |          |
| Repeatability        |                             |                             |               | ± 0,1 [% o                 | max regulat   | ion]                          |          |

(1) 0 ÷100 % step signal and pilot pressure 100 bar

(2) at P = 100/350 bar

# 9 ELECTRICAL CHARACTERISTICS

| Power supplies                                           | 1.1011111101                                                                                                                        | : $+24 \text{ VDC}$<br>: $VRMS = 20 \div 32 \text{ VMAX}$                                                                            | (ripple max 10 % VPP)                                 |                                                                       |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Max power consumption                                    | 35 W                                                                                                                                |                                                                                                                                      |                                                       |                                                                       |  |  |
| Analog input signals                                     |                                                                                                                                     | Voltage: range $\pm 10$ VDC (24 VMAX tollerant) Input impedance: Ri > 50 kΩ Current: range $\pm 20$ mA Input impedance: Ri = $500$ Ω |                                                       |                                                                       |  |  |
| Monitor outputs                                          | '                                                                                                                                   | oltage ±10 VDC @ ma<br>urrent ±20 mA @ ma                                                                                            | x 5 mA x 500 $\Omega$ load resistance                 |                                                                       |  |  |
| Enable input                                             | Range: 0 ÷ 5 VDC (OFF                                                                                                               | state), 9 ÷ 24 VDC (ON s                                                                                                             | state), 5 ÷ 9 VDC (not acc                            | epted); Input impedance: Ri > 10 k $\Omega$                           |  |  |
| Fault output                                             |                                                                                                                                     | VDC (ON state > [poweringe not allowed (e.g. du                                                                                      |                                                       | te < 1 V ) @ max 50 mA;                                               |  |  |
| Position transducers power supply                        | +24 VDC @ max 100 mA and +5 VDC @ max 100 mA are software selectable; $\pm$ 10 VDC @ max 14 mA minimum load resistance 700 $\Omega$ |                                                                                                                                      |                                                       |                                                                       |  |  |
| Pressure/Force transducer power supply (only for SF, SL) | +24VDC @ max 100 m                                                                                                                  | A (E-ATRA-7 see tech ta                                                                                                              | ble <b>GX800</b> )                                    |                                                                       |  |  |
| Alarms                                                   |                                                                                                                                     | ed/short circuit, cable b<br>r malfunctions, alarms h                                                                                |                                                       | nce signal, over/under temperature,                                   |  |  |
| Insulation class                                         |                                                                                                                                     |                                                                                                                                      | tures of the solenoid coi<br>982 must be taken into a |                                                                       |  |  |
| Protection degree to DIN EN60529                         | IP66 / IP67 with mating                                                                                                             | connectors                                                                                                                           |                                                       |                                                                       |  |  |
| Duty factor                                              | Continuous rating (ED=                                                                                                              | =100%)                                                                                                                               |                                                       |                                                                       |  |  |
| Tropicalization                                          | Tropical coating on ele                                                                                                             | ectronics PCB                                                                                                                        |                                                       |                                                                       |  |  |
| Additional characteristics                               | Short circuit protection with rapid solenoid sw                                                                                     | n of solenoid's current si<br>itching; protection agai                                                                               | upply; 3 leds for diagnos                             | stic; spool position control by P.I.D. ower supply                    |  |  |
| Electromagnetic compatibility (EMC)                      | According to Directive                                                                                                              | 2014/30/UE (Immunity:                                                                                                                | EN 61000-6-2; Emission                                | n: EN 61000-6-3)                                                      |  |  |
| Communication interface                                  | USB Atos ASCII coding                                                                                                               | CANopen<br>EN50325-4 + DS408                                                                                                         | PROFIBUS DP<br>EN50170-2/IEC61158                     | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |
| Communication physical layer                             | not insulated<br>USB 2.0 + USB OTG                                                                                                  | optical insulated<br>CAN ISO11898                                                                                                    | optical insulated<br>RS485                            | Fast Ethernet, insulated<br>100 Base TX                               |  |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the controller energizing with the 24 VDC power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid      | temperature      | NBR seals (standard) = $-20^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C ÷ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                             |                            |  |
|-------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|--|
| Recommended viscosity         |                  | 20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s                                                                                                                                                                                                                                                               |                             |                            |  |
| Max fluid                     | normal operation | ISO4406 class 18/16/13 NAS1                                                                                                                                                                                                                                                                                   | 638 class 7                 | see also filter section at |  |
| contamination level           | longer life      | ISO4406 class 16/14/11 NAS1                                                                                                                                                                                                                                                                                   | www.atos.com or KTF catalog |                            |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                                                                                                                                                                                           | Classification              | Ref. Standard              |  |
| Mineral oils                  |                  | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                | HL, HLP, HLPD, HVLP, HVLPD  | DIN 51524                  |  |
| Flame resistant without water |                  | FKM HFDU, HFDR                                                                                                                                                                                                                                                                                                |                             | - ISO 12922                |  |
| Flame resistant with water    |                  | NBR, HNBR                                                                                                                                                                                                                                                                                                     | HFC                         | 130 12922                  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

(1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature =  $50^{\circ}$ C

FX630

AXIS & P/Q CONTROLS

369

# 11 CERTIFICATION DATA

| Valve type                          |                                                                                                                                                                  | DPZA                                            |              |             |                |              |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|-------------|----------------|--------------|--|
| Certifications                      |                                                                                                                                                                  | Multicertification Group II  ATEX IECEx         |              |             |                |              |  |
| Solenoid certified code             |                                                                                                                                                                  |                                                 | O            | ZA-LEZ      |                |              |  |
| Type examination certificate (1)    | ATEX: TUV                                                                                                                                                        | • ATEX: TUV IT 18 ATEX 068 X • IECEx: IECEx TPS |              |             | CEx TPS 19.000 | 4X           |  |
| Method of protection                | • ATEX 2014/34/EU  EX II 2G Ex db IIC T6/T5/T4 Gb  EX II 2D Ex tb IIIC T85°C/T100°C/T135°C Db  • IECEX  Ex db IIC T6/T5/T4 Gb  Ex tb IIIC T85°C/T100°C/T135°C Db |                                                 |              | 135°C Db    |                |              |  |
| Temperature class                   |                                                                                                                                                                  | Т6                                              |              | Г5          |                | T4           |  |
| Surface temperature                 | ≤ 8                                                                                                                                                              | 35 °C                                           | ≤ 10         | ≤ 100 °C    |                | ≤ 135 °C     |  |
| Ambient temperature (2)             | -40 ÷ +40 °C                                                                                                                                                     |                                                 | -40 ÷ +55 °C |             | -40 ÷ +70 °C   |              |  |
| Applicable Standards                | EN 60079-0                                                                                                                                                       | EN 60079-1                                      | EN 60079-31  | IEC 60079-0 | IEC 60079-1    | IEC 60079-31 |  |
| Cable entrance: threaded connection |                                                                                                                                                                  | <b>M</b> = M20x1,5                              |              |             |                |              |  |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The controller and solenoids are certified for minimum ambient temperature -40°C. In case the complete valve must withstand with minimum ambient temperature -40°C, select /BT in the model code.

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification.

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

**Power supply and signals:** section of wire = 1,0 mm<sup>2</sup> **Grounding:** section of external ground wire = 4 mm<sup>2</sup>

#### 12.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |
|------------------------------|-------------------|------------------------------|-----------------------------|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |

# 13 CABLE GLANDS

Cable glands with threaded connections M20x1,5 for standard or armoured cables have to be ordered separately, see tech table **KX800** 

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

# 14 HYDRAULIC OPTIONS

- Solenoid, integral electronics and position transducer at side of port B of the main stage.
- D and E = Pilot and drain configuration can be modified as shown in section 22.

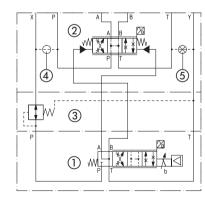
  The valve's standard configuration provides internal pilot and external drain.

  For different pilot / drain configuration select:

Option /D Internal drain.

Option /E External pilot (through port X).

**G** = Pressure reducing valve installed between pilot valve and main body with fixed setting:


DPZA-2 = 28 bar

DPZA-2, -4 and -4M = 40 bar

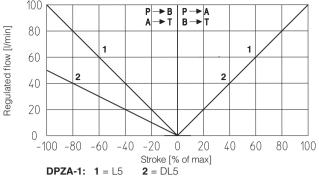
It is advisable for valves with internal pilot in case of system pressure higher than 150 bar.

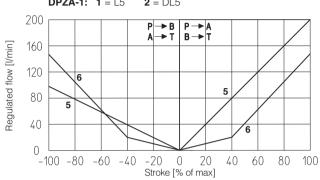
Pressure reducing valve is standard for DPZA-1, for other sizes add  $\ensuremath{\text{\textit{/}}\textbf{G}}$  option.

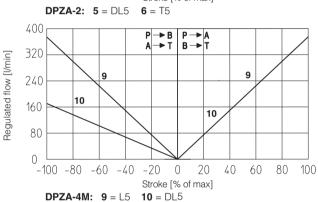
# FUNCTIONAL SCHEME - example of configuration 70

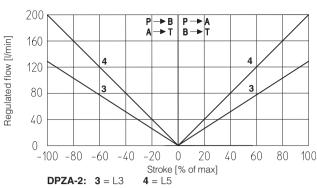


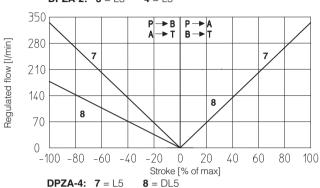
- 1) Pilot valve
- ② Main stage
- ③ Pressure reducing valve
- 4) Plug to be added for external pilot trough port X
- ⑤ Plug to be removed for internal drain through port T


# 15 ELECTRONIC OPTIONS


- I = It provides 4 ÷ 20 mA current reference signal, instead of the standard ±10 VDC. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ±20 mA. It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.
- C = Only for SF, SL


Option /C is available to connect pressure (force) transducers with 4 ÷ 20 mA current output signal, instead of the standard ±10 VDc. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDc or ±20 mA.


# 16 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)


# **16.1 Regulation diagrams** (values measure at $\Delta p$ 10 bar P-T)

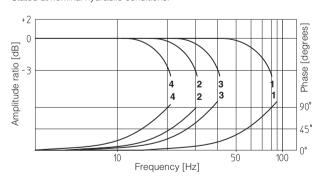






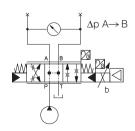


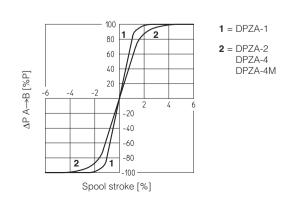



**Note**: Hydraulic configuration vs. reference signal for configurations 60 and 70 (standard and option /B)

Reference signal 
$$\begin{array}{c} 0 \div +10 \text{ V} \\ 12 \div 20 \text{ mA} \end{array} \right\} \text{ P} \rightarrow \text{A} / \text{B} \rightarrow \text{T}$$

Reference signal 
$$\begin{array}{c} 0 \div -10 \text{ V} \\ 4 \div 12 \text{ mA} \end{array} \} P \rightarrow B \text{ / } A \rightarrow T$$


# 16.2 Bode diagrams


Stated at nominal hydraulic conditions.



$$1 = \frac{DPZA-1}{DPZA-2}$$
 \right\} \pm 5% \qquad  $2 = \frac{DPZA-1}{DPZA-2}$  \right\} \pm 100% \qquad  $3 = \frac{DPZA-4}{DPZA-4M}$  \right\} \pm 5% \qquad  $4 = \frac{DPZA-4}{DPZA-4M}$  \right\} \pm 100%

# 16.3 Pressure gain





# 17 POWER SUPPLY AND SIGNALS SPECIFICATIONS

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and componentshydraulics, EN-982).

# 17.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

# 17.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply for controller's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 µF/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

The separate power supply for controller's logic on pin 3 and 4, allow to remove solenoid power supply from pin 1 and 2 maintaining active the diagnostics, USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

# 17.3 Position reference input signal (P INPUT+)

Functionality of P\_INPUT+ signal (pin 10), depends on controller's reference mode, see section 2:

External analog reference generation (see 2.1); input is used as reference for the controller axis position closed loop.

Reference input signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /l option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

Fieldbus/internal reference generation (see 2.2): analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

# 17.4 Pressure or force reference input signal (F\_INPUT+) - only for SF, SL

Functionality of F\_INPUT+ signal (pin 12), depends on selected controllers' reference mode and alternated control options, see section 3:

SF, SL controls and external analog reference selected: input is used as reference for the controller pressure/force closed loop.

Reference input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /I option.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

SN control or fieldbus/internal reference selected: analog reference input signal can be used as on-off commands with input range 0 ÷ 24VDC.

# 17.5 Position monitor output signal (P\_MONITOR)

The controller generates an analog output signal (pin 9) proportional to the actual axis position; the monitor output signal can be software set to show other signals available in the controller (e.g., analog reference, fieldbus reference, position error, valve spool position).

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /l option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

# 17.6 Pressure or force monitor output signal (F\_MONITOR) - only for SF, SL

The controller generates an analog output signal (pin 11) according to alternated pressure/force control option:

SN control: output signal is proportional to the actual valve spool position

SF, SL controls: output signal is proportional to the actual pressure/forcel applied to the cylinder's rod end

Monitor output signals can be software set to show other signals available in the controller (e.g. analog reference, force reference).

The output range and polarity are software selectable within the maximum range ±10 Vpc or ±20 mA.

Monitor output signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option.

Output signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA.

# 17.7 Enable input signal (ENABLE)

To enable the controller, a 24VDC voltage has to be applied on pin 6.

When the Enable signal is set to zero the controller can be software set to perform one of the following actions:

- maintain the actuator actual position in close loop control
- move towards a predefined position in closed loop control and maintains the reached position (hold position)
- move forward or backward in open loop (only the valve's closed loop remain active)

# 17.8 Fault output signal (FAULT)

Fault output signal indicates fault conditions of the controller (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC.

Fault status is not affected by the Enable input signal.

Fault output signal can be used as digital output by software selection.

# 17.9 Position transducer input signal

A position transducer must be always directly connected to the controller. Select the correct controller execution depending on the desired transducer interface: digital SSI or Encoder (D execution), potentiometer or a generic transducer with analog interface (A execution). Position digital input signal is factory preset to binary SSI, it can be reconfigured via software selecting between binary/gray SSI and Encoder. Position analog input signal is factory preset according to selected valve code, defaults are ±10 VDC for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 VDC or ± 20 mA. Refer to position transducer characteristics to select the transducer type according to specific application requirements (see 18.1).

# 17.10 Remote pressure/force transducer input signals - only for SF, SL

Analog remote pressure transducers or load cell can be directly connected to the controller.

Analog input signal is factory preset according to selected valve code, defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /C option. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA. Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements (see 18.2).

# 18 ACTUATOR'S TRANSDUCER CHARACTERISTICS

#### 18.1 Position transducers

performances

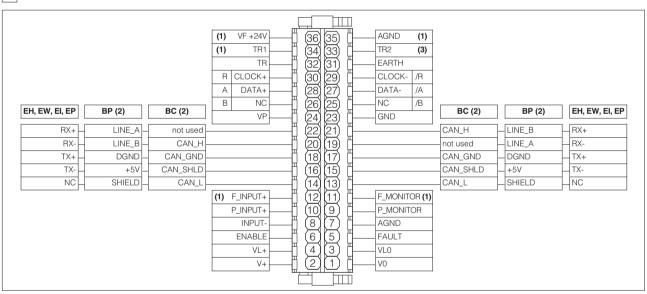
The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the controllers, depending to the system requirements: potentiometer or analog signal (A execution), SSI or Encoder (D execution). Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest

Transducers with analog interface grant simple and cost effective solutions.

# 18.2 Pressure/force transducers

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducer, see section 3. Alternated pressure/force controls require to install pressure transducers or load cell to measure the actual pressure/force values. Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force controls (see tech table **GX800** for pressure transducers details). Load cell transducers allow the user to get high accuracy and precise

regulations for alternated position/force control.


The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

# 18.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

|                      |               | Position          |                        |                     |                   |  |  |
|----------------------|---------------|-------------------|------------------------|---------------------|-------------------|--|--|
| Execution            | A             |                   | 1                      | D                   |                   |  |  |
| Input type           | Potentiometer | Analog            | SSI (3)                | Incremental Encoder | Analog            |  |  |
| Power supply (1)     | ±10 VDC       | +24 VDC           | +5 VDC / +24 VDC       | +5 VDC / +24 VDC    | +24 VDC           |  |  |
| Controller Interface | ±10V          | 0 ÷ 10V 4 ÷ 20 mA | Serial SSI binary/gray | TTL 5Vpp - 150 KHz  | ±10 Vpc 4 ÷ 20 mA |  |  |
| Max speed            | 0,5 m/s       | 1 m/s             | 2 m/s                  | 2 m/s               | -                 |  |  |
| Max Resolution       | < 0.4 % FS    | < 0.2 % FS        | 1 μm                   | 1 μm (@ 0.15 m/s)   | < 0.4 % FS        |  |  |
| Linearity error (2)  | ± 0.1% FS     | < ±0.03% FS       | < ± 0.01 % FS          | < ± 0.001 % FS      | < ±0.25% FS       |  |  |
| Repeatability (2)    | ± 0.05% FS    | < ± 0.005% FS     | < ± 0.001 % FS         | < ± 0.001 % FS      | < ±0.1% FS        |  |  |

(1) Power supply provided by Atos controller (2) Percentage of total stroke (3) For Balluff BTL7 with SSI interface only special code SA433 is supported

# 19 TERMINAL BOARD OVERVIEW



FX630

- (1) Connections available only for SF, SL
- (2) For BC and BP executions the fieldbus connections have an internal pass-through connection
- (3) Connection available only for SF

373

# 20 ELECTRONIC CONNECTIONS

# 20.1 Main connections signals

| CABLE<br>ENTRANCE | PIN                      | SIGNAL    | TECHNICAL SPECIFICATIONS                                                                                                                                                                                    | NOTES                                             |  |  |  |
|-------------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|                   | 1                        | V0        | Power supply 0 Vpc                                                                                                                                                                                          | Gnd - power supply                                |  |  |  |
|                   | 2 V+ Power supply 24 Vpc |           |                                                                                                                                                                                                             |                                                   |  |  |  |
| 3 <b>VL0</b>      |                          |           | Power supply 0 Vpc for driver's logic and communication                                                                                                                                                     | Gnd - power supply                                |  |  |  |
|                   | 4                        | VL+       | Power supply 24 Vpc for driver's logic and communication                                                                                                                                                    | Input - power supply                              |  |  |  |
|                   | 5                        | FAULT     | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0                                                                                                                                                   | Output - on/off signal                            |  |  |  |
|                   | 6                        | ENABLE    | Enable (24 Vpc) or disable (0 Vpc) the driver, referred to VL0                                                                                                                                              | Input - on/off signal                             |  |  |  |
|                   | 7                        | AGND      | Analog ground                                                                                                                                                                                               | Gnd - analog signal                               |  |  |  |
| Δ                 | 8                        | INPUT-    | Negative reference input signal for P_INPUT+ and F_INPUT+                                                                                                                                                   | Input - analog signal                             |  |  |  |
| $\wedge$          | 9                        | P_MONITOR | Position monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                             | Output - analog signal <b>Software selectable</b> |  |  |  |
|                   | 10                       | P_INPUT+  | Position reference input signal: ±10 Vpc / ±20 mA maximum range<br>Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option                                                                           | Input - analog signal<br>Software selectable      |  |  |  |
|                   | 11                       | F_MONITOR | Pressure/Force (SF, SL controls) or valve spool position (SN control) monitor output signal: ±10 Vpc / ±20mA maximum range, referred to AGND Defaults are: ±10 Vpc for standard and 4 ÷ 20 mA for /I option | Output - analog signal Software selectable        |  |  |  |
|                   | 12                       | F_INPUT+  | Pressure/Force reference input signal (SF, SL controls): $\pm 10$ Vpc / $\pm 20$ mA max. range Defaults are: $\pm 10$ Vpc for standard and $4 \div 20$ mA for /I option                                     | Input - analog signal<br>Software selectable      |  |  |  |
|                   | 31                       | EARTH     | Internally connected to driver housing                                                                                                                                                                      |                                                   |  |  |  |

# 20.2 USB connector - M12 - 5 pin always present

| CABLE<br>ENTRANCE | PIN | SIGNAL  | TECHNICAL SPECIFICATIONS | Driver view                             | B |
|-------------------|-----|---------|--------------------------|-----------------------------------------|---|
|                   | 1   | +5V_USB | Power supply             | 1 - 2                                   |   |
|                   | 2   | ID      | Identification           | [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ |   |
| $\mid$ B          | 3   | GND_USB | Signal zero data line    |                                         |   |
|                   | 4   | D-      | Data line -              | 4 - (famala)                            |   |
|                   | 5   | D+      | Data line +              | (female)                                |   |

# 20.3 BC fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 14  | CAN_L    | Bus line (low)              |
| <b>•</b> •        | 16  | CAN_SHLD | Shield                      |
| ()1               | 18  | CAN_GND  | Signal zero data line       |
| <b>.</b>          | 20  | CAN_H    | Bus line (high)             |
|                   | 22  | not used | Pass-through connection (1) |

| CABLE<br>ENTRANCE | PIN | SIGNAL   | TECHNICAL SPECIFICATIONS    |
|-------------------|-----|----------|-----------------------------|
|                   | 13  | CAN_L    | Bus line (low)              |
|                   | 15  | CAN_SHLD | Shield                      |
| C2                | 17  | CAN_GND  | Signal zero data line       |
|                   | 19  | not used | Pass-through connection (1) |
|                   | 21  | CAN_H    | Bus line (high)             |

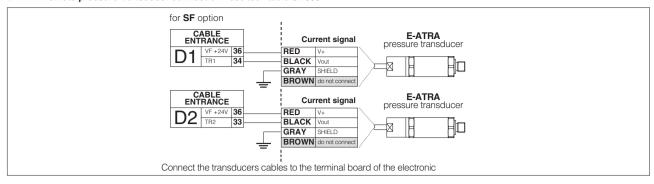
<sup>(1)</sup> Pin 19 and 22 can be fed with external +5V supply of CAN interface

# 20.4 BP fieldbus execution connections

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 14  | SHIELD |                                       |
| <b>A</b>          | 16  | +5V    | Power supply                          |
| ( ) 1             | 18  | DGND   | Data line and termination signal zero |
| <b>O</b> .        | 20  | LINE_B | Bus line (low)                        |
|                   | 22  | LINE_A | Bus line (high)                       |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS              |
|-------------------|-----|--------|---------------------------------------|
|                   | 13  | SHIELD |                                       |
|                   | 15  | +5V    | Power supply                          |
| C2                | 17  | DGND   | Data line and termination signal zero |
|                   | 19  | LINE_A | Bus line (high)                       |
|                   | 21  | LINE_B | Bus line (low)                        |

# 20.5 EH, EW, EI, EP fieldbus execution connections

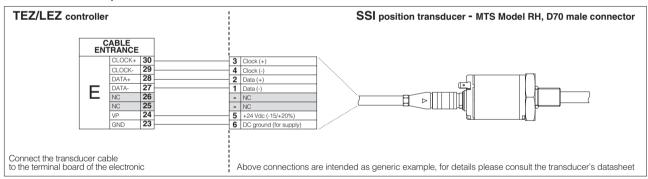

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 14  | NC     | do not connect           |
| <b>~</b> 4        | 16  | TX-    | Transmitter              |
| ()1               | 18  | TX+    | Transmitter              |
| <b>O</b> .        | 20  | RX-    | Receiver                 |
| (input)           | 22  | RX+    | Receiver                 |

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATIONS |
|-------------------|-----|--------|--------------------------|
|                   | 13  | NC     | do not connect           |
|                   | 15  | TX-    | Transmitter              |
| (;2               | 17  | TX+    | Transmitter              |
| <u> </u>          | 19  | RX-    | Receiver                 |
| (output)          | 21  | RX+    | Receiver                 |

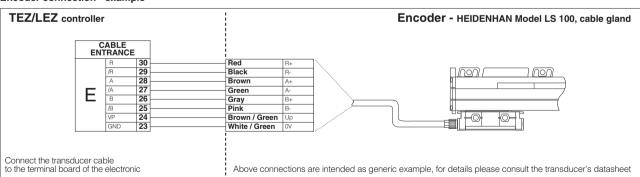
# $\textbf{20.6 Remote pressure transducer connections} \cdot \mathsf{only} \ \mathsf{for} \ \textbf{SF}, \ \mathsf{SL}$

| CABLE     | PIN          | SIGNAL  | NAL TECHNICAL SPECIFICATIONS NOT                        |                                                     | SL - Single tr | SL - Single transducer (1) |         | ansducers (1) |
|-----------|--------------|---------|---------------------------------------------------------|-----------------------------------------------------|----------------|----------------------------|---------|---------------|
| ENTRANCES | S PIN SIGNAL |         | TECHNICAE SI ECH ICATIONS                               | NOTES                                               | Voltage        | Current                    | Voltage | Current       |
| D1        | 33           | TR2     | 2nd signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal Software selectable           | /              | /                          | Connect | Connect       |
| וטו       | 34           | TR1     | 1st signal transducer<br>±10 Vpc / ±20 mA maximum range | Input - analog signal<br><b>Software selectable</b> | Connect        | Connect                    | Connect | Connect       |
| D2        | 35           | AGND    | Common gnd for transducer power and signals             | Common gnd                                          | Connect        | /                          | Connect | /             |
|           | 36           | VF +24V | Power supply +24Vpc                                     | Output - power supply                               | Connect        | Connect                    | Connect | Connect       |

#### E-ATRA remote pressure transducer connection - see tech table GX800




# 20.7 D execution - Digital position transducers connections

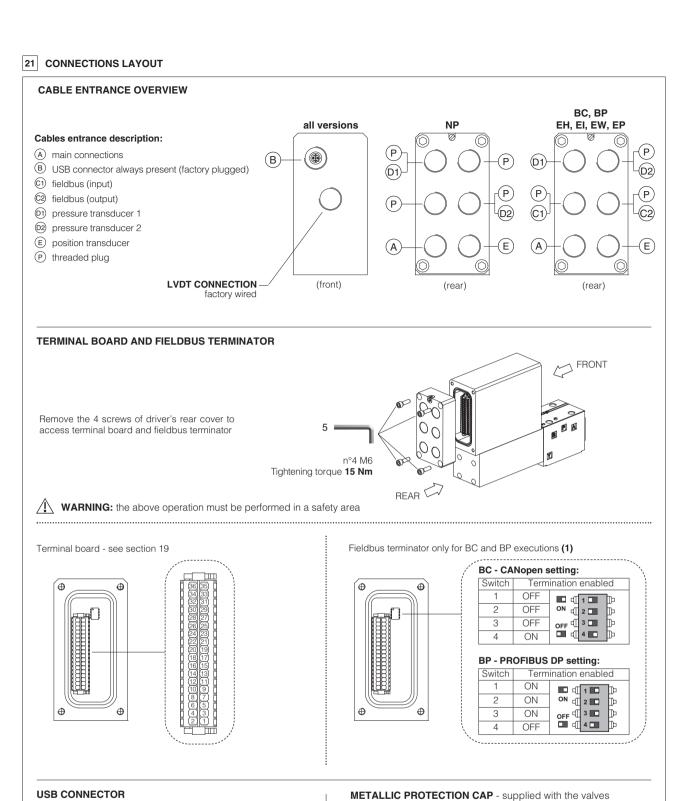

| CABLE    | PIN |        | SSI - default transduce                                 | r (1)                                     | Encoder (1) |                                                        |                                           |  |
|----------|-----|--------|---------------------------------------------------------|-------------------------------------------|-------------|--------------------------------------------------------|-------------------------------------------|--|
| ENTRANCE | FIN | SIGNAL | TECHNICAL SPECIFICATION                                 | NOTES                                     | SIGNAL      | TECHNICAL SPECIFICATION                                | NOTES                                     |  |
|          | 30  | CLOCK+ | Serial syncronous clock (+)                             |                                           | R           | Input channel R                                        |                                           |  |
|          | 29  | CLOCK- | Serial syncronous clock (-)                             | Input - digital signal                    | /R          | Input channel /R                                       |                                           |  |
|          | 28  | DATA+  | Serial position data (+)                                |                                           | Α           | Input channel A                                        | Input - digital signal                    |  |
|          | 27  | DATA-  | Serial position data (-)                                |                                           | /A          | Input channel /A                                       |                                           |  |
|          | 26  | NC     | Not connect                                             | Do not connect                            | В           | Input channel B                                        |                                           |  |
|          | 25  | NC     | Not connect                                             |                                           | /B          | Input channel /B                                       |                                           |  |
|          | 24  | VP     | Power supply:<br>+24Vpc , +5Vpc or OFF<br>(default OFF) | Output - power supply Software selectable | VP          | Power supply:<br>+24Vpc, +5Vpc or OFF<br>(default OFF) | Output - power supply Software selectable |  |
|          | 23  | GND    | Common gnd for transducer powerand signals              | Common gnd                                | GND         | Common gnd for transducer power and signals            | Common gnd                                |  |

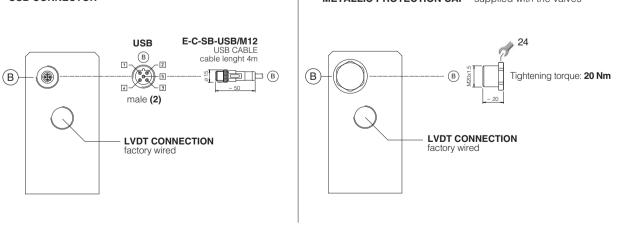
<sup>(1)</sup> Digital position transducer type is software selectable: Encoder or SSI, see 17.9

# SSI connection - example



# **Encoder connection - example**





# 20.8 A execution - Analog position transducers connector

| CABLE<br>ENTRANCE | PIN | SIGNAL | TECHNICAL SPECIFICATION                      | NOTES                                     |
|-------------------|-----|--------|----------------------------------------------|-------------------------------------------|
|                   | 32  | TR     | Signal transducer                            | Input - analog signal                     |
| E                 | 24  | VP     | Power supply:<br>+24Vpc or OFF (default OFF) | Output - power supply Software selectable |
|                   | 23  | GND    | Common gnd for transducer power and signals  | Common gnd                                |

FX630

375





- (1) Drivers with BC and BP fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF
- (2) Pin layout always referred to driver's view

# 21.1 Cable glands and threaded plug for SN - see tech table $\ensuremath{\text{KX800}}$

| Communication                                            | То | be ordere         | ed separat | ely                 | Cable entrance                                                                                     |                                                                                          |
|----------------------------------------------------------|----|-------------------|------------|---------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance |            | ed plug<br>entrance | overview                                                                                           | Notes                                                                                    |
| NP                                                       | 2  | A - E             | none       | none                | (P) (P) (P) (P) (A) (E) (A) (E) (A) (E) (A) (E) (A) (E) (A) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E | Cable entrance A, E are open for costumers  Cable entrance P are factory plugged         |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 3  | C1<br>A - E       | 1          | C2                  |                                                                                                    | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 4  | C1 - C2<br>A - E  | none       | none                |                                                                                                    | Cable entrance A, E, C1, C2 are open for costumers  Cable entrance P are factory plugged |

# 21.2 Cable glands and threaded plug for SL - see tech table KX800

| Communication                                            | То | be ordere              | ed separat | ely                 | Cable entrance                                     |                                                                                             |
|----------------------------------------------------------|----|------------------------|------------|---------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance      |            | ed plug<br>entrance | overview                                           | Notes                                                                                       |
| NP                                                       | 3  | D1                     | none       | none                | 60 P<br>60 P<br>60 E                               | Cable entrance A, E, D1 are open for costumers  Cable entrance P are factory plugged        |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 4  | D1<br>C1<br>A - E      | 1          | C2                  | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | Cable entrance A, E, C1, C2, D1 are open for costumers Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 5  | D1<br>C1 - C2<br>A - E | none       | none                | 00 00 00 00 00 00 00 00 00 00 00 00 00             | Cable entrance A, E, C1, C2, D1 are open for costumers Cable entrance P are factory plugged |

# 21.3 Cable glands and threaded plug for SF - see tech table $\ensuremath{\text{KX800}}$

| Communication                                            | То | be ordere                   | d separat | ely                 | Cable entrance                   |                                                                                          |
|----------------------------------------------------------|----|-----------------------------|-----------|---------------------|----------------------------------|------------------------------------------------------------------------------------------|
| interfaces                                               |    | gland<br>entrance           |           | ed plug<br>entrance | overview                         | Notes                                                                                    |
| NP                                                       | 4  | D1<br>D2<br>A - E           | none      | none                | 50 P<br>P 62<br>A E              | Cable entrance A, E, D1, D2 are open for costumers  Cable entrance P are factory plugged |
| BC, BP,<br>EH, EW, EI, EP<br>"via stub"<br>connection    | 5  | D1 - D2<br>C1<br>A - E      | 1         | C2                  | 99<br>99<br>99<br>90<br>40<br>40 | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |
| BC, BP,<br>EH, EW, EI, EP<br>"daisy chain"<br>connection | 6  | D1 - D2<br>C1 - C2<br>A - E | none      | none                | 00 00<br>00 00<br>00 00<br>00 00 | Cable entrance A, E, C1, C2, D1, D2 are open for costumers                               |

# 22 MAIN SOFTWARE PARAMETER SETTINGS

For a detailed descriptions of the available settings, wirings and installation procedures, please refer to the user manuals included in the Z-SW programming software:

**Z-MAN-RA-LEZ** - user manual for **TEZ** and **LEZ** with **SN** 

Z-MAN-RA-LEZ-S - user manual for TEZ and LEZ with SF, SL

### 22.1 External reference and transducer parameters

Allow to configure the controller reference and transducer inputs, analog or digital, to match the specific application requirements:

- Scaling parameters define the correspondence of these signals with the specific actuator stroke or force to be controlled

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions - Homing parameters define the startup procedure to initialize incremental transducer (e.g. Encoder)

# 22.2 PID control dynamics parameters

Allow to optimize and adapt the controller closed loop to the wide range of hydraulic system characteristics:

- PID parameters each part of the closed loop algorithm (proportional, integral, derivative, feed forward, fine positioning, etc) can be

modified to match the application requirements

# 22.3 Monitoring parameters

Allow to configure the controller monitoring function of the positioning error (difference between actual reference and feedback) and detects anomalous conditions:

- Monitoring parameters maximum allowed errors can be set for both static and dynamic positioning phases, and dedicated waiting times can

be set to delay the activation of the alarm condition and relevant reaction (see 22.4)

# 22.4 Fault parameters

Allow to configure how the controller detects and reacts to alarm conditions:

- Diagnostics parameters define different conditions, threshold and delay time to detect alarm conditions

- Reaction parameters define different actions to be performed in case of alarm presence (stop at actual or preprogrammed position,

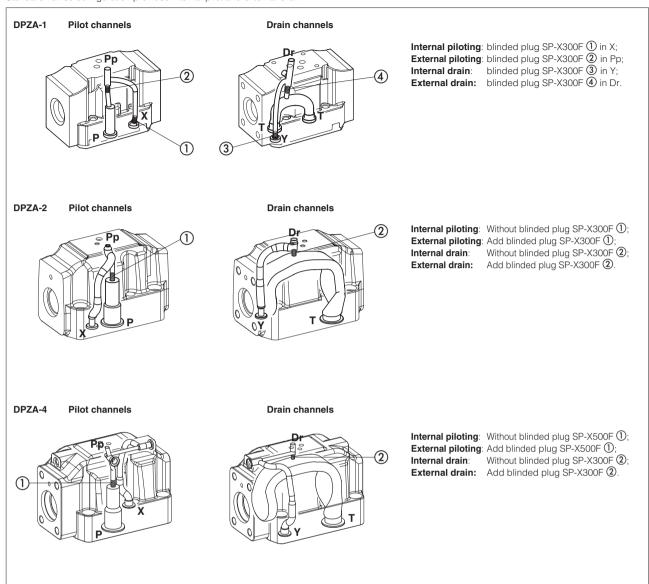
emergency forward/backward, controller disabling, etc.)

#### 22.5 Valve characteristics compensation

Allow to modify the valve regulation to match the actuator/system characteristics and to obtain the best overall performances:

- Valve parameters modify the standard valve regulation by means of deadband compensation, curve linearization and differentiated gain

for positive and negative regulation


# 22.6 Motion phases parameters

When the internal reference generation is active a pre-programmed cycle can be generated; start/stop/switch-over commands and reference generation types parameters can be set to design a customized sequence of motion phases adapted to the specific application requirements (see 2.2).

# 23 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below.

To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain

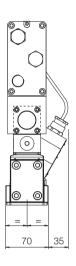


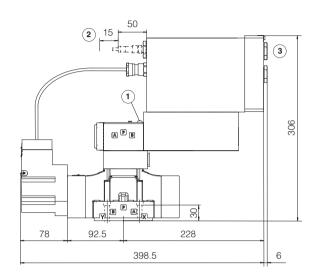
# 24 FASTENING BOLTS AND SEALS

| Туре | Size           | Fastening bolts                                                     | Seals                                                         |
|------|----------------|---------------------------------------------------------------------|---------------------------------------------------------------|
|      | 4 10           | 4 socket head screws M6x40 class 12.9                               | 5 OR 2050;<br>Diameter of ports A, B, P, T: Ø 11 mm (max)     |
|      | <b>1</b> = 10  | Tightening torque = 15 Nm                                           | 2 OR 108<br>Diameter of ports X, Y: Ø = 5 mm (max)            |
|      | <b>2</b> = 16  | 4 socket head screws M10x50 class 12.9<br>Tightening torque = 70 Nm | 4 OR 130;<br>Diameter of ports A, B, P, T: Ø 20 mm (max)      |
| DPZA | 2 = 10         | 2 socket head screws M6x45 class 12.9<br>Tightening torque = 15 Nm  | 2 OR 2043<br>Diameter of ports X, Y: $\emptyset$ = 7 mm (max) |
| DFZA | <b>4</b> = 25  | 6 socket head screws M12x60 class 12.9                              | 4 OR 4112;<br>Diameter of ports A, B, P, T: Ø 24 mm (max)     |
|      | 4 - 23         | Tightening torque = 125 Nm                                          | 2 OR 3056 Diameter of ports X, Y: $\emptyset$ = 7 mm (max)    |
|      | <b>4M</b> = 27 | 6 socket head screws M12x60 class 12.9                              | 4 OR 3137;<br>Diameter of ports A, B, P, T: Ø 32 mm (max)     |
|      | - TIVI - 21    | Tightening torque = 125 Nm                                          | 2 OR 3056 Diameter of ports X, Y: $\emptyset$ = 7 mm (max)    |

FX630

AXIS & P/Q CONTROLS


379


# **DPZA-LEZ-\*-1**

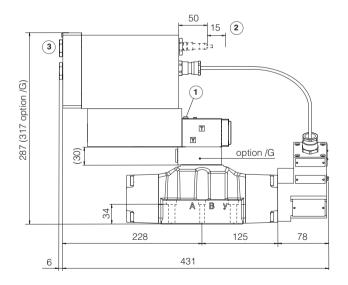
ISO 4401: 2005

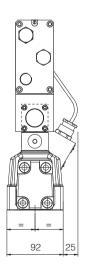
Mounting surface: 4401-05-05-0-05 (see table P005)

| Mass [kg]  |      |  |  |  |  |  |  |
|------------|------|--|--|--|--|--|--|
| DPZA-*-17* | 13,7 |  |  |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |  |  |






# **DPZA-LEZ-\*-2**


ISO 4401: 2005

Mounting surface: 4401-07-07-0-05

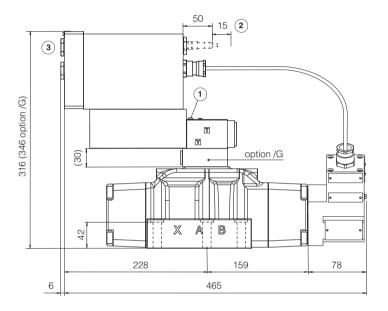
(see table P005)

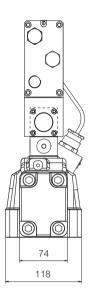
| Mass [kg]  |      |  |  |  |  |  |  |
|------------|------|--|--|--|--|--|--|
| DPZA-*-27* | 17,9 |  |  |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |  |  |





- 1 = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# DPZA-LEZ-\*-4 DPZA-LEZ-\*-4M


ISO 4401: 2005

Mounting surface: 4401-08-08-0-05

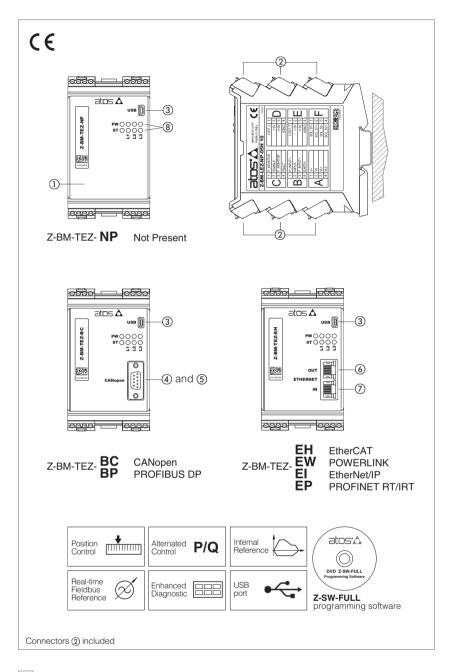
(see table P005)

| Mass [kg]  |      |  |  |  |  |
|------------|------|--|--|--|--|
| DPZA-*-4*  | 23,1 |  |  |  |  |
| DPZA-*-4M* | 23,1 |  |  |  |  |
| Option /G  | +0,9 |  |  |  |  |





- 1 = Air bleed off
- $(\mathbf{2})$  = Space to remove the USB connector
- (3) = The dimensions of cable glands must be considered (see tech table **KX800**)


# 26 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                  | GS510 | Fieldbus                                      |
|-------|-------------------------------------------------------------------------|-------|-----------------------------------------------|
| X020  | Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO | GX800 | Ex-proof pressure transducer type E-ATRA-7    |
| FX900 | Operating and manintenance information for ex-proof proportional valves | KX800 | Cable glands for ex-proof valves              |
| GS500 | Programming tools                                                       | P005  | Mounting surfaces for electrohydraulic valves |
|       |                                                                         |       |                                               |



# Digital Z-BM-TEZ/LEZ axis cards with driver functionality

DIN-rail format, for position and force controls



# Z-BM-TEZ/LEZ

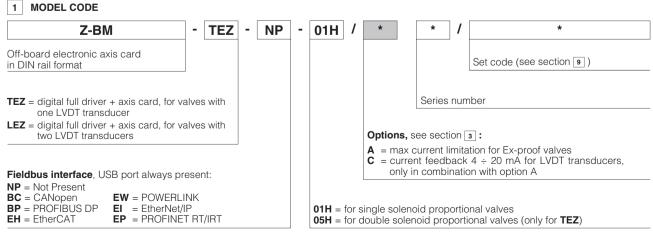
Digital axis cards ① perform the driver functions for proportional valves plus the position closed loop control of the linear or rotative actuator to which the proportional valve is connected.

Z-BM-TEZ execution controls direct and pilot operated directional valves with one LVDT transducer.

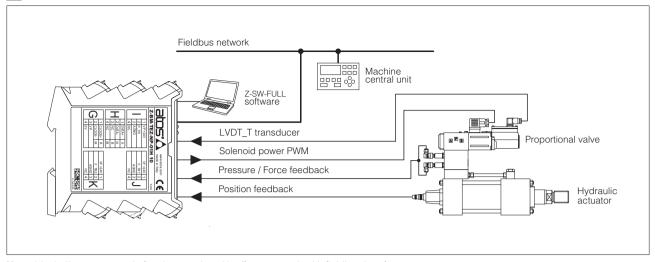
Z-BM-LEZ execution controls directional pilot operated valves with two LVDT transducers. The controlled actuator has to be equipped with integral or external position transducer (analog, SSI or Encoder) to feedback the axis position.

The controller is operated by an external or internally generated reference position signal (see section 4).

A pressure/force alternated control may be set by software additionally to the position control: a pressure/force transducer has to be assembled into the actuator and connected to the controller; a second pressure/force reference signal is required.


Atos PC software allows to customize the controller configuration to the specific application requirements.

#### **Electrical Features:**


- up to 11 fast plug-in connectors ②
- Mini USB port 3 always present
- DB9 fieldbus communication connector ④ for CANopen and ⑤ PROFIBUS DP
- RJ45 ethernet communication connectors
   output and input for EtherCAT, POWERLINK, EtherNet/IP, PROFINET
- 8 leds for diagnostics (8) (see 8.1)
- Electrical protection against reverse polarity of power supply
- Operating temperature range: -20 ÷ +50 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive

# **Software Features:**

- Intuitive graphic interface
- Internal generation of motion cycle
- Setting of axis's dynamic response (PID) to optimize the application performances
- Setting of valve's functional parameters: bias, scale, ramps, dither
- Linearization function for hydraulic regulation
- Complete diagnostics of axis status
- Internal oscilloscope function
- In field firmware update through USB port



# 2 BLOCK DIAGRAM EXAMPLE



Note: block diagram example for alternated position/force control, with fieldbus interface

# 3 VALVES RANGE

| Valves                 | Directional             |                           |                       |  |  |  |
|------------------------|-------------------------|---------------------------|-----------------------|--|--|--|
| Standard<br>Data sheet | DHZO-T, DKZOR-T<br>F165 | DLHZO-T, DLKZOR-T<br>F180 | <b>DPZO-L</b><br>F175 |  |  |  |
| Ex-proof<br>Data sheet | -                       | DLHZA-T, DLKZA-T<br>FX140 | -                     |  |  |  |
| Controller model       | Z-BN                    | Λ-TEZ                     | Z-BM-LEZ              |  |  |  |

# 4 POSITION REFERENCE MODE

#### 4.1 External reference generation

Axis controller regulates in closed loop the actuator position according to an external reference position signal and to the position feedback from the actuator transducer.

The external reference signal can be software selected among:

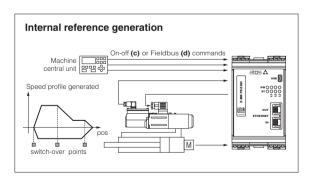
Analog reference (a) - the controller receives in real time the reference signal from the machine electronic central unit by means analog input (see 8.2) limiting speed, acceleration and deceleration values.

Fieldbus reference (b) - the controller receives in real time the reference signal from the machine electronic central unit by means digital fieldbus communication limiting speed, acceleration and deceleration values.

For fieldbus communication details, please refer to the controller user manual.

# 4.2 Internal reference generation

Axis controller regulates in closed loop the actuator position according to an internally generated reference position signal and to the position feedback from the actuator transducer. The internal reference signal is generated by a pre-programmed cycle; only start, stop and switch-over commands are required from the machine electronic central unit by means of:


# - on-off commands (c)

# - fieldbus commands (d)

Atos PC software allows to design a customized sequence of motion phases through a range of pre-defined standard commands.

Start/stop/switch-over commands and reference generation type can be set for each phase in order to realize an automatic cycle according to the application requests. Refer to the controller user manual for further details on commands and reference generation type.

# External reference generation Machine Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central unit PS Analog (a) or Fieldbus (b) reference central u



# Start / stop / switch-over commands examples

External digital input External fieldbus input motion phase on-off commands are used to start/stop the cycle generation or to change the motion phase

on-off commands, by fieldbus communication, are used to start/stop the cycle generation or to change the

Switch by position Switch by time switch-over from actual to following motion phase occurs when the actual position reaches a programmed value switch-over from actual to following motion phase occurs after a fixed time, starting from the actual phase activa-

Switch by internal status switch-over from internal status are used to start/stop the cycle generation or to change the motion phase

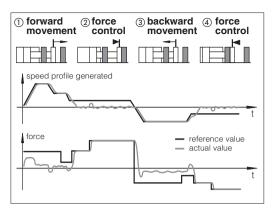
# Reference generation types examples

Absolute a target position reference signal is internally generated for each motion phase; maximum speed and acceleration

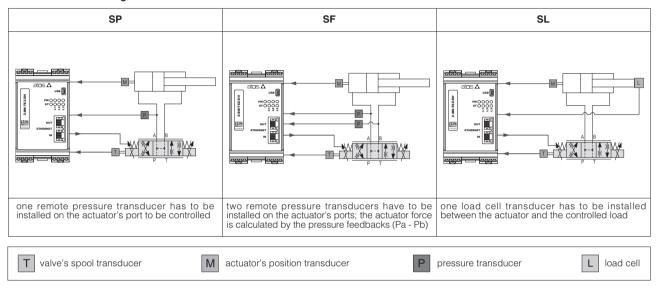
can be set to obtain a smooth and precise position control

Relative as 'Absolute' but the target position corresponds to the actuator position plus a fixed quote internally set by software

# 5 ALTERNATED POSITION / FORCE CONTROL


Alternated pressure or force closed loop control can be added to the actuator's standard position control, requiring one or two remote transducers (pressure or force) that have to be installed on the actuator, see below functional schemes.

The position/force controls are operated according to two separate reference signals and a dedicated algorithm automatically selects which control is active time by time


The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability and vibrations.

Position control is active (see phase ① and ③ at side) when the actuator force is lower than the relevant reference signal - the valve controls the actuator position by closed-loop regulation.

Force control is active (see phase ② and ④ at side) when the actuator actual force, measured by remote transducers, grows up to the relevant reference signal - the controller reduces the valve's regulation in order to limit the actuator force; if the force tends to decrease under its reference signal, the position control returns active.



#### Alternated control configurations - software selectable



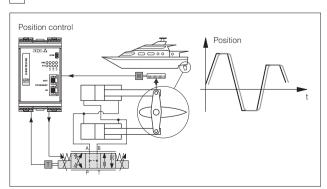
# SP - position/pressure control

Adds pressure control to standard position control and permits to limit the max force in one direction controlling in closed loop the pressure acting on one side of the hydraulic actuator. A single pressure transducer has to be installed on hydraulic line to be controlled.

# SF - position/force control

Adds force control to standard position control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on both hydraulic line.

# SL - position/force control

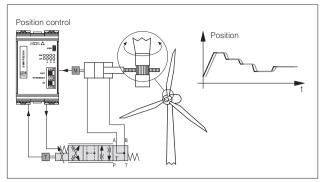

Adds force control to standard position control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on hydraulic actuator.

GS330

# **General Notes:**

- servoproportional type DLHZO, DLKZOR and DPZO-L are strongly recommended for high accuracy applications see tech tables **F180**, **F175**
- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault, see tech table **EY105**
- for additional information about alternated P/Q controls configuration please refer to tech table **GS002**
- Atos technical service is available for additional evaluations related to specific applications usage

# 6 APPLICATION EXAMPLES

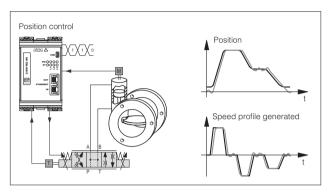



# Hydraulic steering wheel in marine applications

Rudder controls on motor yachts and sail boats requires smooth control for precise and reliable operations.

Z-BM-TEZ/LEZ controllers perform the rudder position control system, ensuring accurate and repetitive regulations for a comfortable ride, thanks to:

- analog position reference mode for real time controls
- analog position transducer for simple and compact solution
- position PID control parameters to optimize the system response
- complete diagnostic information for advanced system monitoring

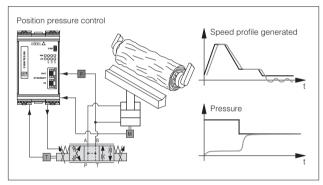



#### Wind turbines

The pitch control of the rotor blades is required to maximize the energy production. Accurate positioning, decentralized intelligence as well as long service life and reliability are required.

Z-BM-TEZ/LEZ controllers perform high quality regulation of the blade pitch simplifying the system architecture, thanks to:

- SSI digital position transducer for high precision control
- complete remote system management with fieldbus interface position PID selection to adapt the position control to the different wind conditions

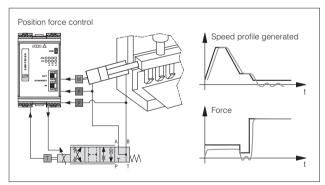



#### **Process valves**

Process valves motion regulation requires smooth and remote controls due to wide distributed applications.

Z-BM-TEZ/LEZ controllers allow remote control, thanks to:

- internal reference generation with maximum speed and acceleration settings for standing alone axis control
- potentiometer position transducer for compact and cost effective solution
- fieldbus connection for easy parameterization and remote commands

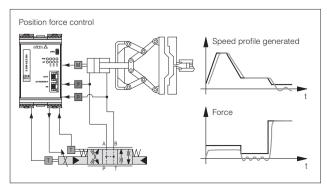



#### Wood machinery

Hydraulic wood machines require configurable and repetitive motion profiles, accurate position controls, and digital signals for synchronization purpose

Z-BM-TEZ/LEZ controllers allow remote control, thanks to:

- internal reference generation with maximum speed and acceleration settings
- analog position transducer for simple and reliable solution
- pressure transducer for alternated pressure control
- fieldbus connection for remote parameterization, commands, and controller state indication




# Bending Machines

Machine tools for cold-forming flat sheets require complete, automatic, programmable and flexible machine control to produce sheet metal panels from punched blank.

Z-BM-TEZ/LEZ controller combine high level position regulation with accurate force control to provide in a single device a complete and dedicated solution, thanks to:

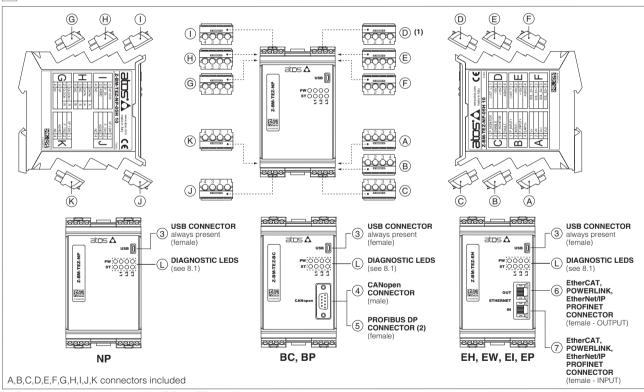
- internal reference generation to simplify the machine control cycle
- digital position sensor for high resolution measurement system
- two pressure transducers for alternated force control
- fieldbus interface for easy machine control integration
- auxiliary digital outputs for system status indication (target reached, force control active)



# **Die-casting machinery**

Clamp movements in die-casting phases involve fast/slow motion cycle with accurate and repetitive alternated position/force controls for the mould safety functions.

Z-BM-TEZ/LEZ controllers, with alternated position/force control, simplify the hydraulic + electronic system architecture, thanks to:


- internal reference generation for repetitive working cycles
- SSI digital position transducer for accurate axis control
- two pressure transducers for alternated force control
- auxiliary digital inputs/output to synchronize the machine functions
- fieldbus connection for machine remote control and advanced diaanostics

# 7 MAIN CHARACTERISTICS

| Power supplies          | (see 10.1, 10.2)             | Nominal<br>Rectified and filtered                                                                                                                                                                          | : +24 VDC<br>: VRMS = 20 ÷ 32 VMA                                                                                                                                 | x (ripple max 10 % Vpp)                              |                                                                       |  |
|-------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--|
| Max power consumption   | on                           | 50 W                                                                                                                                                                                                       |                                                                                                                                                                   |                                                      |                                                                       |  |
| Current supplied to sol | lenoids                      | IMAX = 3.0 A for standa<br>IMAX = 2.5 A for ex-pro                                                                                                                                                         |                                                                                                                                                                   |                                                      |                                                                       |  |
| Analog input signals    | (see 10.3, 10.4)             | Voltage: range ±10 V<br>Current: range ±20 n                                                                                                                                                               |                                                                                                                                                                   | Input impedance: Ri =                                | - 50 kΩ<br>= 500 Ω                                                    |  |
| Monitor outputs         | (see 10.5, 10.6)             | '                                                                                                                                                                                                          | voltage ±10 Vpc @ 1<br>current ±20 mA @ r                                                                                                                         | max 5 mA<br>max 500 $\Omega$ load resistan           | ce                                                                    |  |
| Enable input            | (see 10.7)                   | Range: 0 ÷ 5 Vpc (OFF                                                                                                                                                                                      | state), 9 ÷ 24 VDC (ON                                                                                                                                            | state), 5 ÷ 9 Vpc (not ac                            | ccepted); Input impedance: Ri > 10 k $\Omega$                         |  |
| Fault output (see 10.8) |                              | Output range: 0 ÷ 24 external negative volta                                                                                                                                                               | VDC (ON state > [powering not allowed (e.g. du                                                                                                                    | er supply - 2 V] ; OFF sta<br>ue to inductive loads) | te < 1 V ) @ max 50 mA;                                               |  |
| Alarms                  |                              | Solenoid not connected/short circuit, cable break with current reference signal, over/under temperature, position control monitoring, valve spool transducer malfunctions, alarms history storage function |                                                                                                                                                                   |                                                      |                                                                       |  |
| Position transducers po | ower supply                  | +24 Vpc @ max 100 mA or +5 Vpc @ max 100 mA are software selectable                                                                                                                                        |                                                                                                                                                                   |                                                      |                                                                       |  |
| Pressure/Force transdu  | ucers power supply           | +24 Vpc @ max 100 mA                                                                                                                                                                                       |                                                                                                                                                                   |                                                      |                                                                       |  |
| Format                  |                              | Plastic box; IP20 protection degree; L 35 - H 7,5 mm DIN-rail mounting as per EN60715                                                                                                                      |                                                                                                                                                                   |                                                      |                                                                       |  |
| Operating temperature   | )                            | -20 ÷ +50 °C (storage -25 ÷ +85 °C)                                                                                                                                                                        |                                                                                                                                                                   |                                                      |                                                                       |  |
| Mass                    |                              | Approx. 450 g                                                                                                                                                                                              |                                                                                                                                                                   |                                                      |                                                                       |  |
| Additional characterist | ics                          | 8 leds for diagnostic; protection against reverse polarity of power supply                                                                                                                                 |                                                                                                                                                                   |                                                      |                                                                       |  |
| Electromagnetic compa   | tibility (EMC)               | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                                                         |                                                                                                                                                                   |                                                      |                                                                       |  |
| Compliance              |                              | RoHs Directive 2011/6<br>REACH Regulation (Ed                                                                                                                                                              | 65/EU as last update by<br>C) n°1907/2006                                                                                                                         | 2015/65/EU                                           |                                                                       |  |
| Communication interface |                              | USB<br>Atos ASCII coding                                                                                                                                                                                   | CANopen<br>EN50325-4 + DS408                                                                                                                                      | PROFIBUS DP<br>EN50170-2/IEC61158                    | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |
| Communication physic    | Communication physical layer |                                                                                                                                                                                                            | optical insulated<br>CAN ISO11898                                                                                                                                 | optical insulated<br>RS485                           | Fast Ethernet, insulated 100 Base TX                                  |  |
| Recommended wiring      | Recommended wiring cable     |                                                                                                                                                                                                            | LiYCY shielded cables: 0,5 mm² max 50 m for logic - 1,5 mm² max 50 m for power supply Note: for transducers wiring cable please consult the transducers datasheet |                                                      |                                                                       |  |
| Max conductor size      | (see 15)                     | 2,5 mm²                                                                                                                                                                                                    |                                                                                                                                                                   |                                                      |                                                                       |  |

Note: a maximum time of 800 ms (depending on communication type) have be considered between the driver energizing with the 24 Voc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

# 8 CONNECTIONS AND LEDS



- (1) D connector is available only for Z-BM-LEZ-\*\*-01H
  (2) To interface with Siemens 6ES7972-0BA12-0XA connector, it is mandatory to use also one of the following adapters to avoid interference with the USB connector: DG909MF1 the connector will be oriented upwards; DG909MF3 the connector will be oriented downwards

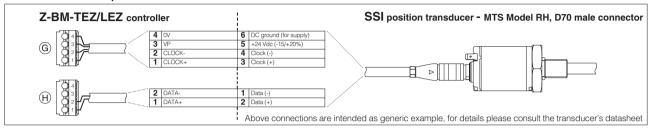
# 8.1 Diagnostic LEDs (L)

Eight leds show controller operative conditions for immediate basic diagnostics. Please refer to the controler user manual for detailed information.

| FIELDBUS | NP<br>Not Present | BC<br>CANopen   | BP<br>PROFIBUS DP    | EH<br>EtherCAT | EW<br>POWERLINK | EI<br>EtherNet/IP | EP<br>PROFINET | PW L1 L2 L3  |
|----------|-------------------|-----------------|----------------------|----------------|-----------------|-------------------|----------------|--------------|
| L1       | VALVE STATUS      |                 | LINK/ACT             |                |                 |                   | O O O GREEN    |              |
| L2       | NETWORK STATUS    |                 |                      |                | NETWORI         | K STATUS          |                |              |
| L3       | SC                | SOLENOID STATUS |                      |                | LINK            | /ACT              |                | () () () RED |
| PW       | OFF = Power s     | supply OFF      | ON = Power supply ON |                |                 |                   |                |              |
| ST       | OFF = Fault pre   | esent           | ON = No f            | ault           |                 |                   |                | ST           |

387

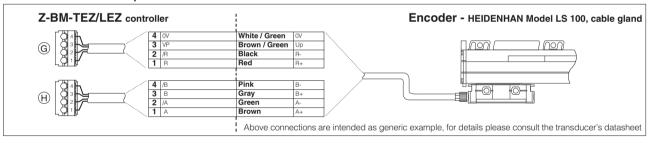
# 8.2 Connectors - 4 pin


| CONNECTOR    | PIN                  | SIGNAL        | TECHNICAL SPECIFICATIONS                                                                                                                                                         | NOTES                                               |
|--------------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|              | A1                   | V+            | Power supply 24 Vpc (see 10.1)                                                                                                                                                   | Input - power supply                                |
| Λ            | A2                   | V0            | Power supply 0 Vpc (see 10.1)                                                                                                                                                    | Gnd - power supply                                  |
| A            | А3                   | VL+           | Power supply 24 Vpc for driver's logic and communication (see 10.2)                                                                                                              | Input - power supply                                |
|              | A4                   | VL0           | Power supply 0 Vpc for driver's logic and communication (see 10.2)                                                                                                               | Gnd - power supply                                  |
|              | B1                   | P_INPUT+      | Position reference input signal: ±10 Vpc / ±20 mA maximum range. default is ±10 Vpc (see 10.3)                                                                                   | Input - analog signal Software selectable           |
| В            | B2                   | INPUT-        | Negative reference input signal for P_INPUT+ and F_INPUT+                                                                                                                        | Input - analog signal                               |
|              | ВЗ                   | F_INPUT+      | Pressure/Force reference input signal (SP, SF, SL controls): ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 10.4)                                                       | Input - analog signal<br><b>Software selectable</b> |
|              | В4                   | EARTH         | Connect to system ground                                                                                                                                                         |                                                     |
|              | C1                   | P_MONITOR     | Position monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND; default is ±10 Vpc (see 10.5)                                                                  | Output - analog signal <b>Software selectable</b>   |
|              | C2                   | ENABLE        | Enable (24 Vpc) or disable (0 Vpc) the controller, referred to VL0 (see 10.7)                                                                                                    | Input - on/off signal                               |
| C            | СЗ                   | F_MONITOR     | Pressure/Force (SP, SF, SL controls) or valve spool position (SN control) monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND; default is ±10 Vpc (see 10.6) | Output - analog signal Software selectable          |
|              | C4                   | FAULT         | Fault (0 Vpc) or normal working (24 Vpc), referred to VL0 (see 10.8)                                                                                                             | Output - on/off signal                              |
|              | D1                   | LVDT_L        | Main stage valve position transducer signal (see 10.11)                                                                                                                          | Input - analog signal                               |
| П            | D2                   | -15V          | Main stage valve position transducer power supply -15V                                                                                                                           | Output power supply                                 |
| <b>D</b> (1) | D3                   | +15V          | Main stage valve position transducer power supply +15V                                                                                                                           | Output power supply                                 |
|              | D4                   | AGND          | Common gnd for transducer power and monitor outputs                                                                                                                              | Common gnd                                          |
|              | E1                   | LVDT_T        | Direct valve or pilot valve position transducer signal (see 10.11)                                                                                                               | Input - analog signal                               |
| _            | E2                   | -15V          | Direct valve or pilot valve position transducer signal (see 10.11)  Direct valve or pilot valve position transducer power supply -15V                                            | Output power supply                                 |
| E            | E3                   | +15V          | Direct valve or pilot valve position transducer power supply +15V                                                                                                                | Output power supply                                 |
|              | E4                   | AGND          | Common gnd for transducer power and monitor outputs                                                                                                                              | Common gnd                                          |
|              |                      |               |                                                                                                                                                                                  | D                                                   |
|              | F1                   | SOL_S1-       | Negative current to solenoid S1                                                                                                                                                  | Output - power PWM                                  |
| F            | F2                   | SOL_S1+       | Positive current to solenoid S1                                                                                                                                                  | Output - power PWM                                  |
|              | F3<br>F4             | SOL_S2+       | Negative current to solenoid S2  Positive current to solenoid S2                                                                                                                 | Output - power PWM Output - power PWM               |
| G            | G1<br>G2<br>G3<br>G4 | -             | Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4                                                       |                                                     |
| Н            | H1<br>H2<br>H3<br>H4 | -             | Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4                                                       |                                                     |
|              | l1                   | VP            | Power supply:<br>+24Vpc , +5Vpc or OFF (default OFF)                                                                                                                             | Output - power supply Software selectable           |
|              | 12                   | P_TR1         | Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 10.9)                                                                            | Input - analog signal <b>Software selectable</b>    |
| -            | 13                   | AGND          | Common gnd for transducer power and signals                                                                                                                                      | Common gnd                                          |
|              | 14                   | NC            | Do not connect                                                                                                                                                                   |                                                     |
|              | J1                   | VF +24V       | Power supply: +24Vbc or OFF (default OFF)                                                                                                                                        | Output - power supply Software selectable           |
| .1           | J2                   | F_TR1         | 1st signal pressure/force transducer:<br>±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 10.10)                                                                          | Input - analog signal<br>Software selectable        |
|              |                      | AGND          | Common gnd for transducer power and signals                                                                                                                                      | Common gnd                                          |
| J            | J3                   | Adito         |                                                                                                                                                                                  | 1                                                   |
| J            | J3<br>J4             | NC            | Do not connect                                                                                                                                                                   |                                                     |
| J            |                      |               | Power supply: +24Vpc or OFF (default OFF)                                                                                                                                        | Output - power supply Software selectable           |
| J            | J4                   | NC            |                                                                                                                                                                                  |                                                     |
| J<br>K       | J4<br>K1             | NC<br>VF +24V | Power supply: +24Vpc or OFF (default OFF)  2nd signal pressure transducer (only for SF):                                                                                         | Input - analog signal                               |

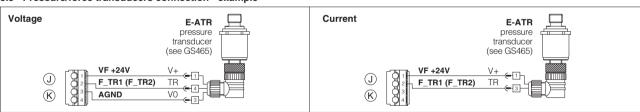
# 8.3 SSI connectors signals - 4 pin

|   | G1   | CLOCK+ | Serial synchronous clock (+)                        | Output - on/off signal                       |
|---|------|--------|-----------------------------------------------------|----------------------------------------------|
|   | G2   | CLOCK- | Serial synchronous clock (-)                        | Output - on/off signal                       |
| G | G3   | VP     | Power supply:<br>+24Vbc, +5Vbc or OFF (default OFF) | Output - power supply<br>Software selectable |
|   | G4   | 0V     | Common gnd for transducer power and signals         | Common gnd                                   |
|   | 1.14 | DATA   |                                                     | 1 / / / /                                    |
|   | H1   | DATA+  | Serial position data (+)                            | Input - on/off signal                        |
| H | H2   | DATA-  | Serial position data (-)                            | Input - on/off signal                        |
| П | НЗ   | NC     | Do not connect                                      |                                              |
|   | H4   | NC     | Do not connect                                      |                                              |

Note: for Balluff BTL7 with SSI interface only special code SA433 is supported


# SSI connection - example




# 8.4 Encoder connectors signals - 4 pin

|    | G1 | R  | Input channel R                                     | Input - on/off signal                            |
|----|----|----|-----------------------------------------------------|--------------------------------------------------|
|    | G2 | /R | Input channel /R                                    | Input - on/off signal                            |
| G  | G3 | VP | Power supply:<br>+24Vbc, +5Vbc or OFF (default OFF) | Output - power supply <b>Software selectable</b> |
|    | G4 | ov | Common gnd for transducer power and signals         | Common gnd                                       |
|    |    |    |                                                     |                                                  |
|    | H1 | A  | Input channel A                                     | Input - on/off signal                            |
| H  | H2 | /A | Input channel /A                                    | Input - on/off signal                            |
| '' | НЗ | В  | Input channel B                                     | Input - on/off signal                            |
|    | H4 | /B | Input channel /B                                    | Input - on/off signal                            |

# **Encoder connection - example**



# 8.5 Pressure/force transducers connection - example



GS330

# 

| 3   | ③ USB connector - Mini USB type B always present |              |  |  |  |  |
|-----|--------------------------------------------------|--------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)               |              |  |  |  |  |
| 1   | +5V_USB                                          | Power supply |  |  |  |  |
| 2   | D-                                               | Data line -  |  |  |  |  |
| 3   | D+ Data line +                                   |              |  |  |  |  |
| 4   | ID Identification                                |              |  |  |  |  |
| 5   | GND_USB Signal zero data line                    |              |  |  |  |  |

| (5) | ⑤ BP fieldbus execution, connector - DB9 - 9 pin |                           |  |  |  |  |
|-----|--------------------------------------------------|---------------------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)               |                           |  |  |  |  |
| 1   | SHIELD                                           |                           |  |  |  |  |
| 3   | LINE-B                                           | Bus line (low)            |  |  |  |  |
| 5   | DGND Data line and termination signal zero       |                           |  |  |  |  |
| 6   | +5V                                              | Termination supply signal |  |  |  |  |
| 8   | LINE-A                                           | Bus line (high)           |  |  |  |  |

# (1) shield connection on connector's housing is recommended

| 4   | BC fieldbus execution, connector - DB9 - 9 pin |                 |  |  |  |  |
|-----|------------------------------------------------|-----------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)             |                 |  |  |  |  |
| 2   | CAN_L Bus line (low)                           |                 |  |  |  |  |
| 3   | CAN_GND Signal zero data line                  |                 |  |  |  |  |
| 5   | CAN_SHLD Shield                                |                 |  |  |  |  |
| 7   | CAN_H                                          | Bus line (high) |  |  |  |  |

| 67  | ⑥ ⑦ EH, EW, EI, EP fieldbus execution, connector - RJ45 - 8 pin |                             |   |              |  |  |  |
|-----|-----------------------------------------------------------------|-----------------------------|---|--------------|--|--|--|
| PIN | SIGNAL                                                          | TECHNICAL SPECIFICATION (1) |   |              |  |  |  |
| 1   | TX+                                                             | Transmitter                 | - | white/orange |  |  |  |
| 2   | TX-                                                             | Transmitter                 | - | orange       |  |  |  |
| 3   | RX+                                                             | Receiver                    | - | white/green  |  |  |  |
| 6   | RX-                                                             | Receiver                    | - | green        |  |  |  |

389

# 9 SET CODE

The basic calibration of electronic driver is factory preset, according to the proportional valve to be coupled. These pre-calibrations are identified by the set code at the end of controllers's model code (see section 1). For correct set code selection, please include in the controller order also the complete code of the coupled proportional valve. For further information about set code, please contact Atos technical office.

# 10 SIGNALS SPECIFICATIONS

Atos digital drivers are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table F003 and in the user manuals included in the Z-SW programming software.

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, ISO 4413).

# 10.1 Power supply (V+ and V0)

The power supply (pin A1 and A2) must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 2,5 A time lag fuse.

# 10.2 Power supply for driver's logic and communication (VL+ and VL0)

The power supply (pin A3 and A4) for driver's logic and communication must be appropriately stabilized or rectified and filtered: apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

The separate power supply for driver's logic, allow to remove solenoid power supply from pin A1 and A2 maintaining active the diagnostics. USB and fieldbus communications.

A safety fuse is required in series to each driver's logic and communication power supply: 500 mA fast fuse.

# 10.3 Position reference input signal (P INPUT+)

Functionality of P\_INPUT+ signal (pin B1), depends on controllers' reference mode, see section 4:

external analog reference generation (see 4.1): input is used as reference for the controller position closed loop.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

fieldbus/internal reference generation (see 4.2): analog reference input signal can be used as on-off commands with input range 0 ÷ 24Vpc.

# 10.4 Pressure or force reference input signal (F\_INPUT+)

Functionality of F\_INPUT+ signal (pin B3), depends on selected controllers' reference mode and alternated control options, see section [5]: SP, SL, SF controls and external analog reference selected: input is used as reference for the controller pressure/force closed loop. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

SN control or fieldbus/internal reference selected: analog reference input signal can be used as on-off commands with input range 0 ÷ 24Vbc

# 10.5 Position monitor output signal (P\_MONITOR)

The controller generates an analog output signal (pin C1) proportional to the actual axis position; the monitor output signal can be software set to show other signals available in the controller (e.g. analog reference, fieldbus reference, position error, valve spool position). The output range and polarity are software selectable within the maximum range ±10 Vpc or ±20 mA; default is ±10 Vpc

# 10.6 Pressure or force monitor output signal (F\_MONITOR)

The controller generates an analog output signal (pin C3) according to alternated pressure/force control option:

SN control: output signal is proportional to the actual valve spool positio

SP, SL, SF controls: output signal is proportional to the actual pressure/forcel applied to the cylinder's rod end

Monitor output signals can be software set to show other signals available in the controller (e.g. analog reference, force reference).

The output range and polarity are software selectable within the maximum range ±10 Vpc or ±20 mA; default is ±10 Vpc

# 10.7 Enable Input Signal (ENABLE)

To enable the controller, a 24Vpc voltage has to be applied on pin C2

When the Enable signal is set to zero the controller can be software set to perform one of the following actions:

- maintain the actuator actual position in close loop control
- move towards a predefined position in closed loop control and maintains the reached position (hold position)
- move forward or backward in open loop (only the valve's closed loop remain active)

# 10.8 Fault output signal (FAULT)

Fault output signal (pin C4) indicates fault conditions of the controller (solenoid short circuits/not connected, reference or transducer signalcable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24 Vpc Fault status is not affected by the status of the Enable input signal.

Fault output signal can be used as digital output by software selection.

# 10.9 Position transducer input signals

A position transducer must be always directly connected to the controller. Position digital input signals are factory preset to binary SSI, they can be reconfigured via software selecting between binary/gray SSI, Encoder or generic transducer with analog interface.

Input signals can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

Refer to position transducer characteristics to select the transducer type according to specific application requirements, see section 111.

# 10.10 Remote pressure/force transducer input signals (F\_TR1 and F\_TR2) - SP, SF, SL controls

Analog remote pressure transducers or load cell can be directly connected to the controller.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements, see section 111.

# 10.11 Main stage and direct or pilot position transducer input signals (LVDT\_L and LVDT\_T)

Main stage (LVDT\_L pin D1) and direct or pilot (LVDT\_T pin E1) position transducer integrated to the valve have to be directly connected to the controller using ±15 Vpc supply output available at pin D2, D3 and pin E2, E3.

Note: transducer input signals working range is ±10 Vpc for standard or 4 ÷ 20 mA for /C option and cannot be reconfigured via software (input signals setting depends to the driver set code).

# 10.12 Possible combined options: /AC

# 11 ACTUATOR'S TRANSDUCER CHARACTERISTICS

# 11.1 Position transducers

The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the controllers, depending to the system requirements: analog signal (analog), SSI or Encoder (digital).

Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest performances. Transducers with analog interface grant simple and cost effective solutions.

#### 11.2 Pressure/force transducers

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducer (see section 5). Alternated pressure/force controls require to install pressure transducers or load cell to measure the actual pressure/force values. Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force

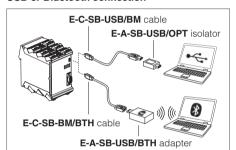
Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force controls (see tech table **GS465** for pressure transducers details). Load cell transducers allow the user to get high accuracy and precise regulations for alternated position/force control.

The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

# 11.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

|                      |                      | Pressure/Force         |                     |                      |
|----------------------|----------------------|------------------------|---------------------|----------------------|
| Input type           | Analog               | SSI (3)                | Incremental Encoder | Analog               |
| Power supply (1)     | +24 VDC              | +5 Vpc or +24 Vpc      | +5 Vpc or +24 Vpc   | +24 VDC              |
| Controller Interface | 0 ÷ 10V or 4 ÷ 20 mA | Serial SSI binary/gray | TTL 5Vpp - 150 KHz  | ±10 Vpc or 4 ÷ 20 mA |
| Max speed            | 1 m/s                | 2 m/s                  | 2 m/s               | -                    |
| Max Resolution       | < 0.2 % FS           | 1 μm                   | 1 μm (@ 0.15 m/s)   | < 0.4 % FS           |
| Linearity error (2)  | < ±0.03% FS          | < ± 0.01 % FS          | < ± 0.001 % FS      | < ±0.25% FS          |
| Repeatability (2)    | < ± 0.005% FS        | < ± 0.001 % FS         | < ± 0.001 % FS      | < ±0.1% FS           |

(1) power supply provided by Atos controller (2) percentage of total stroke (3) for Balluff BTL7 with SSI interface only special code SA433 is supported


# 12 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos Z-SW programming software connected via USB port to the digital controller (see table **GS003**). For fieldbus versions, the software permits valve's parameterization through USB port also if the controller is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

**Z-SW-FULL** support: NP (USB) PS (Serial) IR (Infrared)
BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)
EW (POWERLINK) EI (EtherNet/IP) EP (PROFINET)

**WARNING: drivers USB port is not isolated!** For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection



USB or Bluetooth connection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

DVD programming software, to be ordered separately:

**Z-SW-FULL** DVD first supply = software has to be activated via web registration at <u>www.atos.com</u>; 1 year service included

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos

Download Area

**Z-SW-FULL-N** DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

Atos Download Area: direct access to latest releases of Z-SW software, manuals, USB drivers and fieldbus configuration files at <a href="https://www.atos.com">www.atos.com</a>

USB Adapters, Cables and Terminators, can be ordered separately

# 13 MAIN SOFTWARE PARAMETER SETTINGS

For a detailed descriptions of the available settings, wirings and installation procedures, please refer to the user manuals included in the Z-SW programming software:

# Z-MAN-BM-LEZ - user manual for Z-BM-LEZ and Z-BM-TEZ

# 13.1 External reference and transducer parameters

Allow to configure the controller reference and transducer inputs, analog or digital, to match the specific application requirements:

- Scaling parameters define the correspondence of these signals with the specific actuator stroke or force to be controlled

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions

- Homing parameters define the startup procedure to initialize incremental transducer (e.g. Encoder)

# 13.2 PID control dynamics parameters

Allow to optimize and adapt the controller closed loop to the wide range of hydraulic system characteristics:

- PID parameters each part of the closed loop algorithm (proportional, integral, derivative, feed forward, fine positioning, etc) can be modified to match the application requirements

# 13.3 Monitoring parameters

Allow to configure the controller monitoring function of the positioning error (difference between actual reference and feedback) and detects anomalous conditions:

- Monitoring parameters maximum allowed errors can be set for both static and dynamic positioning phases, and dedicated waiting times can be set to delay the activation of the alarm condition and relevant reaction (see 13.4)

# 13.4 Fault parameters

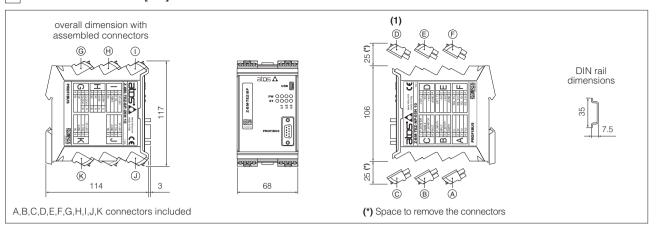
Allow to configure how the controller detect and react to alarm conditions:

- Diagnostics parameters define different conditions, threshold and delay time to detect alarm conditions

- Reaction parameters define different actions to be performed in case of alarm presence (stop at actual or preprogrammed position, emergency forward/backward, controller disabling, etc.)

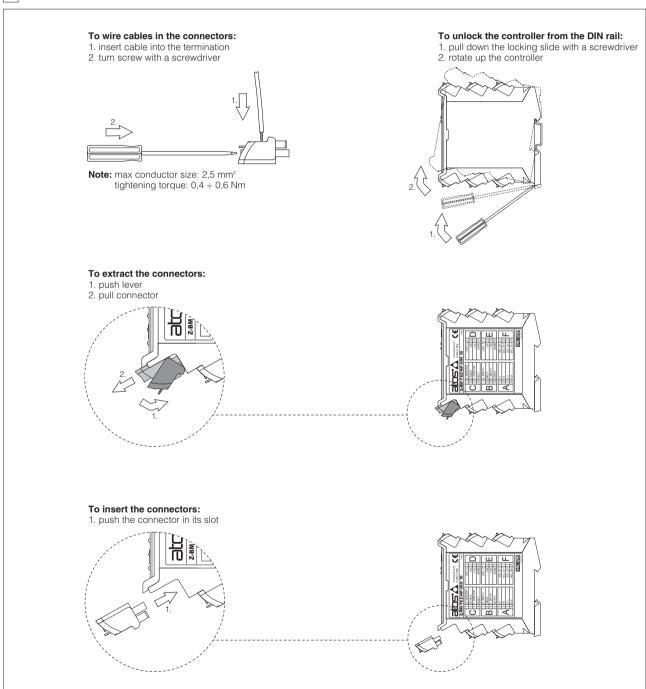
# 13.5 Valve characteristics compensation

Allow to modify the valve regulation to match the actuator/system characteristics and to obtain the best overall performances:


- Valve parameters modify the standard valve regulation by means of deadband compensation, curve linearization and differentiated gain for positive and negative regulation

# 13.6 Motion phases parameters

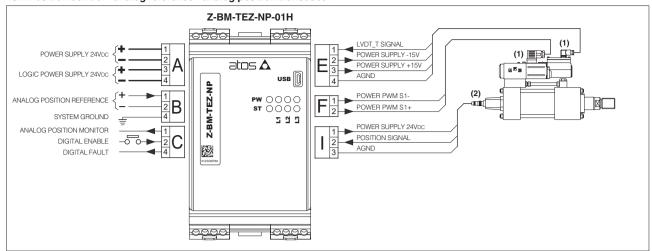
When the internal reference generation is active a pre-programmed cycle can be generated; start/stop/switch-over commands and reference generation types parameters can be set to design a customized sequence of motion phases adapted to the specific application requirements (see 4.2).


GS330 AXIS & P/Q CONTROLS 39

# 14 OVERALL DIMENSIONS [mm]

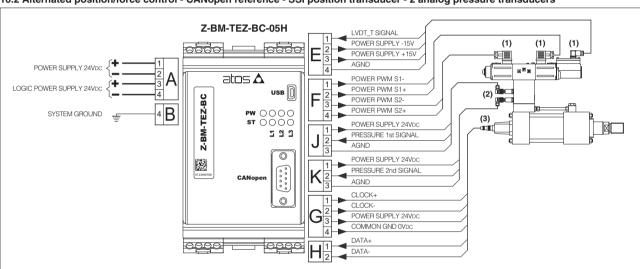


(1) D connector is available only for Z-BM-LEZ-\*\*-01H


# 15 INSTALLATION

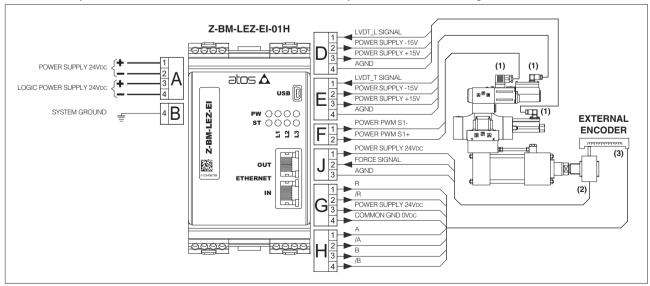


**Note:** all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot. (eg. connector A can not be inserted into connector slot of B,C,D,E,F,G,H,I,J,K)


# 16 WIRING EXAMPLES

# 16.1 Position control - analog reference - analog position transducer



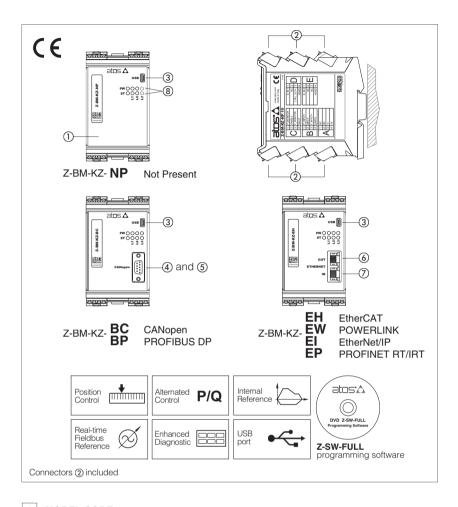

- (1) For valve electrical connections please refer to the specific technical table
- (2) The analog position transducer connections are intended as generic example, for details please consult the transducer's datasheet

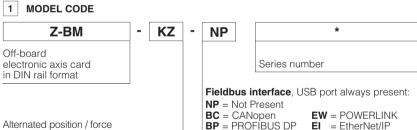
# 16.2 Alternated position/force control - CANopen reference - SSI position transducer - 2 analog pressure transducers



- (1) For valve electrical connections please refer to the specific technical table
- (2) Pressure transducers connections are shown with voltage signal output; for connections with current signal output see 8.5
- (3) The SSI position transducer connections are intended as generic example, for details please consult the transducer's datasheet

# 16.3 Alternated position/force control - EtherNet/IP reference - Encoder position transducer - analog load cell





- (1) For valve electrical connections please refer to the specific technical table
- (2) Load cell connections is shown with voltage signal output; please consult the load cell datasheet for details about connections
- (3) The Encoder position transducer connections are intended as generic example, for details please consult the transducer's datasheet



# Digital Z-BM-KZ axis cards

DIN-rail format, for position and force controls





EH = EtherCAT

# Z-BM-KZ

Digital axis cards ① perform the position closed loop of linear or rotative hydraulic axes.

The controller generates a reference signal to the proportional valve which regulates the hydraulic flow to the actuator.

The controlled actuator has to be equipped with integral or external position transducer (analog, SSI or Encoder) to feedback the axis position.

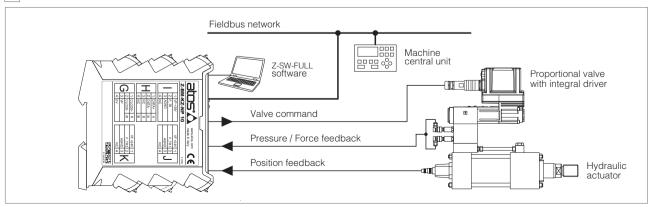
The controller is operated by an external or internally generated reference position signal (see section 4).

A pressure/force alternated control may be set by software additionally to the position control: a pressure/force transducer has to be assembled into the actuator and connected to the controller; a second pressure/force reference signal is required.

Atos PC software allows to customize the controller configuration to the specific application requirements.

# **Electrical Features:**

- 10 fast plug-in connectors (2)
- Mini USB port (3) always present
- DB9 fieldbus communication connector
   for CANopen and PROFIBUS DP
- RJ45 ethernet communication connectors
   output and input for EtherCAT, POWERLINK, EtherNet/IP, PROFINET
- 8 leds for diagnostics (8) (see 8.1)
- Electrical protection against reverse polarity of power supply
- $\bullet$  Operating temperature range: -20  $\div$  +50 °C
- Plastic box with IP20 protection degree and standard DIN-rail mounting
- CE mark according to EMC directive


# Software Features:

- Intuitive graphic interface
- Internal generation of motion cycle
- Setting of axis's dynamic response (PID) to optimize the application performances
- Setting of valve's functional parameters: bias, scale, ramps, dither
- Linearization function for hydraulic regulation
- Complete diagnostics of axis status
- Internal oscilloscope function
- In field firmware update through USB port

395

# 2 BLOCK DIAGRAM EXAMPLE

(or position / pressure) control module



GS340

EP = PROFINET RT/IRT

Note: block diagram example for alternated position/force control, with fieldbus interface

# 3 VALVES RANGE

| Valves                 |                              |                              | Directional                           |                                |                   |                   |
|------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------|-------------------|-------------------|
| Standard<br>Data sheet | DHZO-TEB, DKZOR-TEB<br>FS168 | DHZO-TES, DKZOR-TES<br>FS168 | <b>DLHZO-TEB, DLKZOR-TEB</b><br>FS180 | DLHZO-TES, DLKZOR-TES<br>FS180 | DPZO-LEB<br>FS178 | DPZO-LES<br>FS178 |
| Ex-proof<br>Data sheet | -                            | DHZA-TES, DKZA-TES<br>FX135  | -                                     | DLHZA-TES, DLKZA-TES<br>FX150  | -                 | DPZA-LES<br>FX235 |
| Controller model       |                              |                              | Z-BM-KZ                               |                                |                   |                   |

#### 4 **POSITION REFERENCE MODE**

#### External reference generation

Axis controller regulates in closed loop the actuator position according to an external reference position signal and to the position feedback from the actuator transducer. It generates a reference signal for the proportional valve which regulates the hydraulic flow to the actuator.

The external reference signal can be software selected among:

Analog reference (a) - the controller receives in real time the reference signal from the machine electronic central unit by means analog input (see 8.2) limiting speed, acceleration and deceleration values.

Fieldbus reference (b) - the controller receives in real time the reference signal from the machine electronic central unit by means digital fieldbus communication limiting speed, acceleration and deceleration values.

For fieldbus communication details, please refer to the controller user manual.

# 4.2 Internal reference generation

Axis controller regulates in closed loop the actuator position according to an internally generated reference position signal and to the position feedback from the actuator transducer.It generates a reference signal for the proportional valve which regulates the hydraulic flow to the actuator.

The internal reference signal is generated by a pre-programmed cycle; only start, stop and switch-over commands are required from the machine electronic central unit by means of:

- on-off commands (c)
- fieldbus commands (d)

Atos PC software allows to design a customized sequence of motion phases through a range of pre-defined standard commands

Start/stop/switch-over commands and reference generation type can be set for each phase in order to realize an automatic cycle according to the application requests. Refer to the controller user manual for further details on commands and reference generation type.

# Start / stop / switch-over commands examples

on-off commands are used to start/stop the cycle generation or to change the motion phase External digital input

External fieldbus input phase

on-off commands, by fieldbus communication, are used to start/stop the cycle generation or to change the motion

External reference generation

Internal reference generation

Machine

Speed profile generated

central unit """

Analog (a) or Fieldbus (b) reference

On-off (c) or Fieldbus (d) commands

command

М

command

Switch by position Switch by time

switch-over from actual to following motion phase occurs when the actual position reaches a programmed value switch-over from actual to following motion phase occurs after a fixed time, starting from the actual phase activation Switch by internal status switch-over from internal status are used to start/stop the cycle generation or to change the motion phase

# Reference generation types examples

Absolute

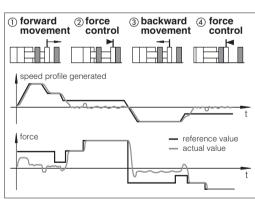
a target position reference signal is internally generated for each motion phase; maximum speed and acceleration

can be set to obtain a smooth and precise position control

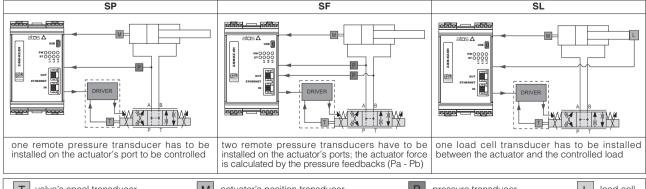
Relative

as 'Absolute' but the target position corresponds to the actuator position plus a fixed quote internally set by software

# 5 ALTERNATED POSITION / FORCE CONTROL


Alternated pressure or force closed loop control can be added to the actuator's standard position control, requiring one or two remote transducers (pressure or force) that have to be installed on the actuator, see below functional schemes.

The position/force controls are operated according to two separate reference signals and a dedicated algorithm automatically selects which control is active time by time.


The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability and vibrations.

Position control is active (see phase ① and ③ at side) when the actuator force is lower than the relevant reference signal - the valve controls the actuator position by closedloop regulation.

Force control is active (see phase 2) and 4) at side) when the actuator actual force, measured by remote transducers, grows up to the relevant reference signal - the controller reduces the valve's regulation in order to limit the actuator force; if the force tends to decrease under its reference signal, the position control returns active.



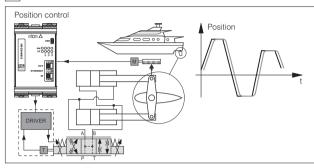
# Alternated control configurations - software selectable



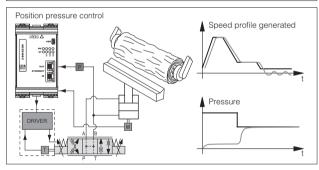
#### SP - position/pressure control

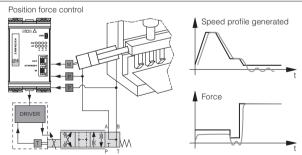
Adds pressure control to standard position control and permits to limit the max force in one direction controlling in closed loop the pressure acting on one side of the hydraulic actuator. A single pressure transducer has to be installed on hydraulic line to be controlled.

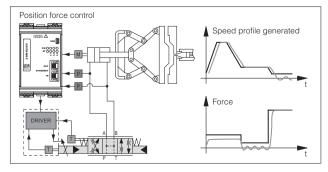
Adds force control to standard position control and permits to limit the max force in two directions controlling in closed loop the delta pressure acting on both sides of the hydraulic actuator. Two pressure transducers have to be installed on both hydraulic line.


#### SL - position/force control

Adds force control to standard position control and permits to limit the max force in one or two directions controlling in closed loop the force performed by the hydraulic actuator. A load cell has to be installed on hydraulic actuator.


#### General Notes:


- servoproportional type DLHZO, DLKZOR, DPZO-L are strongly recommended for high accuracy applications see tech tables FS180, FS178
- auxiliary check valves are recommended in case of specific hydraulic configuration requirements in absence of power supply or fault see tech table EY105
- for additional information about alternated P/Q controls configuration please refer to tech table GS002
- Atos technical service is available for additional evaluations related to specific applications usage


# APPLICATION EXAMPLES



# Position control Position







# Hydraulic steering wheel in marine applications

Rudder controls on motor vachts and sail boats requires smooth control for precise and reliable operations.

Z-BM-KZ controllers perform the rudder position control system, ensuring accurate and repetitive regulations for a comfortable ride, thanks

- analog position reference mode for real time controls
- analog position transducer for simple and compact solution
- position PID control parameters to optimize the system response
- complete diagnostic information for advanced system monitoring

#### Wind turbines

The pitch control of the rotor blades is required to maximize the energy production. Accurate positioning, decentralized intelligence as well as long service life and reliability are required.

Z-BM-KZ controllers perform high quality regulation of the blade pitch simplifying the system architecture, thanks to:

- SSI digital position transducer for high precision control
- complete remote system management with fieldbus interface
- position PID selection to adapt the position control to the different wind conditions

# Wood machinery

Hydraulic wood machines require configurable and repetitive motion profiles, accurate position controls, and digital signals for synchronization purpose

Z-BM-KZ controllers allow remote control, thanks to:

- internal reference generation with maximum speed and acceleration settings
- analog position transducer for simple and reliable solution pressure transducer for alternated pressure control
- fieldbus connection for remote parameterization, commands, and controller state indication

# **Bending Machines**

Machine tools for cold-forming flat sheets require complete, automatic, programmable and flexible machine control to produce sheet metal panels from punched blank

Z-BM-KZ controller combine high level position regulation with accurate force control to provide in a single device a complete and dedicated solution, thanks to:

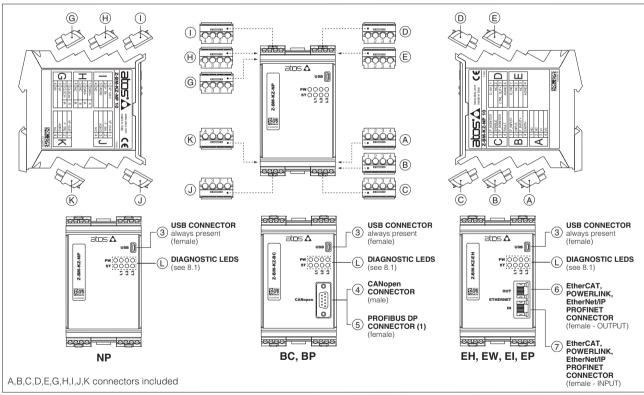
- internal reference generation to simplify the machine control cycle
- digital position sensor for high resolution measurement system
- two pressure transducers for alternated force control
- fieldbus interface for easy machine control integration
- auxiliary digital outputs for system status indication (target reached, force control active)

# Die-casting machinery

Clamp movements in die-casting phases involve fast/slow motion cycle with accurate and repetitive alternated position/force controls for the mould safety functions.

Z-BM-KZ controllers, with alternated position/force control, simplify the hydraulic + electronic system architecture, thanks to:

- internal reference generation for repetitive working cycles
- SSI digital position transducer for accurate axis control
- two pressure transducers for alternated force control
- auxiliary digital inputs/output to synchronize the machine functions
- fieldbus connection for machine remote control and advanced diaanostics


397

GS340 AXIS & P/Q CONTROLS

# 7 MAIN CHARACTERISTICS

| _                                 |                              |                                                                                                                                                                   |                                                                                                                                                           |                                   |                                                                       |  |  |
|-----------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--|--|
| Power supply                      | (see 9.1)                    | Nominal<br>Rectified and filtered                                                                                                                                 | : +24 VDC<br>: VRMS = 20 ÷ 32 VMA                                                                                                                         | x (ripple max 10 % Vpp)           |                                                                       |  |  |
| Max power consumption             |                              | 10 W                                                                                                                                                              |                                                                                                                                                           |                                   |                                                                       |  |  |
| Analog input signals              | (see 9.2, 9.3)               | Voltage: range ±10 V<br>Current: range ±20 n                                                                                                                      | /DC (24 VMAX tollerant)<br>nA                                                                                                                             |                                   | - 50 kΩ<br>= 500 Ω                                                    |  |  |
| Monitor outputs<br>Control output | (see 9.4, 9.5)<br>(see 9.10) | , ,                                                                                                                                                               | Output range: voltage ±10 Vbc @ max 5 mA current ±20 mA @ max 500 Ω load resistance                                                                       |                                   |                                                                       |  |  |
| Enable input<br>Digital inputs    | (see 9.6)<br>(see 9.11)      | Range: 0 ÷ 5 Vpc (OFI                                                                                                                                             | Range: $0 \div 5 \text{ Vpc}$ (OFF state), $9 \div 24 \text{ Vpc}$ (ON state), $5 \div 9 \text{ Vpc}$ (not accepted); Input impedance: Ri > 10 k $\Omega$ |                                   |                                                                       |  |  |
| Fault output                      | (see 9.7)                    |                                                                                                                                                                   | VDC (ON state > [power age not allowed (e.g. do                                                                                                           |                                   | ate < 1 V ) @ max 50 mA;                                              |  |  |
| Alarms                            |                              | Cable break with curre                                                                                                                                            | ent reference signal, ov                                                                                                                                  | er/under temperature, p           | osition control monitoring                                            |  |  |
| Position transducers power        | er supply                    | +24 VDc @ max 100 mA or +5 VDc@ max 100 mA are software selectable                                                                                                |                                                                                                                                                           |                                   |                                                                       |  |  |
| Pressure/Force transducer         | rs power supply              | +24 Vpc @ max 100 mA                                                                                                                                              |                                                                                                                                                           |                                   |                                                                       |  |  |
| Format                            |                              | Plastic box ; IP20 protection degree ; L 35 - H 7,5 mm DIN-rail mounting as per EN60715                                                                           |                                                                                                                                                           |                                   |                                                                       |  |  |
| Operating temperature             |                              | -20 ÷ +50 °C (storage -25 ÷ +85 °C)                                                                                                                               |                                                                                                                                                           |                                   |                                                                       |  |  |
| Mass                              |                              | Approx. 450 g                                                                                                                                                     |                                                                                                                                                           |                                   |                                                                       |  |  |
| Additional characteristics        |                              | 8 leds for diagnostic; protection against reverse polarity of power supply                                                                                        |                                                                                                                                                           |                                   |                                                                       |  |  |
| Electromagnetic compatibili       | ty (EMC)                     | According to Directive 2014/30/UE (Immunity: EN 61000-6-2; Emission: EN 61000-6-3)                                                                                |                                                                                                                                                           |                                   |                                                                       |  |  |
| Compliance                        |                              | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                       |                                                                                                                                                           |                                   |                                                                       |  |  |
| Communication interface           |                              | USB Atos ASCII coding                                                                                                                                             | CANopen<br>EN50325-4 + DS408                                                                                                                              | PROFIBUS DP<br>EN50170-2/IEC61158 | EtherCAT, POWERLINK,<br>EtherNet/IP, PROFINET IO RT / IRT<br>EC 61158 |  |  |
| Communication physical la         | ayer                         | not insulated<br>USB 2.0 + USB OTG                                                                                                                                | optical insulated                                                                                                                                         | optical insulated<br>RS485        | Fast Ethernet, insulated<br>100 Base TX                               |  |  |
| Recommended wiring cab            | le                           | LiYCY shielded cables: 0,5 mm² max 50 m for logic - 1,5 mm² max 50 m for power supply Note: for transducers wiring cable please consult the transducers datasheet |                                                                                                                                                           |                                   |                                                                       |  |  |
| Max conductor size                | (see 14)                     | 2,5 mm²                                                                                                                                                           |                                                                                                                                                           |                                   |                                                                       |  |  |
|                                   |                              |                                                                                                                                                                   |                                                                                                                                                           |                                   |                                                                       |  |  |

# 8 CONNECTIONS AND LEDS



(1) To interface with Siemens 6ES7972-0BA12-0XA connector, it is mandatory to use also one of the following adapters to avoid interference with the USB connector: DG909MF1 - the connector will be oriented upwards; DG909MF3 - the connector will be oriented downwards

# 8.1 Diagnostic LEDs (L)

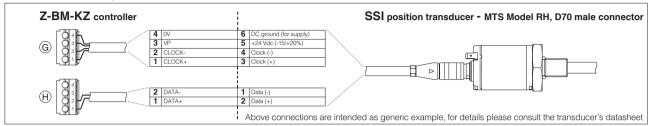
Eight leds show controller operative conditions for immediate basic diagnostics. Please refer to the controler user manual for detailed information.

| FIELDBUS | NP<br>Not Present | BC<br>CANopen | BP<br>PROFIBUS DP | EH<br>EtherCAT | EW<br>POWERLINK | EI<br>EtherNet/IP | EP<br>PROFINET | PW L1 L2 L3 |
|----------|-------------------|---------------|-------------------|----------------|-----------------|-------------------|----------------|-------------|
| L1       | \                 | VALVE STATUS  | 6                 |                | LINK            | /ACT              |                | GREEN GREEN |
| L2       | NETWORK STATUS    |               |                   | NETWORK STATUS |                 |                   |                |             |
| L3       | ALARM STATUS      |               |                   | LINK/ACT       |                 |                   |                | Q Ø Ø Ø RED |
| PW       | OFF = Power s     | supply OFF    | ON = Pow          | er supply ON   |                 |                   |                | OT.         |
| ST       | OFF = Fault pre   | esent         | ON = No fa        | ault           |                 |                   |                | ST          |

# 8.2 Connectors - 4 pin

| CONNECTOR   | PIN                                          | SIGNAL                                      | TECHNICAL SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOTES                                                                                                                                                                                                                 |  |  |  |  |
|-------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             | A1                                           | NC                                          | Do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
| ۸           | A2                                           | NC                                          | Do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
| А           | А3                                           | V+                                          | Power supply 24 VDC (see 9.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input - power supply                                                                                                                                                                                                  |  |  |  |  |
|             | A4                                           | VO                                          | Power supply 0 Vpc (see 9.1)  Position reference input signal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
|             | B1                                           | P_INPUT+                                    | Position reference input signal:<br>±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input - analog signal <b>Software selectable</b>                                                                                                                                                                      |  |  |  |  |
| В           | B2                                           | INPUT-                                      | Negative reference input signal for P_INPUT+ and F_INPUT+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input - analog signal                                                                                                                                                                                                 |  |  |  |  |
| Ь           | В3                                           | F_INPUT+                                    | Pressure/Force reference input signal (SP, SF, SL controls): ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input - analog signal Software selectable                                                                                                                                                                             |  |  |  |  |
|             | B4 EARTH Connect to system ground            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |  |  |
|             | C1                                           | P_MONITOR                                   | Position monitor output signal: ±10 Vpc / ±20 mA maximum range, referred to AGND; default is ±10 Vpc (see 9.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output - analog signal <b>Software selectable</b>                                                                                                                                                                     |  |  |  |  |
|             | C2                                           | ENABLE                                      | Enable (24 Vpc) or disable (0 Vpc) the controller, referred to V0 (see 9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Input - on/off signal                                                                                                                                                                                                 |  |  |  |  |
| С           | C3                                           | F_MONITOR                                   | Pressure/Force (SP, SF, SL controls) or valve spool position (SN control) monitor output signal: $\pm 10~\text{Vpc}$ / $\pm 20~\text{mA}$ maximum range, referred to AGND; default is $\pm 10~\text{Vpc}$ (see 9.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output - analog signal <b>Software selectable</b>                                                                                                                                                                     |  |  |  |  |
|             |                                              | NC                                          | For EW, EI, EP executions the F_MONITOR is not available: do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |  |  |  |  |
|             | C4                                           | FAULT                                       | Fault (0 Vbc) or normal working (24 Vbc), referred to V0 (see 9.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output - on/off signal                                                                                                                                                                                                |  |  |  |  |
|             | D1                                           | D_IN1                                       | Digital input 0 ÷ 24Vpc, referred to AGND (see 9.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input - on/off signal                                                                                                                                                                                                 |  |  |  |  |
| D           | D2                                           | NC                                          | Do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
| D           | D3                                           | CTRL_OUT+                                   | Control output signal for external driver, referred to AGND (see 9.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Output - analog signal <b>Software selectable</b>                                                                                                                                                                     |  |  |  |  |
|             | D4                                           | AGND                                        | Common gnd for digital input and control output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Common gnd                                                                                                                                                                                                            |  |  |  |  |
|             | E1                                           | D_IN0                                       | Digital input 0 ÷ 24Vpc, referred to AGND (see 9.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input - on/off signal                                                                                                                                                                                                 |  |  |  |  |
| F           | E2                                           | NC                                          | Do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
| _           | E3                                           | NC                                          | Do not connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |  |  |  |  |
|             | E4                                           | AGND                                        | Common gnd for digital input and monitor outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Common gnd                                                                                                                                                                                                            |  |  |  |  |
|             | G1<br>G2                                     |                                             | Digital position transducer SSI or Encoder is software selectable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |  |  |  |  |
| G           | G3<br>G4                                     |                                             | - SSI connections see 8.3<br>- Encoder connections see 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |  |  |  |  |
| G<br>H      | G3                                           |                                             | - SSI connections see 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                       |  |  |  |  |
| H           | G3<br>G4<br>H1<br>H2<br>H3                   | VP                                          | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output - power supply Software selectable                                                                                                                                                                             |  |  |  |  |
| H<br>I      | G3 G4 H1 H2 H3                               | P_TR1                                       | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |  |  |  |  |
| H<br>I      | G3 G4 H1 H2 H3 H4 I1 I2 I3                   | P_TR1 AGND                                  | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc, +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals                                                                                                                                                                                                                                                                                                                       | Software selectable  Input - analog signal                                                                                                                                                                            |  |  |  |  |
| H<br>I      | G3 G4 H1 H2 H3 H4                            | P_TR1                                       | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc , +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)                                                                                                                                                                                                                                                                                                                                                                   | Software selectable Input - analog signal Software selectable                                                                                                                                                         |  |  |  |  |
| H<br>I      | G3 G4 H1 H2 H3 H4 I1 I2 I3                   | P_TR1 AGND                                  | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc, +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals                                                                                                                                                                                                                                                                                                                       | Software selectable Input - analog signal Software selectable Common gnd                                                                                                                                              |  |  |  |  |
| G<br>H<br>I | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4                | P_TR1 AGND NC                               | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc . +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals  Do not connect                                                                                                                                                                                                                                                                                                      | Software selectable Input - analog signal Software selectable Common gnd Output - power supply                                                                                                                        |  |  |  |  |
| G<br>H<br>J | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4                | P_TR1 AGND NC VF +24V                       | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vbc, +5Vbc or OFF (default OFF)  Analog position transducer input signal ±10 Vbc / ±20 mA maximum range; default is ±10 Vbc (see 9.8)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vbc or OFF (default OFF)  1st signal pressure/force transducer:                                                                                                                                                                                                                     | Software selectable Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal                                                                             |  |  |  |  |
| G<br>H<br>J | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4 J1 J2          | P_TR1 AGND NC VF+24V F_TR1                  | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc, +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vpc or OFF (default OFF)  1st signal pressure/force transducer: ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.9)                                                                                                                                                        | Software selectable Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal Software selectable                                                         |  |  |  |  |
| H<br>J      | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3       | P_TR1 AGND NC VF +24V F_TR1 AGND            | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc , +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vpc or OFF (default OFF)  1st signal pressure/force transducer: ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.9)  Common gnd for transducer power and signals                                                                                                          | Software selectable Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal Software selectable Common gnd                                              |  |  |  |  |
| G<br>H<br>I | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3 J4 K1 | P_TR1 AGND NC VF +24V F_TR1 AGND NC         | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: + 24Vpc, +5Vpc or OFF (default OFF)  Analog position transducer input signal ± 10 Vpc / ± 20 mA maximum range; default is ± 10 Vpc (see 9.8)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vpc or OFF (default OFF)  1st signal pressure/force transducer: ± 10 Vpc / ± 20 mA maximum range; default is ± 10 Vpc (see 9.9)  Common gnd for transducer power and signals  Do not connect                                                                                    | Software selectable Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal Software selectable Common gnd  Output - power supply                       |  |  |  |  |
| H<br>I<br>K | G3 G4 H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3 J4 K1 | P_TR1 AGND NC VF +24V F_TR1 AGND NC VF +24V | - SSI connections see 8.3 - Encoder connections see 8.4  Digital position transducer SSI or Encoder is software selectable: - SSI connections see 8.3 - Encoder connections see 8.4  Power supply: +24Vpc, +5Vpc or OFF (default OFF)  Analog position transducer input signal ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.8)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vpc or OFF (default OFF)  1st signal pressure/force transducer: ±10 Vpc / ±20 mA maximum range; default is ±10 Vpc (see 9.9)  Common gnd for transducer power and signals  Do not connect  Power supply: +24Vpc or OFF (default OFF)  2nd signal pressure transducer (only for SF): | Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal Software selectable Common gnd  Output - power supply Software selectable Input - analog signal |  |  |  |  |

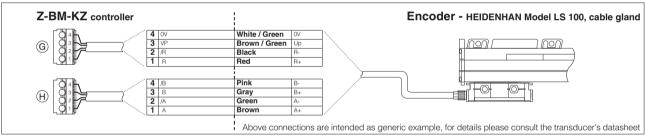
GS340


AXIS & P/Q CONTROLS 399

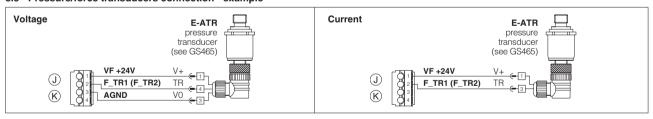
# 8.3 SSI connectors signals - 4 pin

|    | G1      | CLOCK+ | Serial synchronous clock (+)                        | Output - on/off signal                       |
|----|---------|--------|-----------------------------------------------------|----------------------------------------------|
|    | G G3 VP |        | Serial synchronous clock (-)                        | Output - on/off signal                       |
| G  |         |        | Power supply:<br>+24Vbc, +5Vbc or OFF (default OFF) | Output - power supply<br>Software selectable |
|    |         |        | Common gnd for transducer power and signals         | Common gnd                                   |
|    |         |        |                                                     |                                              |
|    | H1      | DATA+  | Serial position data (+)                            | Input - on/off signal                        |
| Н  | H2      | DATA-  | Serial position data (-)                            | Input - on/off signal                        |
| 11 | НЗ      | NC     | Do not connect                                      |                                              |
|    | H4      | NC     | Do not connect                                      |                                              |

Note: for Balluff BTL7 with SSI interface only special code SA433 is supported


# SSI connection - example




# 8.4 Encoder connectors signals - 4 pin

|    | G1      | R  | Input channel R                                     | Input - on/off signal                            |
|----|---------|----|-----------------------------------------------------|--------------------------------------------------|
|    | G G2 VB |    | Input channel /R                                    | Input - on/off signal                            |
| G  |         |    | Power supply:<br>+24Vbc, +5Vbc or OFF (default OFF) | Output - power supply <b>Software selectable</b> |
|    | G4      | ov | Common gnd for transducer power and signals         | Common gnd                                       |
|    | H1      | Α  | Input channel A                                     | Innut on/off signal                              |
|    | пі      | A  | input channer A                                     | Input - on/off signal                            |
| H  | H2      | /A | Input channel /A                                    | Input - on/off signal                            |
| '' | НЗ      | В  | Input channel B                                     | Input - on/off signal                            |
|    | H4      | /B | Input channel /B                                    | Input - on/off signal                            |

# **Encoder connection - example**



# 8.5 Pressure/force transducers connection - example



# **8.6 Communication connectors** ③ - ④ - ⑤ - ⑥ - ⑦

| 3   | ③ USB connector - Mini USB type B always present |                       |  |  |  |  |
|-----|--------------------------------------------------|-----------------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)               |                       |  |  |  |  |
| 1   | +5V_USB                                          | Power supply          |  |  |  |  |
| 2   | D-                                               | Data line -           |  |  |  |  |
| 3   | D+                                               | Data line +           |  |  |  |  |
| 4   | ID                                               | Identification        |  |  |  |  |
| 5   | GND_USB                                          | Signal zero data line |  |  |  |  |

| (5) | ⑤ BP fieldbus execution, connector - DB9 - 9 pin |                                       |  |  |  |  |
|-----|--------------------------------------------------|---------------------------------------|--|--|--|--|
| PIN | SIGNAL TECHNICAL SPECIFICATION (1)               |                                       |  |  |  |  |
| 1   | SHIELD                                           |                                       |  |  |  |  |
| 3   | LINE-B                                           | Bus line (low)                        |  |  |  |  |
| 5   | DGND                                             | Data line and termination signal zero |  |  |  |  |
| 6   | +5V                                              | Termination supply signal             |  |  |  |  |
| 8   | LINE-A                                           | Bus line (high)                       |  |  |  |  |

| (1) | shield | connection | on c | onnector | 's h | nusina | ic | recommended |
|-----|--------|------------|------|----------|------|--------|----|-------------|

|   | 4 BC fieldbus execution, connector - DB9 - 9 pin |          |                             |  |  |
|---|--------------------------------------------------|----------|-----------------------------|--|--|
|   | PIN                                              | SIGNAL   | TECHNICAL SPECIFICATION (1) |  |  |
| ľ | 2                                                | CAN_L    | Bus line (low)              |  |  |
|   | 3                                                | CAN_GND  | Signal zero data line       |  |  |
|   | 5                                                | CAN_SHLD | CAN_SHLD Shield             |  |  |
|   | 7                                                | CAN_H    | Bus line (high)             |  |  |

| ⑥ ⑦ EH, EW, EI, EP fieldbus execution, connector - RJ45 - 8 pin |        |                             |   |              |  |  |  |
|-----------------------------------------------------------------|--------|-----------------------------|---|--------------|--|--|--|
| PIN                                                             | SIGNAL | TECHNICAL SPECIFICATION (1) |   |              |  |  |  |
| 1                                                               | TX+    | Transmitter                 | - | white/orange |  |  |  |
| 2                                                               | RX+    | Receiver                    | - | white/green  |  |  |  |
| 3                                                               | TX-    | Transmitter                 | - | orange       |  |  |  |
| 6                                                               | RX-    | Receiver                    | - | green        |  |  |  |

### 9 SIGNALS SPECIFICATIONS

Atos digital controllers are CE marked according to the applicable directives (e.g. Immunity/Emission EMC Directive).

Installation, wirings and start-up procedures must be performed according to the prescriptions shown in tech table **F003** and in the user manuals included in the Z-SW programming software.

Generic electrical output signals of the valve (e.g. fault or monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, ISO 4413).

#### 9.1 Power supply (V+ and V0)

The power supply must be appropriately stabilized or rectified and filtered: apply at least a 10000  $\mu$ F/40 V capacitance to single phase rectifiers or a 4700  $\mu$ F/40 V capacitance to three phase rectifiers.

A safety fuse is required in series to each power supply: 500 mA fast fuse.

### 9.2 Position reference input signal (P\_INPUT+)

Functionality of P\_INPUT+ signal (pin B1), depends on controllers' reference mode, see section 4: external analog reference generation (see 4.1): input is used as reference for the controller axis position closed loop.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of  $\pm 10$  Vpc or  $\pm 20$  mA; default is  $\pm 10$  Vpc

fieldbus/internal reference generation (see 4.2): analog reference input signal can be used as on-off commands with input range 0 ÷ 24 Vbc.

#### 9.3 Pressure or force reference input signal (F\_INPUT+)

Functionality of F\_INPUT+ signal (pin B3), depends on selected controllers' reference mode and alternated control options, see section 5: SP, SL, SF controls and external analog reference selected: input is used as reference for the controller pressure/force closed loop. Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

SN control or fieldbus/internal reference selected: analog reference input signal can be used as on-off commands with input range 0 ÷ 24 Vpc

#### 9.4 Position monitor output signal (P\_MONITOR)

The controller generates an analog output signal (pin C1) proportional to the actual axis position; the monitor output signal can be software set to show other signals available in the controller (e.g. analog reference, fieldbus reference, position error, valve spool position). The output range and polarity are software selectable within the maximum range ±10 Vpc or ±20 mA; default is ±10 Vpc

#### 9.5 Pressure or force monitor output signal (F MONITOR)

The controller generates an analog output signal (pin C3) according to alternated pressure/force control option:

SN control: output signal is proportional to the actual valve spool position

SP, SL, SF controls: output signal is proportional to the actual pressure/forcel applied to the cylinder's rod end

Monitor output signals can be software set to show other signals available in the controller (e.g. analog reference, force reference).

The output range and polarity are software selectable within the maximum range  $\pm 10~\text{Vpc}$  or  $\pm 20~\text{mA}$ ; default is  $\pm 10~\text{Vpc}$ 

### 9.6 Enable Input Signal (ENABLE)

To enable the controller, a 24 Vpc voltage has to be applied on pin C2.

When the Enable signal is set to zero the controller can be software set to perform one of the following actions:

- maintain the actuator actual position in close loop control
- $\ \text{move towards a predefined position in closed loop control and maintains the reached position (hold position)} \\$
- move forward or backward in open loop (only the valve's closed loop remain active)

### 9.7 Fault output signal (FAULT)

Fault output signal (pin C4) indicates fault conditions of the controller (solenoid short circuits/not connected, reference or transducer signal cable broken, maximum error exceeded, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24 Vpc

Fault status is not affected by the status of the Enable input signal.

Fault output signal can be used as digital output by software selection.

### 9.8 Position transducer input signals

A position transducer must be always directly connected to the controller. Position digital input signals are factory preset to binary SSI, they can be reconfigured via software selecting between binary/gray SSI, Encoder or generic transducer with analog interface.

Input signals can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

Refer to position transducer characteristics to select the transducer type according to specific application requirements, see section 100.

### 9.9 Remote pressure/force transducer input signals (F\_TR1 and F\_TR2) - SP, SF, SL controls

Analog remote pressure transducers or load cell can be directly connected to the controller.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 Vpc or ± 20 mA; default is ±10 Vpc

Refer to pressure/force transducer characteristics to select the transducer type according to specific application requirements, see section 10.

### 9.10 Control output signal (CTRL\_OUT+)

The error signal processed by the control algorithms generates the control output signal (pin D3) for the external driver of the proportional valve which operates the hydraulic flow to the actuator.

The output range and polarity are software selectable within ±10 Vpc (for voltage) or ± 20 mA (for current) maximum range referred to the analog ground AGND on pin D4; default setting is ±10 Vpc

### 9.11 Digital input signals (D\_IN0 and D\_IN1)

Two on-off input signals are available on the pin E1 and D1. For each input by the Z-SW software, it is possible to set the polarity and to match a proper condition within the following:

GS340

- pressure/force PID selection (default)
- start/stop/switch-over command in case of internal reference generation (see 4.2)
- specific operative command for hydraulic axis mode (referencing mode, jog mode, automatic mode)
- jog command
- disable pressure / force alternated control

| PID SET SELECTION |        |             |                   |  |  |  |
|-------------------|--------|-------------|-------------------|--|--|--|
| SET 1             | SET 2  | SET 3       | SET 4             |  |  |  |
| 0                 | 24 VDC | 0           | 24 VDC            |  |  |  |
| 0                 | 0      | 24 VDC      | 24 Vpc            |  |  |  |
|                   | -      | SET 1 SET 2 | SET 1 SET 2 SET 3 |  |  |  |

401

AXIS & P/O CONTROLS

### 10 ACTUATOR'S TRANSDUCER CHARACTERISTICS

#### 10.1 Position transducers

The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the controllers, depending to the system requirements: analog signal (analog), SSI or Encoder (digital). Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest

performances. Transducers with analog interface grant simple and cost effective solutions.

#### 10.2 Pressure/force transducers

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducer (see section 5). Alternated pressure/force controls require to install pressure transducers or load cell to measure the actual pressure/force values. Pressure transducers allow easy system integration and cost effective solution for both alternated position/pressure and position/force controls (see tech table **GS465** for pressure transducers details). Load cell transducers allow the user to get high accuracy and precise regulations for alternated position/force control.

The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

#### 10.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

|                      |                      | Pressure/Force         |                     |                      |
|----------------------|----------------------|------------------------|---------------------|----------------------|
| Input type           | Analog               | SSI <b>(3)</b>         | Incremental Encoder | Analog               |
| Power supply (1)     | +24 VDC              | +5 Vpc or +24 Vpc      | +5 Vpc or +24 Vpc   | +24 Vpc              |
| Controller Interface | 0 ÷ 10V or 4 ÷ 20 mA | Serial SSI binary/gray | TTL 5Vpp - 150 KHz  | ±10 Vpc or 4 ÷ 20 mA |
| Max speed            | 1 m/s                | 2 m/s                  | 2 m/s               | -                    |
| Max Resolution       | < 0.2 % FS           | 1 μm                   | 1 μm (@ 0.15 m/s)   | < 0.4 % FS           |
| Linearity error (2)  | < ±0.03% FS          | < ± 0.01 % FS          | < ± 0.001 % FS      | < ±0.25% FS          |
| Repeatability (2)    | < ± 0.005% FS        | < ± 0.001 % FS         | < ± 0.001 % FS      | < ±0.1% FS           |

(1) power supply provided by Atos controller (2) percentage of total stroke (3) for Balluff BTL7 with SSI interface only special code SA433 is supported

### 11 VALVE SETTINGS AND PROGRAMMING TOOLS

Valve's functional parameters and configurations, can be easily set and optimized using Atos Z-SW programming software connected via USB port to the digital controller (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the controller is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

**Z-SW-FULL** support: NP (USB) PS (Serial) IR (Infrared) BP (PROFIBUS DP) BC (CANopen) FH (FtherCAT) EW (POWERLINK) EI (EtherNet/IP) **EP (PROFINET)** 

WARNING: drivers USB port is not isolated! For E-C-SB-USB/BM cable, the use of isolator adapter is highly recommended for PC protection



WARNING: see tech table GS500 for the list of countries where the Bluetooth adapter has been approved

DVD programming software, to be ordered separately:

DVD first supply = software has to be activated via web registration at www.atos.com; 1 year service included **Z-SW-FULL** 

Upon web registration user receive via email the Activation Code (software license) and login data to access Atos

**USB** or Bluetooth connection

E-C-SB-BM/BTH cable

E-C-SB-USB/BM cable

E-A-SB-USB/BTH adapter

E-A-SB-USB/OPT isolator

Download Area

**Z-SW-FULL-N** DVD next supplies = only for supplies after the first; service not included, web registration not allowed

Software has to be activated with Activation Code received upon first supply web registration

Atos Download Area: direct access to latest releases of Z-SW software, manuals, USB drivers and fieldbus configuration files at www.atos.com

USB Adapters, Cables and Terminators, can be ordered separately

### 12 MAIN SOFTWARE PARAMETER SETTINGS

For a detailed descriptions of the available settings, wirings and installation procedures, please refer to the user manuals included in the Z-SW programming software:

Z-MAN-BM-KZ - user manual for Z-BM-KZ

#### 12.1 External reference and transducer parameters

Allow to configure the controller reference and transducer inputs, analog or digital, to match the specific application requirements:

- Scaling parameters define the correspondence of these signals with the specific actuator stroke or force to be controlled

- Limit parameters define maximum/minimum stroke and force to detect possible alarm conditions define the startup procedure to initialize incremental transducer (e.g. Encoder) Homing parameters

### 12.2 PID control dynamics parameters

Allow to optimize and adapt the controller closed loop to the wide range of hydraulic system characteristics:

each part of the closed loop algorithm (proportional, integral, derivative, feed forward, fine positioning, etc) can be - PID parameters modified to match the application requirements

### 12.3 Monitoring parameters

Allow to configure the controller monitoring function of the positioning error (difference between actual reference and feedback) and detects anomalous conditions:

 Monitoring parameters maximum allowed errors can be set for both static and dynamic positioning phases, and dedicated waiting times can be set to delay the activation of the alarm condition and relevant reaction (see 12.4)

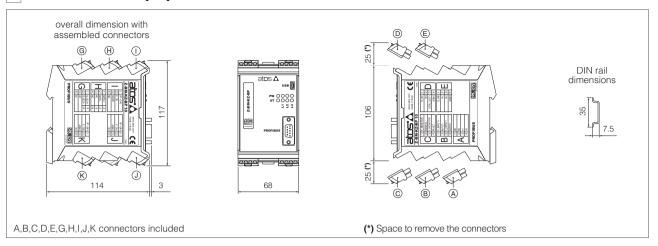
### 12.4 Fault parameters

Allow to configure how the controller detect and react to alarm conditions:

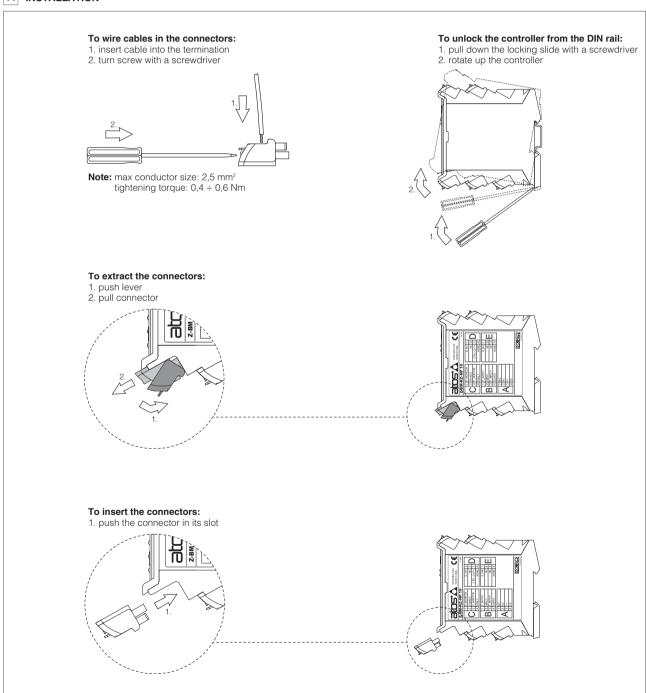
define different conditions, threshold and delay time to detect alarm conditions - Diagnostics parameters

define different actions to be performed in case of alarm presence (stop at actual or preprogrammed position, emergency forward/backward, controller disabling, etc.) Reaction parameters

#### 12.5 Valve characteristics compensation


Allow to modify the valve regulation to match the actuator/system characteristics and to obtain the best overall performances:

- Valve parameters modify the standard valve regulation by means of deadband compensation, curve linearization and differentiated gain for positive and negative regulation

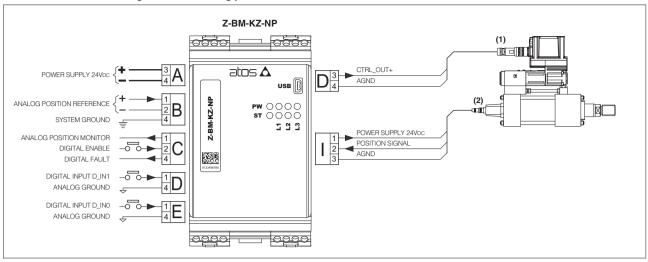

### 12.6 Motion phases parameters

When the internal reference generation is active a pre-programmed cycle can be generated; start/stop/switch-over commands and reference generation types parameters can be set to design a customized sequence of motion phases adapted to the specific application requirements (see 4.2).

### 13 OVERALL DIMENSIONS [mm]

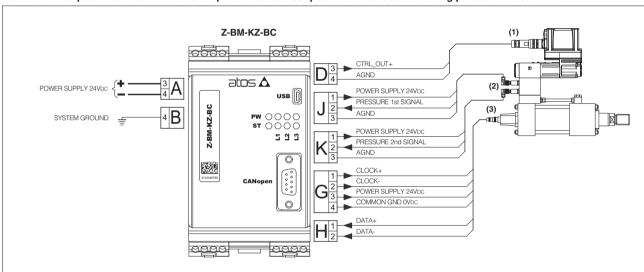


### 14 INSTALLATION



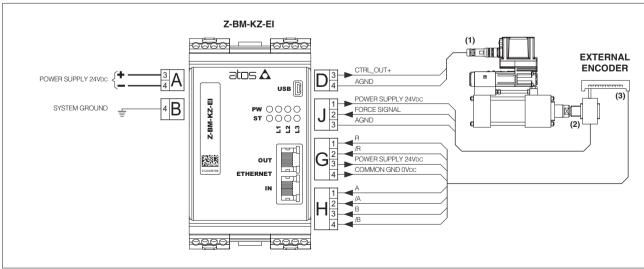

Note: all connectors are supplied with a mechanical coding. This feature ensures a unique insertion of each connector in the own slot (eg. connector A can not be inserted into connector slot of B,C,D,E,G,H,I,J,K)

403


### 15 WIRING EXAMPLES

#### 15.1 Position control - analog reference - analog position transducer




- (1) For valve driver electrical connections please refer to the specific technical table
- (2) The analog position transducer connections are intended as generic example, for details please consult the transducer's datasheet

### 15.2 Alternated position/force control - CANopen reference - SSI position transducer - 2 analog pressure transducers



- (1) For valve driver electrical connections please refer to the specific technical table
- (2) Pressure transducers connections are shown with voltage signal output; for connections with current signal output see 8.5
- (3) The SSI position transducer connections are intended as generic example, for details please consult the transducer's datasheet

### 15.3 Alternated position/force control - EtherNet/IP reference - Encoder position transducer - analog load cell



- (1) For valve driver electrical connections please refer to the specific technical table
- (2) Load cell connections is shown with voltage signal output; please consult the load cell datasheet for details about connections
- (3) The Encoder position transducer connections are intended as generic example, for details please consult the transducer's datasheet



## Ex-proof digital proportional valves with P/Q control

directional valves with LVDT transducer and on board driver



### 1 GENERAL DESCRIPTION

The ex-proof proportional directional valves with P/Q control are identified by option SP, SF or SL and they are designed to perform the alternated regulation of speed/position/force of hydraulic actuators.

These options add the closed loop control of pressure (for SP) or force (for SF and SL) to the standard direction and flow regulation operated by the servoproportional and high performance proportional directional valves.

Note: for simplification, the following description always refers to the "force control", even if for the SP option the control is the "pressure".

The switching from the flow control to the force control is automatically performed by the valve thanks to a sophisticated algorithm.

The advantage offered by this solution is the high accurate and high dynamic control of the machine actuator in terms of direction, speed, position and force, all performed by a single valve.

### 2 FUNCTIONAL DESCRIPTION

The alternated P/Q control is operated by means of two electronic reference signals sent from the machine central unit to the valve driver: one for flow regulation and one for regulation. The valve driver has to be interfaced to a remote pressure transducer or to a load cell for the measurement and feedback of the actual pressure or force.

The SP option controls the pressure on A user port and it has to be interfaced to a single pressure transducer

The SF option controls the force by measuring the delta p across A and B user ports and it has to be interfaced to two pressure transducers

The SL option directly controls the actuator force and it has to be interfaced to a load cell

See section 4 for configuration examples

A dedicated algorithm automatically selects which control (flow or force) will be active time by time. The dynamics of the switching between the two controls can be regulated thanks to specific software setting, in order to avoid instability or vibrations.

The flow regulation is active when the actual system force measured by the force transducer is lower than the relevant input reference signal.

The valve normally works to regulate the flow by controlling in closed-loop the spool position through the integral LVDT transducer.

The force control is activated when the actual system force, measured by remote transducers, reaches the setpoint defined by the relevant force reference input signal and meets the regulation requirements defined within the control algorithm.

The flow regulation is consequently reduced to keep steady the closed loop regulation of the force.

If the force decreases below its input reference signal, the flow control returns active.

The dynamic response of the force control can be adapted to different system characteristics, by setting the internal PID parameters using Atos PC software. Up to 4 different PIDs are selectable to optimize the system dynamic response according to different hydraulic working conditions.

### 3 VALVES RANGE

Options SP, SF, SL are available for ex-proof high performance proportional directional valves and ex-proof servoproportional valves with TES/LES on-board digital driver or TEZ/LEZ axis controller.

Valve's performance characteristics and overall dimensions remains unchanged as per specific FX\*\* technical tables.

### Servoproportionals:

DLHZA-TES, DLKZA-TES - direct, zero spool overlap, sleeve execution - technical tables FX150

DHZA-TES, DKZA-TES - direct, zero spool overlap - technical tables FX135

DPZA-LES - piloted, zero spool overlap - technical table FX235

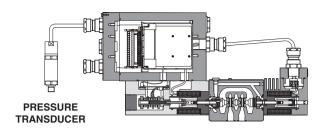
LIQZA-LES - 3-way servocartridges - technical table FX380

Servoproportionals with TEZ/LEZ axis controller:

DLHZA-TEZ, DLKZA-TEZ - direct, zero spool overlap, sleeve execution - technical tables FX610

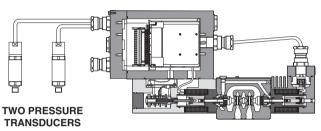
DHZA-TEZ, DKZA-TEZ - direct, zero spool overlap - technical tables FX620

DPZA-LEZ - piloted, zero spool overlap - technical tables FX630


### High perfomance proportionals:

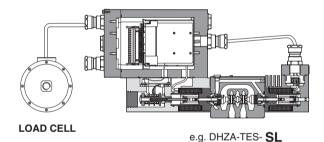
DHZA-TES, DKZA-TES - direct, positive spool overlap - technical table FX130

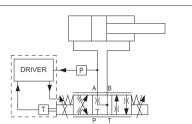
**DPZA-LES** - piloted, positive spool overlap - technical table **FX230** 


### 4 SP, SF, SL CONFIGURATION EXAMPLES

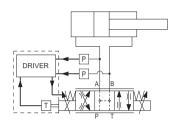
### SP - Pressure Control - 1 pressure transducer




e.g. DHZA-TES- SP


#### SF - Force Control - 2 pressure transducers




e.g. DHZA-TES- SF

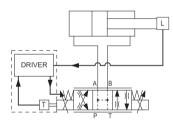
#### SL - Force Control - 1 load cell





one remote pressure transducer has to be installed on the actuator's port to be controlled. In this example the SP option regulates the pressure on port A




two remote pressure transducers have to be installed on the actuator's ports A and B.

The bore and rod dimensions of the actuator have to be input into the valve software, which calculates the relevant areas:

A1 = bore area; A2 = ring area

The SF option directly controls the actuator force (F) as result of the following calculation:

 $F = \triangle p (Pa-Pb) \times \triangle area (A1 - A2)$ 



one load cell transducer has to be installed between the actuator and the controlled load The SL option directly control the actuator force

### 5 GENERAL NOTES

Atos digital proportionals valves are CE marked according to the applicable directives (e.g. Immunity and Emission EMC Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in tech table F003 and in the user manuals included in the E-SW-\* programming software.

### **VALVE SETTINGS AND PROGRAMMING TOOLS**



WARNING: the below operation must be performed in a safety area

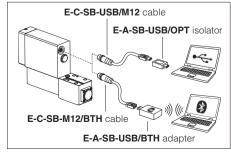
Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver (see table GS003). For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options (see table GS500):

E-SW-BASIC/PQ supports: NP (USB)

E-SW-FIELDBUS/PQ and Z-SW-FULL support:

NP (USB) - only Z-SW-FULL


BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT) EI (EtherNet/IP) EW (POWERLINK) EP (PROFINET)





#### WARNING: drivers USB port is not isolated! For E-C-SB-USB/M12 cable, the use of isolator adapter is highly recommended for PC protection

### **USB** or Bluetooth connection



### 7 FUNCTIONAL EXAMPLES

The following functional examples are just generic reference of the possible applications of with ex-proof proportional directional valves with alternated P/Q control, SP, SF, SL.

Please contact Atos technical department for additional evaluations related to specific applications usage.

### 7.1 High-dynamic pressure reducing controls - only for SP

Directional proportional valves with zero spool overlap and SP control, are operated in 3-way hydraulic configuration to obtain high-dynamic pressure reducing control on the A (or B) user port:

- flow reference signal is used to limit the maximum flow during the pressure regulation
- pressure reference signal is used to regulate the pressure on the valve's A user port; the rapid/repeatable response of the pressure control is performed in high dynamics by the directional valve's closed loop regulation

#### Requirements:

- an ex-proof remote pressure transducer has to be installed in the hydraulic system on the controlled user port (when using 4 way valves either A or B port can be used while the not controlled port must be plugged)
- zero overlap valves without fail safe position are recommended;

 $oxed{\Lambda}$  Positive overlap valves with PABT ports closed in central position are not suitable for this application

#### 7.2 Single effect actuators with speed/pressure/force controls - only for SP or SL

Directional proportional valves with SP or SL control, are operated in 3-way hydraulic configuration to control speed/pressure (force) on single effect actuators:

- flow reference signal is used to regulate the actuator's forward and backward speed while pressure (force) reference signal is used to limit the maximum pushing pressure (force) to the actuator
- pressure (force) reference signal is used to regulate the actuator pushing pressure (force) while flow reference signal is used to limit the maximum actuator speed

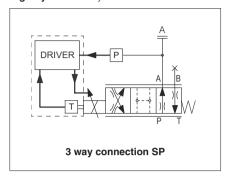
#### Requirements:

- for SP control a remote ex-proof pressure transducer has to be installed in the hydraulic system on the actuator pushing port
- for SL control a remote force transducer has to be installed between the actuator and the controlled load
- zero overlap valves without fail safe position are recommended;

Positive overlap valves with PABT ports closed in central position are not suitable for this application

#### 7.3 Double effect actuators with speed/pressure controls - only for SP

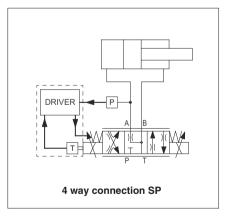
Directional proportional valves with SP control, regulate speed/pressure on double effect actuators:


- flow reference signal is used to regulate the actuator's forward and backward speed while pressure reference signal is used to limit the maximum pushing pressure of the
- pressure reference signal is used to regulate the actuator pushing pressure while flow reference signal is used to limit the maximum forward and backward actuator speed

### Requirements:

- an ex-proof remote pressure transducer has to be installed on the actuator's pushing port
- a dedicated Q5 spool with strong "meter-in" characteristic in central position has to be used; during pressure regulation, the not controlled port remains connected to T line to avoid any back pressure - see section 7.4

Positive overlap valves with PABT ports closed are not suitable for this application

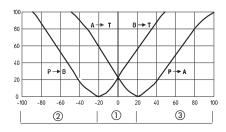

#### High-dynamic - only for SP



#### Single effect - only for SP or SL



#### Double effect - only for SP




407

### 7.4 Q5 spool for 4 way connection with SP control

#### type Q5

Allows fast direction reverse during motion phases (e.g. ejector motion with max strain limitation)



(1) depressuring (pressure control active)

FX500

- 2 backward movements (flow control active)
- (3) forward movements (flow or pressure control active)

### 7.5 Double effect actuators with force limit/regulation - only for SF or SL

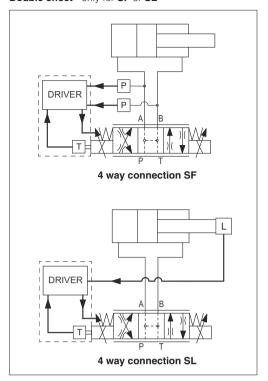
4 way directional proportional valves with SF or SL control, regulate speed/force on double effect actuators:

- flow reference signal is used to regulate the actuator's forward and backward speed while force reference signal is used to limit the maximum pushing and pulling force of the actuator
- force reference signal is used to regulate the actuator pushing and pulling force while flow reference signal is used to limit the maximum actuator speed

### Requirements:

- for SF two ex-proof remote pressure transducers have to be installed on the both actuator's ports
- for SL one ex-proof push/pull load cell transducer has to be installed between the actuator and the controlled load
- zero overlap valves are recommended; positive overlap valves with PABT ports closed in central position are not suitable for this application

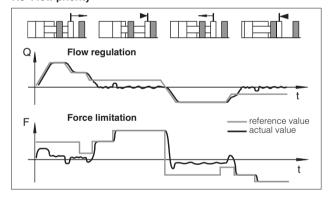
### Advantages:


- force control is possible in both push and pull directions
- SL allows a more precise force control despite of a more complex installation of the ex-proof load cell transducer
- SF allows to add force control also into existing systems thanks to the simple installation of pressure transducers

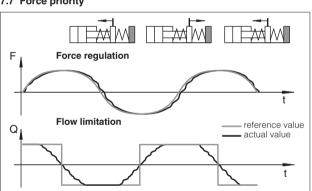
#### Control modes:

• Flow priority: flow reference signal is used to move forward and backward the actuator while force is limited/regulated in both push and

• Force priority: force reference signal is used to control both push and pull forces while flow is limited/regulated in both direction


#### Double effect - only for SF or SL




#### Notes:

auxiliary check valves are recommended to intercept A and B lines in case of specific hydraulic configuration requirements in absence of power supply or fault

### 7.6 Flow priority



### 7.7 Force priority



### 8 PRESSURE/FORCE TRANSDUCER CHARACTERISTICS

The accuracy of the pressure/force control is strongly dependent to the selected pressure/force transducers.

Pressure/force controls require to install remote pressure transducers or load cell to measure the actual pressure/force values:

- Pressure Transducers: allow easy system integration and cost effective solution for both pressure and force controls, see tech table GX800 for E-ATRA-7 ex-proof pressure transducer details
- Load Cell Transducers: allow the user to get high accuracy and precise regulations for force control, but it increases the complexity of the mechanical installation

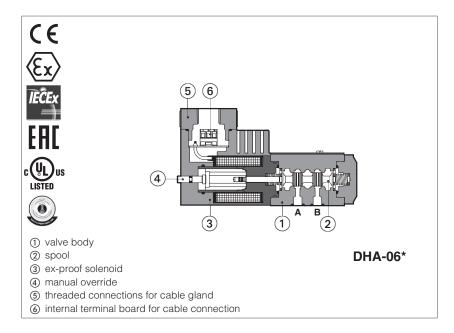
The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115÷120 % of the maximum regulated pressure/force.







| TECHNICAL INFORMATION                                                        | ON.                                                    | Size                        | Qmax [l/min] | Table | Pag |
|------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------|-------|-----|
| Basics for electrohydraulic                                                  | s in hazardous environments                            |                             |              | X010  | 547 |
| Summary of Atos ex-proo                                                      | f components multicertified to ATEX, IECEx, EAC, PES   | 0                           |              | X020  | 557 |
| Summary of Atos ex-proo                                                      | f components certified to cULus                        |                             |              | X030  | 565 |
| Summary of Atos ex-proo                                                      | f components certified to MA                           |                             |              | X040  | 569 |
| Summary of Atos intrinsic                                                    | ally safe components certified to ATEX, IECEx          |                             |              | X050  | 571 |
| Mounting surface for elect                                                   | rohydraulic valves                                     |                             |              | P005  | 593 |
| Mounting surface and cav                                                     | ities for cartridge valves                             |                             |              | P006  | 597 |
| Ex-d                                                                         |                                                        |                             |              |       |     |
| DIRECTIONAL VALVES                                                           |                                                        |                             |              |       |     |
| solenoid operated                                                            |                                                        |                             |              |       |     |
| DHA                                                                          | direct, spool type, subplate, AC or DC solenoids       | 06                          | 70           | EX010 | 413 |
| DHA/MA, DKA/MA                                                               | direct, spool type, subplate, DC solenoids             | 06 ÷ 10                     | 80 ÷ 120     | EX015 | 421 |
| DPHA                                                                         | piloted, spool type, subplate, AC or DC solenoids      | 10 ÷ 32                     | 160 ÷ 1000   | EX030 | 425 |
| leak free, solenoid operate                                                  | ed                                                     |                             |              |       |     |
| DLAH, DLAHM                                                                  | direct, poppet type, subplate, AC or DC solenoids      | 06                          | 12 . 70      | EVO20 | 475 |
| CART-LAH, CART-LAHM                                                          | direct, poppet type, screw-in cartridge, AC or DC sole | enoids M20                  | 12 ÷ 30      | EX020 | 435 |
| PRESSURE VALVES                                                              |                                                        |                             |              |       |     |
| relief                                                                       |                                                        |                             |              |       |     |
| ARAM-AO                                                                      | piloted, in line, AC or DC solenoids                   | G3/4" ÷ G1 <sup>1</sup> /4" | 350 ÷ 500    | CX010 | 441 |
| AGAM-AO                                                                      | piloted, subplate, AC or DC solenoids                  | 10 ÷ 32                     | 200 ÷ 600    | CAUIO | 441 |
| ISO CARTRIDGES                                                               |                                                        |                             |              |       |     |
| directional                                                                  |                                                        |                             |              |       |     |
| LIDEW-AO, LIDBH-AO                                                           | functional covers, AC or DC solenoids                  | 16 ÷ 63                     | 240 ÷ 4000   | EX050 | 451 |
| ACCESSORIES                                                                  |                                                        |                             |              |       |     |
| E-ATRA-7                                                                     | pressure transducer with amplified analog output sig   | gnal                        |              | GX800 | 521 |
| BA                                                                           | single station subplates, mounting surfaces ISO 440    | 01, 6264 and 5781           |              | K280  | 523 |
| BA-214, BA-314, BA-244 multi-station subplates, mounting surface ISO 4401    |                                                        |                             |              |       | 527 |
| BA-214/AL multi-station subplates, mounting surface ISO 4401, aluminium      |                                                        |                             |              |       | 531 |
| HAND LEVERS for on-off and proportional valves                               |                                                        |                             |              |       |     |
| CABLE GLANDS for proportional and on-off valves, standard or armoured cables |                                                        |                             |              |       |     |
|                                                                              | p. p. p. a.        |                             |              | KX800 | 535 |
| Operating and maintenant                                                     | oce information for ex-proof on-off valves             |                             |              | EX900 | 613 |
| operating and maintenar                                                      | ice information for ex-proof off-off valves            |                             |              | L/300 | 013 |


| DIRECTIONAL VALVES                                                        |                                                     | Size                        | Qmax [I/min] | Table | Pag |
|---------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|--------------|-------|-----|
| solenoid operated                                                         |                                                     |                             |              |       |     |
| DHW                                                                       | direct, spool type, subplate                        | 06                          | 25           | EX100 | 459 |
| DPHW                                                                      | piloted, spool type, subplate                       | 10 ÷ 25                     | 160 ÷ 700    | EX130 | 463 |
| leak free, solenoid operate                                               | ed                                                  |                             |              |       |     |
| DLWH                                                                      | direct, poppet type, subplate                       | 06                          | 12           | EX120 | 471 |
| PRESSURE VALVES                                                           |                                                     |                             |              |       |     |
| relief                                                                    |                                                     |                             |              |       |     |
| ARAM-WO                                                                   | piloted, in line                                    | G3/4" ÷ G1 <sup>1</sup> /4" | 350 ÷ 500    | CX030 | 475 |
| AGAM-WO                                                                   | piloted, subplate                                   | 10 ÷ 32                     | 200 ÷ 600    | CX030 | 4/3 |
| ISO CARTRIDGES                                                            |                                                     |                             |              |       |     |
| directional                                                               |                                                     |                             |              |       |     |
| LIDEW-WO, LIDBH-WO                                                        | functional covers                                   | 16 ÷ 63                     | 240 ÷ 4000   | EX150 | 485 |
| ELECTRONICS                                                               |                                                     |                             |              |       |     |
| Y-BXNE                                                                    | power supply barrier, single or double channel      |                             |              | GX010 | 491 |
| ACCESSORIES                                                               |                                                     |                             |              |       |     |
| BA                                                                        | single station subplates, mounting surfaces ISO 44  | 101, 6264 and 578           | l            | K280  | 523 |
| BA-214, BA-314, BA-244 multi-station subplates, mounting surface ISO 4401 |                                                     |                             | K290         | 527   |     |
| BA-214/AL multi-station subplates, mounting surface ISO 4401, aluminium   |                                                     |                             |              | K295  | 531 |
| OPERATING INFORMATION                                                     | DN                                                  |                             |              |       |     |
| Operating and maintenan                                                   | ce information for intrinsically safe on-off valves |                             |              | EX950 | 621 |

Supplementary components range available on www.atos.com



### Ex-proof solenoid directional valves

on-off, direct, spool type - ATEX, IECEx, EAC, PESO or cULus



### DHA

On-off, spool type directional valves equipped with ex-proof solenoids certified for safe operation in hazardous environments with potentially explosive atmosphere.

#### Certifications:

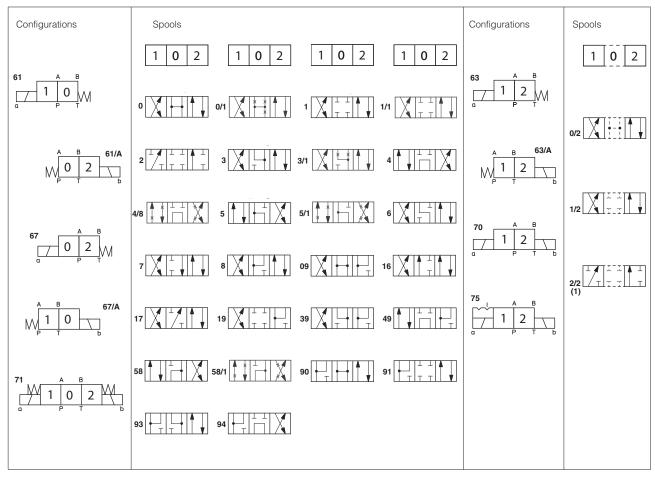
- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- **cULus** North American certification for gas group **C&D**

DHA valves are **SIL** compliance with IEC 61508 (TÜV certified)

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

Size: **06** - ISO 4401 Max flow: **70 l/min** Max pressure: **350 bar** 


#### 1 MODEL CODE DHA **24DC** Seals material Ex-proof solenoid directional valve. see section 6 direct, spool type = NBR PE = FKM BT = HNBR (1) Certification type: Series number Multicertification ATEX, IECEx, EAC: = omit for Group II 2G / II 2D (1) **M** = Group I M2 (mining) Voltage code, see section 5 North American Certification: UL = cULus Options (3): = solenoid at side of port B (for single solenoid valves) Valve size (ISO 4401) = horizontal cable entrance (2) **0** = 06 **WP** = $\triangle$ manual override protected by metallic cap Hand lever options (4): MV = vertical hand lever AMV = vertical hand lever installed at side of port B Configuration, see section 2: Solenoid threaded connection for cable gland fitting: GK = GK-1/2" - not for cULus (5) = M20x1,5 - not for cULus NPT = 1/2" NPTSpool type, see section 2

- (1) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com
- (2) Not for multicertification M group I (mining)
- (3) For possible combined options, see 12.1
- (4) Options MV and AMV are available only for configuration 61, 61/A, 63, 63/A, 71 and with spool type 0, 0/2, 1, 1P, 1/2, 1/2P, 3, 3P, 4, 7. Not available in combination with option WP
- (5) Approved only for the Italian market

 $oldsymbol{\Lambda}$  The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

EX010 ON-OFF VALVES 413

### **2** CONFIGURATIONS AND SPOOLS (representation according to ISO 1219-1)



For spool type 2 and 2/2 port T of the valve must be connected to tank if the operating pressure exceed the max T pressure reported at section 4: not available for configuration 75

### 2.1 Special shaped spools

- spools type 0 and 3 are also available as 0/1 and 3/1 with restricted oil passages in central position, from user ports to tank.
- spools type  $\mathbf{1,4,5}$  and  $\mathbf{58}$  are also available as  $\mathbf{1/1,4/8,5/1}$  and  $\mathbf{58/1}$  .
- They are properly shaped to reduce water-hammer shocks during the swiching.
- spools type 1, 1/2, 3, 8 are available as 1P, 1/2P, 3P, 8P to limit valve internal leakages.

### 3 GENERAL CHARACTERISTICS

| Assembly position / location           | Any position                                                                                                                                                             |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                         |
| MTTFd values according to EN ISO 13849 | 150 years, for further details see technical table P007                                                                                                                  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                               |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                    |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                              |

### 4 HYDRAULIC CHARACTERISTICS

| Operating pressure                                        | Ports P,A,B: <b>350</b> bar;<br>Port T <b>210</b> bar |
|-----------------------------------------------------------|-------------------------------------------------------|
| Rated flow                                                | See diagrams Q/ $\Delta$ p at section 13              |
| Maximum flow 70 I/min, see operating limits at section 14 |                                                       |

### 5 ELECTRICAL CHARACTERISTICS

| Valve type        |                           | DHA                    | DHA <b>/UL</b>                     |  |
|-------------------|---------------------------|------------------------|------------------------------------|--|
| Voltage code (1)  | VDC ±10%                  | 12DC, 24DC, 28DC, 48DC | 12DC, 24DC, 110DC,<br>125DC, 220DC |  |
|                   | VAC 50/60 Hz ±10%         | 12AC, 24AC, 1          | 12AC, 24AC, 110AC, 230AC           |  |
| Power consumpti   | on at 20°C                | 8'                     | 12W                                |  |
| Coil insulation   |                           |                        | class H                            |  |
| Protection degree | with relevant cable gland | IP66/67 to D           | raintight enclosure, UL approved   |  |
| Duty factor       | actor 100%                |                        |                                    |  |

<sup>(1)</sup> For alternating current supply a rectifier bridge is provided built-in the solenoid For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

### 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                      | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                |                                                                                                                            |               |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Seals, recommended fluid temperature | FKM seals (/PE option) = -20°C ÷ +80°C                                                         |                                                                                                                            |               |  |  |  |
|                                      | HNBR seals (/BT option) = -40°C                                                                | HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |               |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                               |                                                                                                                            |               |  |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog |                                                                                                                            |               |  |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                            | Classification                                                                                                             | Ref. Standard |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                 | NBR, FKM, HNBR HL, HLP, HLPD, HVLP, HVLPD                                                                                  |               |  |  |  |
| Flame resistant without water        | FKM                                                                                            | HFDU, HFDR                                                                                                                 | ISO 12922     |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                      | HFC                                                                                                                        | 130 12922     |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature.

## (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar

- -max fluid temperature = 50°C

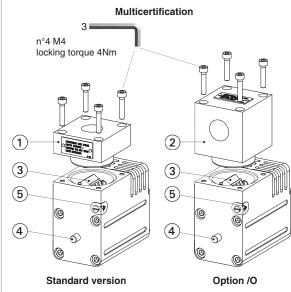
### 7 CERTIFICATION DATA

| Valve type                                                                        | DHA                                                                |          | DH     | A <b>/M</b>                                | DHA <b>/UL</b> |                                                    |                                  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|--------|--------------------------------------------|----------------|----------------------------------------------------|----------------------------------|
| Certifications                                                                    | Multicertifica                                                     | ation Gr | oup II | Multicertification Group I                 |                | North American cULus                               |                                  |
|                                                                                   | ATEX IECEX                                                         | EAC      | PESO   | ATEX                                       | IECEx          | cU                                                 | Lus                              |
| Solenoid certified code                                                           | C                                                                  | PΑ       |        | OA                                         | VM             | OA                                                 | /EC                              |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx 0<br>EAC: TC RU C-<br>PESO: P33813   | ES 10.0  | 0010x  | ATEX: CESI 03<br>IECEx: IECEx C            |                |                                                    | - E366100                        |
| Method of protection                                                              | ATEX, EAC Ex II 2G Ex d I Ex II 2D Ex tb IIIC                      |          |        | • ATEX<br>Ex I M2 Ex db<br>• IECEx         | l Mb           | • UL 1203<br>Class I, Div.I, G<br>Class I, Zone I, | Groups C & D<br>Groups IIA & IIB |
|                                                                                   | • IECEx<br>Ex d IIC T6/T4,<br>Ex tb IIIC T85°                      |          | °C Db  | Ex db I Mb                                 |                |                                                    |                                  |
|                                                                                   | • PESO<br>Ex II 2G Ex d I                                          | IC T6/T4 | 4 Gb   |                                            |                |                                                    |                                  |
| Temperature class                                                                 | T6                                                                 |          | T4     |                                            | -              | T6                                                 | T5                               |
| Surface temperature                                                               | ≤ 85 °C                                                            | ≤ 1      | 35 °C  | ≤ 15                                       | 0 °C           | ≤ 85 °C                                            | ≤ 100 °C                         |
| Ambient temperature (2)                                                           | -40 ÷ +45 °C                                                       | -40 ÷    | +70 °C | -20 ÷ -                                    | +70 °C         | -40 ÷ +55 °C                                       | -40 ÷ +70 °C                     |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                            |          |        | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31 |                | UL 1203 a<br>CSA 22.2<br>CSA 22.2                  | n°30-1986                        |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT |          |        |                                            | 1/2" NPT ANS   | I/ASME B46.1                                       |                                  |

<sup>(1)</sup> The type examinator certificates can be downloaded from www.atos.com

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 8 SIL compliance with IEC 61508: 2010

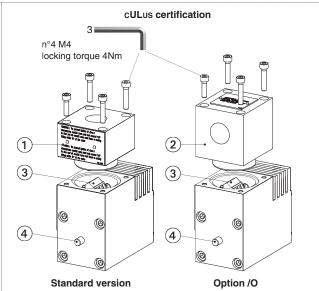

DHA (multicertified for surface and mining) meets the requirements of:

- **SC3** (systematic capability)
- max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
- max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)

EX010 ON-OFF VALVES 415

<sup>(2)</sup> The solenoids Group II and cULus are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

### 9 EX PROOF SOLENOIDS WIRING




- ① cover with threaded connection for vertical cable gland fitting
- (2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- (4) standard manual override
- (5) screw terminal for additional equipotential grounding



**2** = GND

PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)



- (1) cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 standard manual override



### Pay attention to coil polarity

- = Coil + PCB 3 poles terminal board sugge-
- 2 = GND sted cable section up to 1,5 mm<sup>2</sup> 3 = Coil (max AWG16), see section 10 note 1
- alternative GND screw terminal connected to solenoid housing

10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

#### Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm2 (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring

### 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

### Multicertification

| Max ambien | t temperature [°C] | Tempera<br>Group I | ture class<br>Group II | Max surface te<br>Group I | mperature [°C]<br>Group II | Min cable temperature |
|------------|--------------------|--------------------|------------------------|---------------------------|----------------------------|-----------------------|
|            | 45 °C              | -                  | T6                     | 150 °C                    | 85 °C                      | not prescribed        |
|            | 70 °C              | -                  | T4                     | 150 °C                    | 135 °C                     | 90 °C                 |

### cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min cable temperature |
|------------------------------|-------------------|------------------------------|-----------------------|
| 55 °C                        | T6                | 85 °C                        | 100 °C                |
| 70 °C                        | T5                | 100 °C                       | 100 °C                |

### 11 CABLE GLANDS only for Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table KX800

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### 12 OPTIONS

**A** = solenoid at side of port B (for single solenoid valves)

O = Horizontal cable entrance, to be selected in case of limited verical space

**WP** = Manual override protected by metallic cap

#### Hand lever option:

**MV** = Auxiliary vertical hand levers

This option allows to operate the valves in absence of electrical power supply, i.e. during commissioning, maintenance or in case of emergency.

When the valve is electrically operated the hand lever remains stopped in its rest position

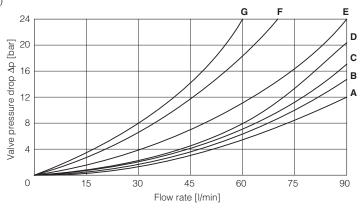
The hand lever execution does not affect the performances of the original valves

| Total angle stroke   | [°deg] | ± 28° | Lever actuating force | [N] | 1 ÷ 8 |
|----------------------|--------|-------|-----------------------|-----|-------|
| Working angle stroke | [°deg] | ± 15° | Lever device weight   | [g] | 880   |

AMV= Vertical hand lever installed at side of port B

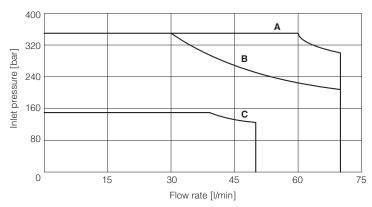
#### Notes

Options MV and AMV are available only for configuration 61, 61/A, 63, 63/A, 71 and with spool type 0, 0/2, 1, 1P, 1/2, 1/2P, 3, 3P, 4, 7 Not available in combination with option WP


MV option and AMV allow to operate the valve in absence of electrical power supply.

For detailed description of DHA with hand lever option see tech. table **E138** 

12.1 Possible combined options: /AO, /AWP, /OWP, /AMV, /OMV, /AOWP, /AOMV


### 13 Q/\(\Delta\pu\) DIAGRAMS (based on mineral oil ISO VG 46 at 50°C)

| Flow direction Spool type        | Р→А | Р→В | А→Т | В→Т | P→T |
|----------------------------------|-----|-----|-----|-----|-----|
| 0, 0/1                           | Α   | Α   | С   | С   | D   |
| 1, 1/1                           | D   | С   | С   | С   |     |
| 3, 3/1                           | D   | D   | Α   | Α   |     |
| 4, 4/8, 5, 5/1, 49, 58, 58/1, 94 | F   | F   | G   | С   | Е   |
| 1/2, 0/2                         | D   | D   | D   | D   |     |
| 6, 7, 16, 17                     | D   | D   | D   | D   |     |
| 8                                | А   | А   | Е   | Е   |     |
| 2                                | D   | D   |     |     |     |
| 2/2                              | F   | F   |     |     |     |
| 09, 19, 90, 91                   | Е   | Е   | D   | D   |     |
| 39, 93                           | F   | F   | G   | G   |     |
|                                  |     |     |     |     |     |



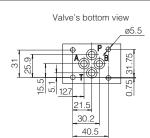
### 14 OPERATING LIMITS (based on mineral oil ISO VG 46 at 50°C)

| Spool type                                                                   | diagram |
|------------------------------------------------------------------------------|---------|
| 0, 0/1, 1, 1/1, 8                                                            | Α       |
| 0/2,1/2, 3, 6, 7                                                             | В       |
| 2, 2/2, 3/1, 4, 4/8, 5, 5/1, 16, 17, 19, 39 49, 58, 58/1, 09, 90, 91, 93, 94 | С       |



EX010 ON-OFF VALVES 417

ISO 4401: 2005 (see table P005) Mounting surface: 4401-03-02-0-05

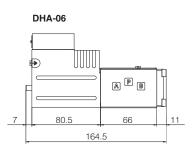

Fastening bolts: 4 socket head screws:

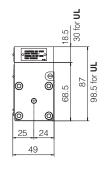
M5x50 class 12.9

Tightening torque = 8 Nm

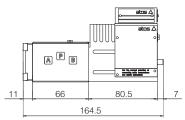
Seals: 4 OR 108

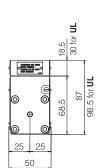
Ports P,A,B,T:  $\emptyset = 7.5 \text{ mm (max)}$ 



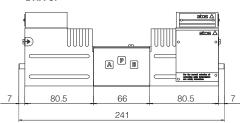


P = PRESSURE PORT

A, B = USE PORT

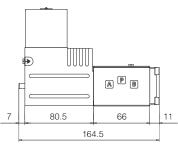

T = TANK PORT


| Mass [kg]  |       |  |  |  |
|------------|-------|--|--|--|
| DHA-06     | 2,65  |  |  |  |
| DHA-07     | 4,3   |  |  |  |
| Option /O  | +0,35 |  |  |  |
| Option /WP | +0,25 |  |  |  |



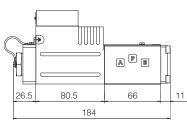


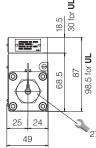


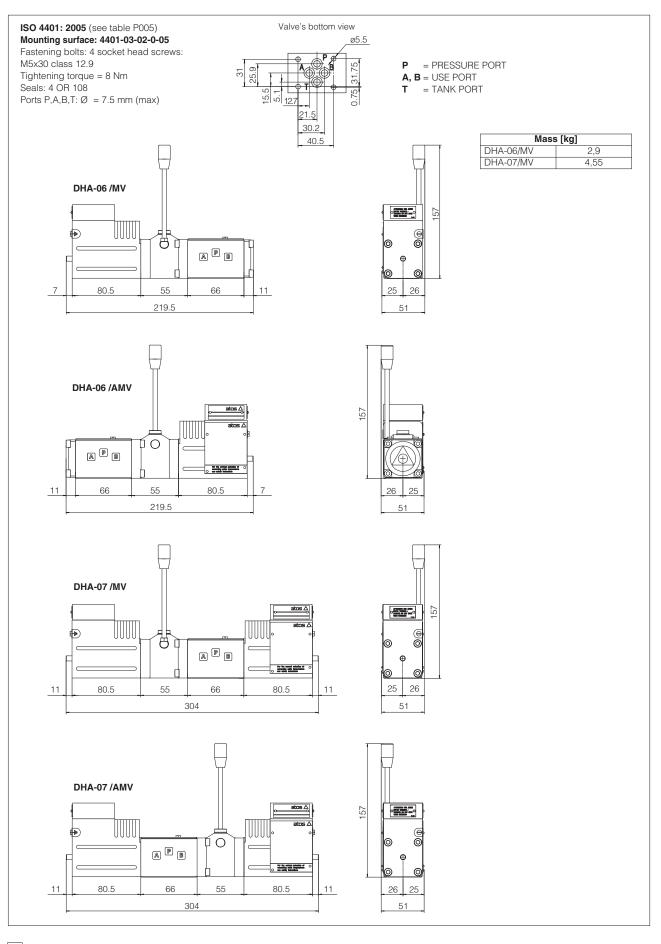






### DHA-07



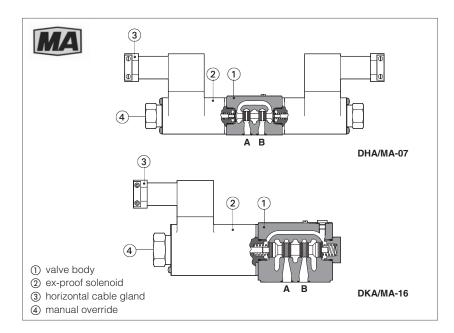



### DHA-06 /WP








### 16 RELATED DOCUMENTATION

| X010 | Basics for electrohydraulics in hazardous environments | EX900 | Operating and manintenance information for ex- |
|------|--------------------------------------------------------|-------|------------------------------------------------|
| X020 | Summary of Atos ex-proof components certified to ATEX, |       | proof on-off valves                            |
|      | IECEX, EAC, PESO                                       | KX800 | Cable glands for ex-proof valves               |
| X030 | Summary of Atos ex-proof components certified to cULus | P005  | Mounting surfaces for electrohydraulic valves  |



## **Ex-proof solenoid directional valves**

On-off, direct, spool type - MA certification



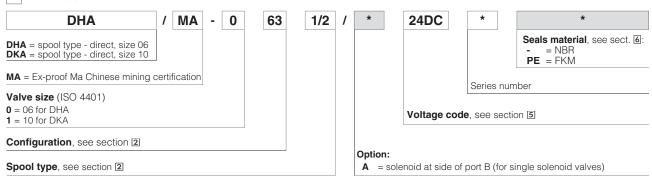
On-off directional valves equipped with explosion-proof solenoids certified according to **MA** Chinese mining certification, protection mode:

Ex d I Mb for surface, tunnel or mine plants

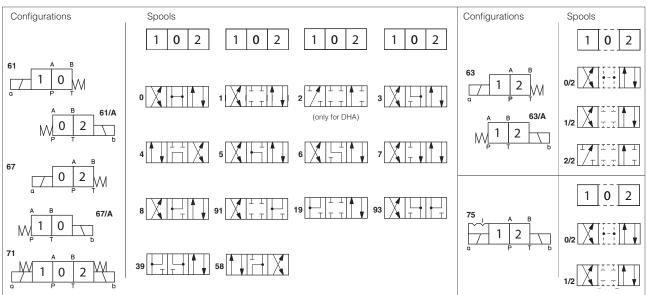
The solenoids are provided with cable glands (horizontally oriented) for cable entrance and internal terminal board for power supply coils connections.

The solenoid case classified  $\mathbf{Ex}\ \mathbf{d}$  is designed to contain the possible explosion which could be caused by the presence of the gas mixture inside the housing, thus avoiding dangerous propagation in the external environment.

They are also designed to limit the external temperature according to the certified class to avoid the self ignition of the explosive mixture present in the environment.


 DHA/MA:
 DKA/MA:

 Size: 06 - ISO 4401
 Size: 10 - ISO 4401


 Max flow: 80 l/min
 Max flow: 120 l/min

 Max pressure: 350 bar
 Max pressure: 315 bar

### 1 MODEL CODE



### 2 CONFIGURATIONS and SPOOLS (representation according to ISO 1219-1)



DHA spools 1, 4, 5 and 58 are also available as 1/1, 4/8, 5/1 and 58/1. They are properly shaped to reduce water-hammer shocks during the swiching DKA spool 1 is also available as 1/1. It is properly shaped to reduce water-hammer shocks during the swiching.

EX015 ON-OFF VALVES 421

### 3 GENERAL CHARACTERISTICS

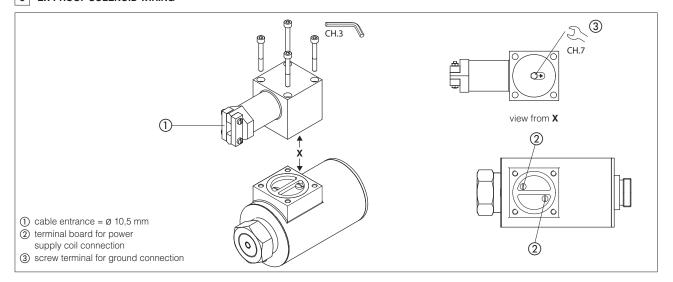
| Assembly position / location           | Any position                                                                                                    |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                |
| MTTFd values according to EN ISO 13849 | 150 years, for further details see technical table P007                                                         |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure Ex-d                                           |

### 4 HYDRAULIC CHARACTERISTICS

| Operating pressure | DHA/MA | P, A, B = <b>350 bar</b> | T = <b>210</b> bar |
|--------------------|--------|--------------------------|--------------------|
|                    | DKA/MA | P, A, B = <b>315 bar</b> | T = <b>210</b> bar |
| Maximuim flow      | DHA/MA | 80 l/min                 |                    |
|                    | DKA/MA | 120 l/min                |                    |

### 5 ELECTRICAL CHARACTERISTICS

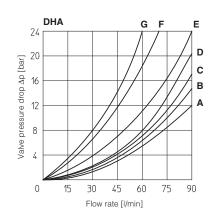
| SOLENOID TYPE         | ON/OF             | F         |  |  |
|-----------------------|-------------------|-----------|--|--|
| Voltage code VDC ±10% | 12DC, 24DC, 110DC |           |  |  |
| Power consumption     | 16,5 W (DHA)      | 18W (DKA) |  |  |
| Protection degree     | IP 65 to DIN E    | N 60529   |  |  |
| Duty factor           | 100%              | ,         |  |  |


### 6 SEALS AND HYDRAULIC FLUID

| Seals, recommended fluid temperature | NBR seals (standard) = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ $+50^{\circ}$ C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C |                            |           |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|--|
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                                                                                                  |                            |           |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                                                                                                    |                            |           |  |  |
| Hydraulic fluid                      | Suitable seals type Classification Ref. Standard                                                                                                                                                  |                            |           |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                                                                                    | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524 |  |  |
| Flame resistant without water        | FKM                                                                                                                                                                                               | HFDU, HFDR ISO 12922       |           |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                                                                                         | HFC                        | 130 12922 |  |  |

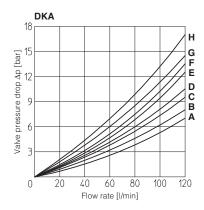
### 7 CERTIFICATION DATA

| Valve type                   | DHA <b>/MA</b>           | DKA <b>/MA</b> |  |  |  |
|------------------------------|--------------------------|----------------|--|--|--|
| Certification                | MA mining                |                |  |  |  |
| Solenoid certified code      | DTBZ12 - 37 FYC          | DTB29 - 90FYC  |  |  |  |
| Type examination certificate | CNEx 17.4187             | CNEx 17.4190   |  |  |  |
| Method of protection         | Ex d I Mb                |                |  |  |  |
| Ambient temperature          | ≤ 135 °C                 |                |  |  |  |
| Ambient temperature          | -20 ÷ +40 °C             |                |  |  |  |
| Cable entrance:              | cable entrance Ø =10.5mm |                |  |  |  |


### 8 EX-PROOF SOLENOID WIRING



### 9 Q/ΔP DIAGRAMS based on mineral oil ISO VG 46 at 50°C


#### DHA

| Flow direction Spool type                  | Р→А | Р→В | А→Т | В→Т | P→T |
|--------------------------------------------|-----|-----|-----|-----|-----|
| 0, 0/1                                     | А   | Α   | С   | С   | D   |
| 1, 1/1                                     | D   | С   | С   | С   |     |
| 3, 3/1                                     | D   | D   | Α   | Α   |     |
| 4, 4/8, 5, 5/1, 58, 58/1<br>19, 91, 93, 39 | F   | F   | G   | С   | Е   |
| 1/2, 0/2                                   | D   | D   | D   | D   |     |
| 6, 7                                       | D   | D   | D   | D   |     |
| 8                                          | А   | Α   | Е   | E   |     |
| 2                                          | D   | D   |     |     |     |
| 2/2                                        | F   | F   |     |     |     |



#### DKA

| Flow direction Spool type | P→A | Р→В | А→Т | В→Т | P→T | В→А |
|---------------------------|-----|-----|-----|-----|-----|-----|
| 0, 0/1, 0/2, 2/2          | Α   | А   | В   | В   |     |     |
| 1, 1/1, 1/3, 6, 8         | Α   | Α   | D   | С   |     |     |
| 3, 3/1, 7                 | Α   | А   | С   | D   |     |     |
| 4                         | В   | В   | В   | В   | F   |     |
| 5                         | Α   | В   | С   | С   | G   |     |
| 1/2                       | В   | С   | С   | В   |     |     |
| 19                        | Α   | D   | С   |     |     | Н   |
|                           |     |     |     |     |     |     |



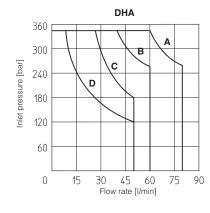
### 10 OPERATING LIMITS For a correct valve operation do not exceed the max recommended flow rates (I/min) shown in the below tables

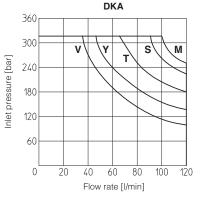
### DHA

**A** = Spools 0, 0/1, 1, 1/2, 3, 8

**B** = Spools 0/2, 1/1, 6, 7

**C** = Spools 3/1, 4, 4/8, 5, 5/1, 19, 39, 58, 58/1, 09, 90, 91, 93, 94


**D** = Spools 2, 2/2


 $\mathbf{M} = \text{Spools } 0, \, 0/1, \, 1, \, 1/1, \, 3, \, 3/1, \, 1/2, \, 0/2, \, 8$  $\mathbf{S} = \text{Spools } 1/3, \, 6, \, 7$ 

 $\mathbf{Y} = \text{Spools 4, 5}$ 

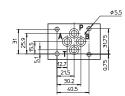
V = Spools 2/2

**T** = Spools 19



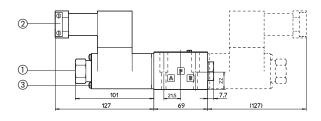


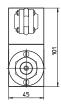
EX015 ON-OFF VALVES 423


### DHA/MA

### ISO 4401: 2005

Mounting surface: 4401-03-02-0-05


Fastening bolts: 4 socket head screws: M5x30 class 12.9 Tightening torque = 8 Nm Seals: 4 OR 108


Ports P,A,B,T:  $\emptyset = 7.5 \text{ mm (max)}$ 



= PRESSURE PORT A, B = USE PORT = TANK PORT

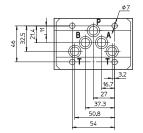
#### DHA/MA-06 DHA/MA-07 (dotted line)





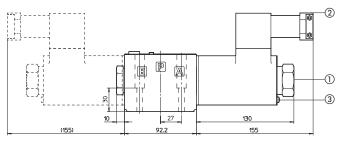
Mass of basic versions: DHA/MA-06: 3,2 kg DHA/MA-07: 4,9 kg

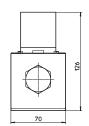
- 1 manual override
- 2 horizontal cable gland, cable entrance = ø 10,5 mm
- 3 screw terminal for additional equipotential grounding


### DKA/MA

### ISO 4401: 2005

Mounting surface according to 4401-05-05-0-05 (without X port, Y port optional)


Fastening bolts: 4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm Seals: 5 OR 2050 and 1 OR 108 Ports P,A,B,T:  $\emptyset = 11.5 \text{ mm (max)}$ 


Ports Y:  $\emptyset = 5 \text{ mm}$ 



= PRESSURE PORT A, B = USE PORT T = TANK PORT = TANK PORT

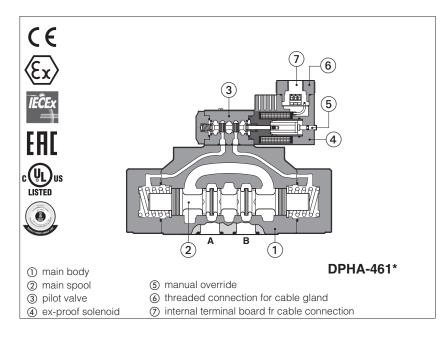
### DKA/MA-16 DKA/MA-07 (dotted line)





Mass of basic versions: DKA/MA-16: 5,7 kg DKA/MA-17: 8,7 kg

- 1) manual override
- 2 horizontal cable gland, cable entrance = ø 10,5 mm
- 3 screw terminal for additional equipotential grounding


### 12 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments EX900 Operating and manintenance information for ex-X040 Summary of Atos ex-proof components certified to MA proof on-off valves P005 Mounting surfaces for electrohydraulic valves



### **Ex-proof solenoid directional valves**

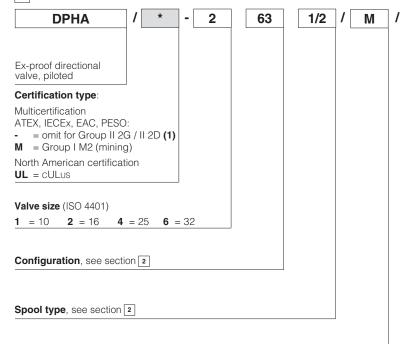
on-off, piloted - ATEX, IECEx, EAC, PESO or cULus



#### **DPHA**

On-off spool type, piloted directional valves equipped with ex-proof solenoids certified for safe operation in hazardous environments with potentially explosive atmosphere.

#### Certifications:


- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- **cULus** North American certification for gas group **C&D**

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

Size: **10 ÷ 32** - ISO 4401 Max flow: **160 ÷ 1000 I/min** Max pressure: **350 bar** 

### 1 MODEL CODE



24DC \* / Seals material, see section 8:
- = NBR
PE = FKM
BT = HNBR (3)

Series number

Voltage code, see section 7

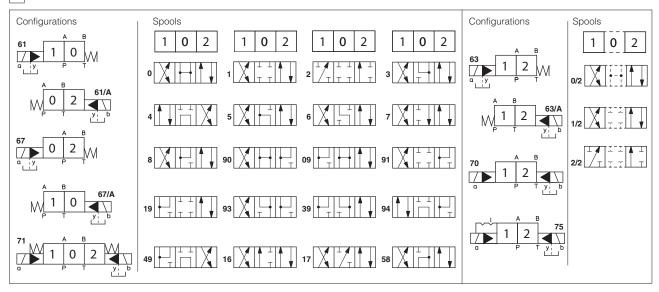
### Options (4):

- A = solenoid at side of port B (for single solenoid valves)
- ) = horizontal cable entrance (3)
- /D = Internal drain
- /E = external pilot pressure
- /H = adjustable chokes (meter-out to the pilot chambers of the main valve)
- /H9 = adjustable chokes (meter-in to the pilot chambers of the main valve)
- **L1, L2, L3** = calibrated restrictors in A and B ports of pilot valve
- **/L9** = (only for DPHA-2 and DPHA-4) plug with calibrated restrictor on port P of pilot valve
- /R = pilot pressure generator (not for DPHA-1)
- /S = main spool stroke adjustment (not for DPHA-1)
- **WP**= ⚠ manual override protected by metallic cap
- (1) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com

  (2) Approved only for the Italian market
- (3) Not for multicertification M group I (mining)

Solenoid threaded connection for cable gland fitting:

**GK** = GK-1/2" - not for **cULus (3) M** = M20x1,5 - not for **cULus** 


**NPT** = 1/2" NPT

(4) For possible combined options, see 10

For valves with external drain (option /D), the pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar.

EX030 ON-OFF VALVES 425

### 2 CONFIGURATIONS AND SPOOLS



### 2.1 Standard spools availability

- DPHA-1 are available only with spools **0**, **0/2**, **1**, **1/2**, **3**, **4**, **5**, **58**, **6**, **7** DPHA-2 and DPHA-4 are available with all spools shown for the above table
- DPHA-6 are available only with spools 0, 1, 1/2, 2, 3, 4, 5, 58, 6, 7, 8, 19, 91

### 2.2 Special shaped spools

- spools type 0 and 3 are also available as 0/1 and 3/1 with restricted oil passages in central position, from user ports to tank.
- spools type 1, 4, 5, 58, 6 and 7 are also available as 1/1, 4/8, 5/1, 58/1, 6/1 and 7/1 that are properly shaped to reduce water-hammer shocks during the switching (to use with option /L\*).

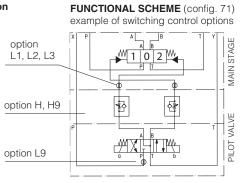
### 2.3 Special spool availability

| Valve size     | standard spools |     |     |     |     |      |     |     |
|----------------|-----------------|-----|-----|-----|-----|------|-----|-----|
| valve size     | 0/1             | 3/1 | 1/1 | 4/8 | 5/1 | 58/1 | 6/1 | 7/1 |
| DPHA-1         | •               | •   |     | •   |     |      |     |     |
| DPHA-2, DPHA-4 | •               | •   | •   | •   | •   | •    | •   | •   |
| DPHA-6         |                 | •   | •   | •   |     |      |     |     |

### 3 DEVICES FOR MAIN SPOOL SWITCHING CONTROL

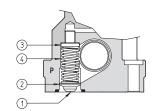
### Following options are suggested to reduce the hydraulic shocks at the valve operation

/H = Adjustable chokes (meter-out to the pilot chambers of the main valve).


/H9 = Adjustable chokes (meter-in to the pilot chambers of the main valve).

/L1, /L2, /L3 = calibrated restrictors on A and B ports of the pilot valve:

L1 = 0.8 mm, L2 = 1 mm, L3 = 1.25 mm


/L9 (only for DPHA-2 and DPHA-4) plug with calibrated restictor in P port of pilot valve see section 16

Suggested for pilot pressure higher than 210 bar or to limit the hydraulics shocks caused by the fast main spool switching

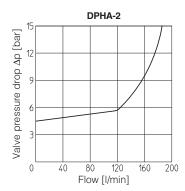


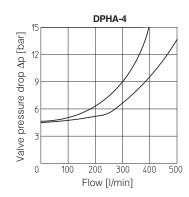
### 4 PILOT PRESSURE GENERATOR (OPTION /R)

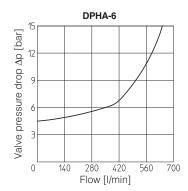
The device /R generates an additional pressure drop, in order to ensure the minimum pilot pressure, for correct operation of the valves with internal pilot and fitted with spools type 0, 0/1, 4, 4/8, 5, 58, 09, 90, 94, 49. The device /R has to be fitted when the pressure drop in the valve, verified on flow versus pressure diagrams, is lower than the minimum pilot pressure value.



- ① Flapper-guide
- ② Flapper
- ③ Spring stop-washer
- 4 Spring


Ordering code of spare pilot pressure generator


### R/DP


Pilot pressure generator Size:

2 for DPHA-2 4 for DPHA-4 6 for DPHA-6

Not available for DPHA-1







### 5 GENERAL CHARACTERISTICS

| Any position                                                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| cceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                                |  |  |  |  |  |
| 75 years, for further details see technical table P007                                                                                                                                                         |  |  |  |  |  |
| <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                                       |  |  |  |  |  |
| <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                                       |  |  |  |  |  |
| Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                                                    |  |  |  |  |  |
| Explosion proof protection, see section 9 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t" RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |  |  |  |  |  |
|                                                                                                                                                                                                                |  |  |  |  |  |

### 6 HYDRAULIC CHARACTERISTICS

| Operating pressure | P, A, B, X = <b>350 bar</b> T = <b>250 bar</b> with external drain (standard) T and Y = <b>210 bar</b> with internal drain (option /D) Minimum pilot pressure for correct operation is = <b>8 bar</b> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rated flow         | See diagrams Q/ $\Delta$ p at section 14                                                                                                                                                              |
| Maximum flow       | DPHA-1: <b>160 I/min</b> ; DPHA-2: <b>300 I/min</b> ; DPHA-4: <b>700 I/min</b> ; DPHA-6: <b>1000 I/min</b> see Q/Δp diagrams at section 4 and operating limits at section 5                           |

### 7 ELECTRICAL CHARACTERISTICS

| Valve type          |                           | DPHA                                  | DPHA <b>/M</b>           | DPHA <b>/UL</b>                    |  |
|---------------------|---------------------------|---------------------------------------|--------------------------|------------------------------------|--|
| Voltage code (1)    | VDC ±10%                  | 12DC 24DC 28DC 48DC 110DC 125DC 220DC |                          | 12DC, 24DC, 110DC,<br>125DC, 220DC |  |
|                     | VAC 50/60 Hz ±10%         | 12AC, 24AC, 1                         | 12AC, 24AC, 110AC, 230AC |                                    |  |
| Power consumption   | er consumption at 20°C 8\ |                                       | W                        | 12W                                |  |
| Coil insulation     |                           |                                       | class H                  |                                    |  |
| Protection degree v | with relevant cable gland | IP66/67 to D                          | IP66/67 to DIN EN60529   |                                    |  |
| Duty factor         |                           |                                       | 100%                     |                                    |  |

(1) For alternating current supply a rectifier bridge is provided built-in the solenoid

For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

EX030 ON-OFF VALVES 427

### 8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature | NBR seals (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$<br>FKM seals (/PE option) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$<br>HNBR seals (/BT option) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-40^{\circ}\text{C} \div +50^{\circ}\text{C}$ |                            |           |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|--|
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                                                                                                                                                                                                                                                                                       |                            |           |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                                                                                                                                                                                                                                                                                         |                            |           |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                                                                                                                                                                                                                                                                                                                    | Ref. Standard              |           |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524 |  |  |
| Flame resistant without water        | FKM                                                                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                 | ISO 12922 |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                                                                                                                                                                                                                                                                              | HFC                        | 130 12922 |  |  |

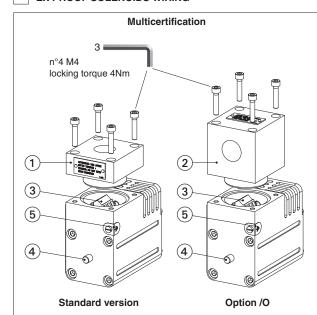
The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

#### (1) Performance limitations in case of flame resistant fluids with water:

- -max operating pressure = 210 bar
- -max fluid temperature = 50°C

### 9 CERTIFICATION DATA

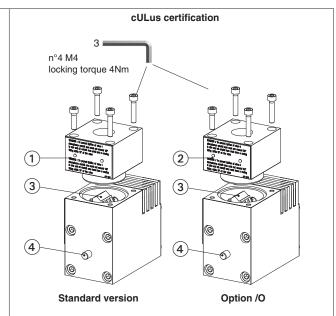
| Valve type                                                                        | DF                                                                                                                                        | PHA                      | DPHA <b>/M</b>                        |                    | DPHA <b>/UL</b>                                                                |              |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|--------------------|--------------------------------------------------------------------------------|--------------|
| Certifications                                                                    |                                                                                                                                           | ation Group II  EAC PESO | Multicertifica<br>ATEX                |                    | North American cULus <b>cULus</b>                                              |              |
| Solenoid certified code                                                           | 0                                                                                                                                         | Α                        | OA                                    | /M                 | OA/EC                                                                          |              |
| Type examination certificate (1)                                                  | ATEX: CESI 02 ATEX 014 IECEx: IECEx CES 10.0010x EAC: TC RU C-IT. 08.B.01784 PESO: P338131  ATEX: CESI 03 ATEX 057 IECEx: IECEx CES 12.00 |                          |                                       | 20170324 - E366100 |                                                                                |              |
| Method of protection                                                              | Ex II 2G Ex d IIC T6/T4/T3 Gb                                                                                                             |                          | ATEX     Ex   M2 Ex db   Mb     IECEx |                    | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |              |
|                                                                                   |                                                                                                                                           |                          |                                       |                    |                                                                                |              |
|                                                                                   | • PESO<br>Ex II 2G Ex d II                                                                                                                | C T6/T4 Gb               |                                       |                    |                                                                                |              |
| Temperature class                                                                 | Т6                                                                                                                                        | T4                       | -                                     |                    | Т6                                                                             | T5           |
| Surface temperature                                                               | ≤ 85 °C                                                                                                                                   | ≤ 135 °C                 | ≤ 150                                 | O °C               | ≤ 85 °C                                                                        | ≤ 100 °C     |
| Ambient temperature (2)                                                           | -40 ÷ +45 °C                                                                                                                              | -40 ÷ +70 °C             | -20 ÷ +                               | -70 °C             | -40 ÷ +55 °C                                                                   | -40 ÷ +70 °C |
| Applicable standards                                                              | EN 60079-0:<br>EN 60079-1<br>EN 60079-31                                                                                                  | -1 IEC 60079-1           |                                       |                    | UL 1203 and UL429,<br>CSA 22.2 n°30-1986<br>CSA 22.2 n°139-13                  |              |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | <b>GK</b> = GK-1/2"<br><b>M</b> = M20x1,5<br><b>NPT</b> = 1/2" NPT                                                                        |                          |                                       |                    | 1/2" NPT ANS                                                                   | I/ASME B46.1 |


- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids Group II and cULus are certified for minimum ambient temperature -40°C In case the complete valve must with stand with minimum ambient temperature of -40 $^{\circ}$ C, select /BT in the model code

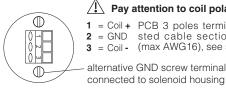
MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 10 OPTIONS

- A = Solenoid at side of port B of the main stage (for single solenoid valves)
- O = Horizontal cable entrance, to be selected in case of limited vertical space
- /D = Internal drain
- /E = External pilot pressure
- /H = Adjustable chokes (meter-out to the pilot chambers of the main valve)
- /H9 = Adjustable chokes (meter-in to the pilot chambers of the main valve)
- L1, L2, L3 = Calibrated restrictors in A and B ports of pilot valve
- ${\it /L9}$  = (only for DPHA-2 and DPHA-4) plug with calibrated restrictor on port P of pilot valve
- /R = Pilot pressure generator (not for DPHA-1)
- /S = Main spool stroke adjustment (not for DPHA-1)
- WP = Manual override protected by metallic cap


### 11 EX PROOF SOLENOIDS WIRING




- ① cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- (3) terminal board for cables wiring
- 4 standard manual override



### Pay attention to coil polarity

- 1 = Coil + PCB 3 poles terminal board sugge-
- 2 = GND sted cable section up to 1,5 mm<sup>2</sup> 3 = Coil - (max AWG16), see section 12 note 1
- alternative GND screw terminal

12 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

### **Multicertification Group I and Group II**

**Power supply:** section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

#### cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm2 (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

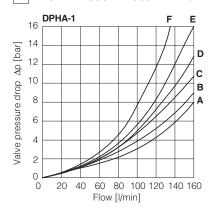
### 12.1 Cable temperature

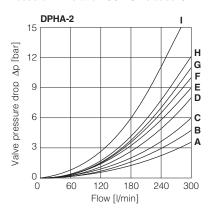
The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

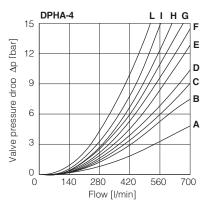
### Multicertification

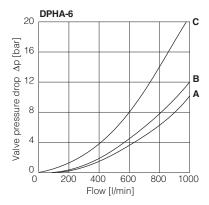
| Max ambient temperature [°C] | Tempera<br>Group I | ture class<br>Group II | Max surface temperature [°C] Group I   Group II |        | Min cable temperature |
|------------------------------|--------------------|------------------------|-------------------------------------------------|--------|-----------------------|
| 45 °C                        | -                  | T6                     | 150 °C                                          | 85 °C  | not prescribed        |
| 70 °C                        | -                  | T4                     | 150 °C                                          | 135 °C | 90 °C                 |

### cULus certification


| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min cable temperature |
|------------------------------|-------------------|------------------------------|-----------------------|
| 55 °C                        | T6                | 85 °C                        | 100 °C                |
| 70 °C                        | T5                | 100 °C                       | 100 °C                |


### 13 CABLE GLANDS only for Multicertification


Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table KX800


Note: a Loctite sealant type 545, should be used on the cable gland entry threads

### 14 FLOW VERSUS PRESSURE DIAGRAMS Based on mineral oil ISO VG 46 at 50°C









D

D E C

A B D

A B C C

A E C

ВС

| D | P | Н | A | -2 |
|---|---|---|---|----|
|   |   |   |   |    |

| DPHA-2                    | DPRA-2                     |        |        |        |     |  |  |
|---------------------------|----------------------------|--------|--------|--------|-----|--|--|
| Flow direction Spool type | P→A                        | Р→В    | А→Т    | В→Т    | P→T |  |  |
| 0/2, 1, 3, 6, 7, 8        | Α                          | Α      | D      | Α      | -   |  |  |
| 1/1, 1/2, 7/1             | В                          | В      | D      | E<br>E | -   |  |  |
| 0                         | Α                          | Α      | D      | Е      | С   |  |  |
| 0/1                       | A                          | A      | D      | -      | -   |  |  |
| 2<br>2/2<br>3/1           | Α                          | Α      | -      | -      | -   |  |  |
| 2/2                       | В                          | В      | -      | -      | -   |  |  |
| 3/1                       | Α                          | A<br>C | D      | D      | -   |  |  |
| 4                         | С                          | С      | Н      | - 1    | F   |  |  |
| 4/8                       | С                          | С      | G      | - 1    | F   |  |  |
| 5                         | Α                          | В      | F      | Н      | G   |  |  |
| 5/1                       | A<br>C<br>C<br>A<br>A<br>B | В      | D<br>C | F      | -   |  |  |
| 6/1                       |                            | В      | С      | Е      | -   |  |  |
| 09                        | A<br>A<br>C<br>C           | -      | -      | G<br>F | -   |  |  |
| 16                        | Α                          | С      | D      | F      | -   |  |  |
| 17                        | С                          | C<br>A | Е      | F      | -   |  |  |
| 19                        | С                          | -      | -      | G      | -   |  |  |
| 39                        | С                          | -      | -      | Н      | -   |  |  |
| 49                        | -                          | D      | -      | -      | -   |  |  |
| 58                        | В                          | Α      | F      | Н      | Н   |  |  |
| 58/1                      | В                          | A<br>A | D      | F      | -   |  |  |
| 90                        | Α                          | Α      | Е      | -      | D   |  |  |
| 91                        | A<br>C                     | С      | Е      | -      | -   |  |  |
| I                         |                            |        |        |        |     |  |  |

DPHA-4

| Flow direction Spool type | P→A    | Р→В    | А→Т | В→Т    | P→T |
|---------------------------|--------|--------|-----|--------|-----|
| 1                         | В      | В      | В   | D      | -   |
| 1/1                       | D      | Е      | Е   | F      | -   |
| 1/2                       | Е      | D      | В   | С      | -   |
| 0                         | D      | D<br>C | D   | C<br>E | F   |
| 0/1, 3/1, 5/1, 6, 7       | D      | D      | D   | F<br>E | -   |
| 0/2                       | D      | D      | D   | Е      | -   |
| 2<br>2/2<br>3<br>4        | В      | В      | -   | -      | -   |
| 2/2                       | Е      | D      | -   | -      | -   |
| 3                         | В      | В      | D   | F      | -   |
| 4                         | С      | С      | Н   | L      | L   |
| 5                         | A<br>D | D      | D   | D      | Н   |
| 6/1                       | D      | Е      | D   | F      | -   |
| 7/1                       | D      | E      | F   | F      | -   |
| 8                         | D      | D      | E   | F      | -   |
| 09                        | D      | -      | -   | F      | F   |
| 16                        | С      | D      | E   | F      | -   |
| 17                        | E      | D      | Е   | F      | -   |
| 19                        | F      | -      | -   | Е      | -   |
| 39                        | G      | F      | -   | F      | -   |
| 58                        | Е      | Α      | В   | F      | Н   |
| 58/1                      | Е      | D      | D   | F      | -   |
| 90                        | D      | D      | D   | -      | F   |
| 91                        | F      | F      | D   |        |     |
| 93                        | -      | G      | D   | -      | -   |

# 5, 58 **DPHA-6**

DPHA-1

Spool type

0

0/2, 1/2

3, 6, 7

4, 4/8

Flow direction

| Flow<br>direction<br>Spool<br>type | ₽→Α | Р→В | А→Т | В→Т | P→T |
|------------------------------------|-----|-----|-----|-----|-----|
| 0                                  | Α   | Α   | В   | В   | В   |
| 1                                  | Α   | Α   | Α   | В   | -   |
| 3                                  | Α   | -   | Α   | В   | -   |
| 4                                  | Α   | Α   | С   | С   | С   |

15 OPERATING LIMITS For a correct valve operation do not exceed the max recommended flow rates (I/min) shown in the below tables

### DPHA-1

 $P \rightarrow A \mid P \rightarrow B \mid A \rightarrow T \mid B \rightarrow T \mid P \rightarrow T$ 

D C C D C

D D

Ε

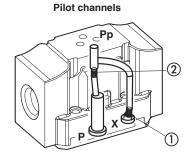
|               | Inlet pressure [bar] |          |            |     |
|---------------|----------------------|----------|------------|-----|
| Spool type    | 70                   | 160      | 210        | 350 |
|               |                      | Flow rat | te [l/min] |     |
| 0, 1, 3, 6, 7 | 160                  | 160      | 160        | 145 |
| 4, 4/8        | 160                  | 160      | 135        | 100 |
| 5, 58         | 160                  | 160      | 145        | 110 |
| 0/1, 0/2, 1/2 | 160                  | 160      | 145        | 135 |

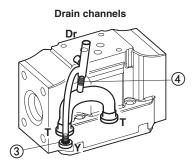
### DPHA-4

|                    | Inlet pressure [bar] |          |            |     |
|--------------------|----------------------|----------|------------|-----|
| Spool type         | 70                   | 140      | 210        | 350 |
|                    |                      | Flow rat | te [l/min] |     |
| 1, 6, 7, 8         | 700                  | 700      | 700        | 600 |
| 2, 4, 4/8          | 500                  | 500      | 450        | 400 |
| 5, 0/1, 0/2, 1/2   | 600                  | 520      | 400        | 300 |
| 0, 3               | 700                  | 700      | 600        | 540 |
| 16, 17, 58, *9, 9* | 500                  | 500      | 500        | 450 |

### DPHA-2

| D1 11) ( _         |                      |     |     |     |
|--------------------|----------------------|-----|-----|-----|
|                    | Inlet pressure [bar] |     |     |     |
| Spool type         | 70                   | 140 | 210 | 350 |
|                    | Flow rate [l/min]    |     |     |     |
| 0, 1, 3, 6, 7, 8   | 300                  | 300 | 300 | 300 |
| 2, 4, 4/8          | 300                  | 300 | 240 | 140 |
| 5                  | 260                  | 220 | 180 | 100 |
| 0/1, 0/2, 1/2      | 300                  | 250 | 210 | 180 |
| 16, 17, 56, *9, 9* | 300                  | 300 | 270 | 200 |


### DPHA-6


|                 | Inlet pressure [bar] |          |            |     |
|-----------------|----------------------|----------|------------|-----|
| Spool type      | 70                   | 140      | 210        | 350 |
|                 |                      | Flow rat | te [l/min] |     |
| 1, 3, 6, 7, 8   | 1000                 | 950      | 850        | 700 |
| 0               | 950                  | 900      | 800        | 650 |
| 2, 4, 4/8, 5    | 850                  | 800      | 700        | 450 |
| 0/1, 58, 19, 91 | 950                  | 850      | 650        | 450 |

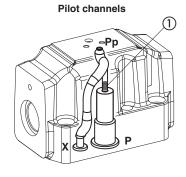
### 16 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

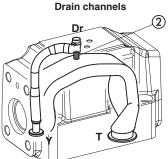
Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below. To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain

### DPHA-1






Internal piloting: blinded plug SP-X300F ① in X; plug SP-X310F ② in Pp;


External piloting: blinded plug SP-X300F ② in Pp;

plug SP-X310F ① in X;

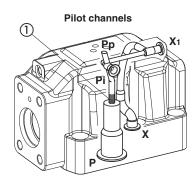
blinded plug SP-X300F 3 in Y; Internal drain: External drain: blinded plug SP-X300F 4 in Dr.

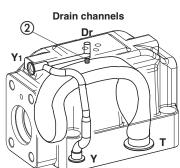
### DPHA-2





Internal piloting: Without blinded plug SP-X300F ①; Internal drain:


External piloting: Add blinded plug SP-X300F ①; Without blinded plug SP-X300F 2; Add blinded plug SP-X300F @. External drain:


### Option L9

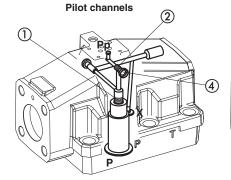
This option provides a calibrated restrictor PLUG-H-12A (Ø 1,2 mm) in the P port of the pilot valve



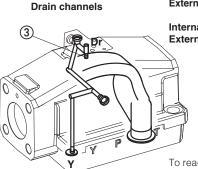
#### DPHA-4






Internal piloting: Without blinded plug SP-X500F ①; External piloting: Add blinded plug SP-X500F ①; Without blinded plug SP-X300F 2; Internal drain: External drain: Add blinded plug SP-X300F 2.

### Option L9


This option provides a a calibrated restrictor PLUG-H-15A (Ø 1,5 mm) in the P port of the pilot valve



DPHA-6



## Drain channels



Internal piloting: Without plug ①;

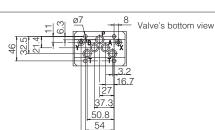
External piloting: Add DIN-908 M16x1,5 in pos ①;

plug SP-X325A in pos @;

Without blinded plug SP-X300F 3; Internal drain: External drain: Add blinded plug SP-X300F 3.

To reach the orifice ②, remove plug ④ = G 1/8"

EX030 ON-OFF VALVES 431


### DPHA-1\*

ISO 4401: 2005

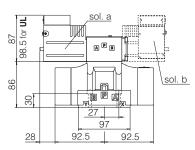
Mounting surface: 4401-05-05-0-05

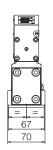
Fastening bolts:

4 socket head screws M6x40 class 12.9 Tightening torque = 15 Nm Diameter of ports A,B, P, T:  $\emptyset$  = 11 mm; Diameter of ports X, Y:  $\emptyset$  = 5 mm; Seals: 5 OR 2050, 2 OR 108

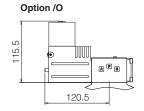


= PRESSURE PORT


A,B = USE PORT T = TANK POR

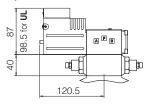

= TANK PORT = EXTERNAL PILOT PORT

= DRAIN PORT


| Mass [kg]      |       |  |
|----------------|-------|--|
| DPHA-16        | 8,0   |  |
| DPHA-17        | 9,5   |  |
| Option /WP     | +0,25 |  |
| Option /O      | +0,35 |  |
| Option /H, /H9 | +1,0  |  |

# DPHA-16 DPHA-17 (dotted line)





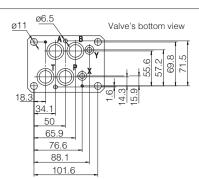

### 98.5 for **UL** 87 a P B 147



Option /H; /H9

Option /WP



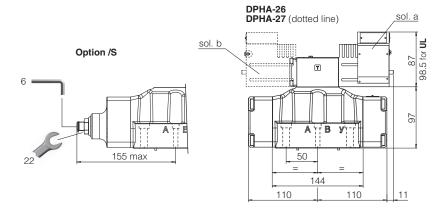

### DPHA-2\*

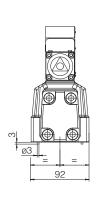
ISO 4401: 2005

Mounting surface: 4401-07-07-0-05

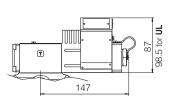
Fastening bolts:

4 socket head screws M10x50 class 12.9 Tightening torque = 70 Nm 2 socket head screws M6x45 class 12.9 Tightening torque = 15 Nm Diameter of ports A, B, P, T:  $\emptyset$  = 20 mm; Diameter of ports X, Y:  $\emptyset$  = 7 mm; Seals: 4 OR 130, 2 OR 2043

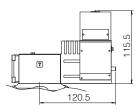




| Р |   | = | PRESSURE PORT |
|---|---|---|---------------|
| Δ | R | _ | LISE PORT     |

= TANK PORT


= EXTERNAL PILOT PORT = DRAIN PORT

| wass [kg]      |       |  |
|----------------|-------|--|
| DPHA-26        | 11    |  |
| DPHA-27        | 12,5  |  |
| Option /WP     | +0,25 |  |
| Option /O      | +0,35 |  |
| Option /S      | +1,0  |  |
| Option /H, /H9 | +1,0  |  |







### Option /WP



### Option /O



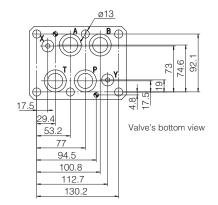
### Option /H; /H9



### **DPHA-4\***

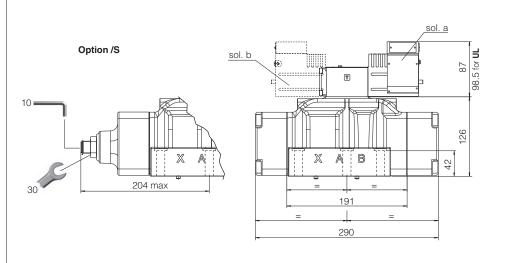
ISO 4401: 2005 (see table P005) Mounting surface: 4401-08-08-0-05

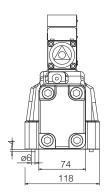
Fastening bolts:


6 socket head screws M12x60 class 12.9

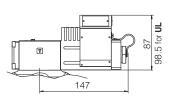
Tightening torque = 125 Nm Seals: 4 OR 4112; 2 OR 3056

Diameter of ports A, B, P, T:  $\emptyset$  = 24 mm;

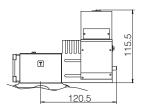

Diameter of ports X, Y:  $\emptyset = 7$  mm;


| Mass           | s [kg] |
|----------------|--------|
| DPHA-46        | 18,5   |
| DPHA-47        | 20,0   |
| Option /WP     | +0,25  |
| Option /O      | +0,35  |
| Option /S      | +1,5   |
| Option /H, /H9 | +1,0   |

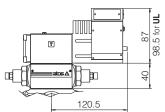



P = PRESSURE PORT
A,B = USE PORT
T = TANK PORT
X = EXTERNAL PILOT PORT
Y = DRAIN PORT

DPHA-46 DPHA-47 (dotted line)







Option /WP



Option /O

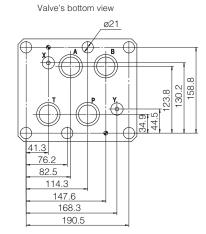


Option /H; /H9



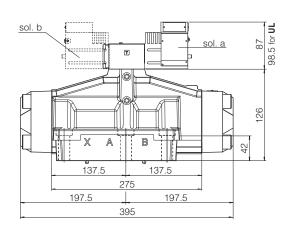
433

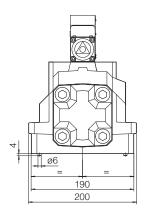
EX030 ON-OFF VALVES


### **DPHA-6\***

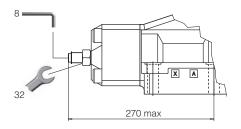
ISO 4401: 2005

Mounting surface: 4401-10-09-0-05

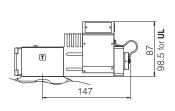

Fastening bolts:
6 socket head screws M20x80 class 12.9
Tightening torque = 600 Nm
Diameter of ports A, B, P, T: Ø = 34 mm;
Diameter of ports X, Y: Ø = 7 mm;
Seals: 4 OR 144, 2 OR 3056


| Mas            | s [kg] |
|----------------|--------|
| DPHA-66        | 45,0   |
| DPHA-67        | 46,5   |
| Option /WP     | +0,25  |
| Option /O      | +0,35  |
| Option /S      | +3,5   |
| Option /H, /H9 | +1,0   |

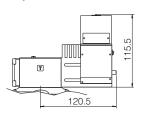



= PRESSURE PORT A,B = USE PORT T = TANK PORT X = EXTERNAL OIL PILOT PORT = DRAIN PORT

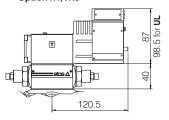
DPHA-66 DPHA-67 (dotted line)







Option /S




Option /WP

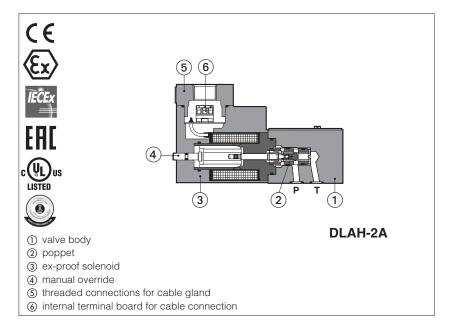


Option /O



Option /H; /H9




### 18 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments EX900 Operating and manintenance information for ex-Summary of Atos ex-proof components certified to ATEX, X020 proof on-off valves IECEx, EAC, PESO KX800 Cable glands for ex-proof valves X030 P005 Summary of Atos ex-proof components certified to cULus Mounting surfaces for electrohydraulic valves



### **Ex-proof solenoid directional valves**

on-off, direct, poppet type leak free - ATEX, IECEx, EAC, PESO or cULus



#### DLAH, DLAHM, CART LAH, CART LAHM

On-off oppet type, directional valves equipped with ex-proof solenoids certified for safe operation in hazardous environments with potentially explosive atmosphere.

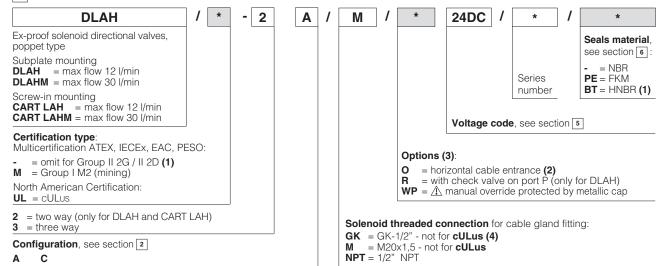
#### Certifications:

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

They are SIL compliance with IEC 61508 (TÜV

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

The solenoid is also designed to limit the surface temperature within the classified limits.

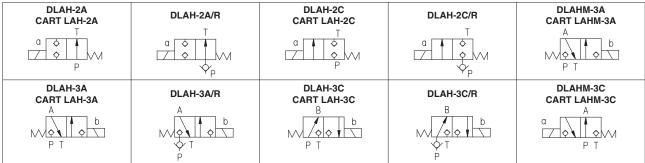

**DLAH** subplate, **CART LAH** screw-in Size: **06** - ISO 4401 (only for DLAH) Max flow: **12** I/min

Max pressure: 350 bar

**DLAHM** subplate, **CART LAHM** screw-in Size: **06** - ISO 4401 (only for DLAHM) Max flow: **30** I/min

Max pressure: 315 bar

### 1 MODEL CODE




(1) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com

(2) Not for multicertification M group I (mining) (3) For possible combined options, see 12.1 (4) Approved only for the Italian market

The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

### 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



### **3 GENERAL CHARACTERISTICS**

| Assembly position / location           | Any position                                                                                                                                                                   |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |
| MTTFd values according to EN ISO 13849 | 150 years, for further details see technical table P007                                                                                                                        |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C /PE option = $-20^{\circ}$ C $\div$ +70°C /BT option = $-40^{\circ}$ C $\div$ +70°C                                             |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                     |  |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                          |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |

### 4 HYDRAULIC CHARACTERISTICS

| Operating pressure | DLAH, CART LAH, ports P,A,B: <b>350</b> bar; DLAHM, CART LAHM ports P,A: <b>315</b> bar; Port T <b>210</b> bar |
|--------------------|----------------------------------------------------------------------------------------------------------------|
| Rated flow         | See diagrams Q/ $\Delta p$ at section 13                                                                       |
| Maximum flow       | DLAH, CART LAH: 12 I/min, DLAHM, CART LAHM: 30 I/min, see operating limits at section 14                       |

### 5 ELECTRICAL CHARACTERISTICS

| Valve type                                  |                   | DLAH, DLAHM DLAH <b>/M</b> , DLAHM <b>/M</b><br>CART LAH, LAHM CART LAH <b>/M</b> , LAHM <b>/M</b> |                          | DLAH/UL, DLAHM/UL<br>CART LAH/UL, LAHM/UL |  |
|---------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--|
| Voltage code (1)                            | VDC ±10%          | 12DC, 24DC, 28DC, 48DC, 110DC, 125DC, 220DC                                                        |                          | 12DC, 24DC, 110DC,<br>125DC, 220DC        |  |
|                                             | /AC 50/60 Hz ±10% | 12AC, 24AC,                                                                                        | 12AC, 24AC, 110AC, 230AC |                                           |  |
| Power consumption at 20°C                   |                   | 8W                                                                                                 |                          | 12W                                       |  |
| Coil insulation                             |                   | class H                                                                                            |                          |                                           |  |
| Protection degree with relevant cable gland |                   | IP66/67 to DIN EN60529                                                                             |                          | raintight enclosure, UL approved          |  |
| Duty factor                                 |                   | 100%                                                                                               |                          |                                           |  |

<sup>(1)</sup> For alternating current supply a rectifier bridge is provided built-in the solenoid
For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

### 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C FKM seals (/PE option) = -20°C ÷ +80°C |                            |               |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|--|--|
|                                      | HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C       |                            |               |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                       |                            |               |  |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                         |                            |               |  |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                                                    | Classification             | Ref. Standard |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |  |  |
| Flame resistant without water        | FKM                                                                                                                    | HFDU, HFDR                 | ISO 12922     |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                              | HFC                        | 130 12922     |  |  |  |

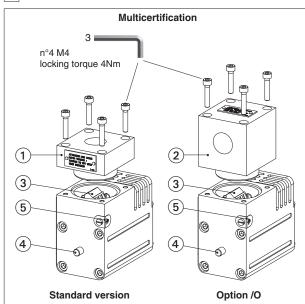
 $\triangle$  The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature.

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = $50^{\circ}$ C

### 7 CERTIFICATION DATA

| Valve type                                                                                               | DLAH, DLAHM<br>CART LAH, LAHM                                                                       |                                            | DLAH <b>/M</b> , DLAHM <b>/M</b><br>CART LAH <b>/M</b> , LAHM <b>/M</b> | DLAH <b>/UL</b> , DLAHM <b>/UL</b><br>CART LAH <b>/UL</b> , LAHM <b>/UL</b>    |              |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|
| Certifications                                                                                           | Multicertification Group II  ATEX IECEX EAC PESO                                                    |                                            | Multicertification Group I  ATEX IECEx                                  | North American cULus cULus                                                     |              |
| Solenoid certified code                                                                                  | OA                                                                                                  |                                            | OA/M                                                                    | OA/EC                                                                          |              |
| Type examination certificate (1)                                                                         | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131 |                                            | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x                    | 20170324 - E366100                                                             |              |
| Method of protection                                                                                     | • ATEX, EAC<br>Ex II 2G Ex d IIC T6/T4/T3 Gb<br>Ex II 2D Ex tb IIIC T85°C/T200°C Db                 |                                            | ATEX     Ex   M2 Ex db   Mb     IECEx                                   | • UL 1203<br>Class I, Div.I, Groups C & D<br>Class I, Zone I, Groups IIA & IIB |              |
|                                                                                                          | • IECEX<br>Ex d IIC T6/T4/<br>Ex tb IIIC T85°                                                       |                                            | Ex db I Mb                                                              |                                                                                |              |
|                                                                                                          | PESO Ex II 2G Ex d IIC T6/T4 Gb                                                                     |                                            |                                                                         |                                                                                |              |
| Temperature class                                                                                        | T6                                                                                                  | T4                                         | -                                                                       | T6                                                                             | T5           |
| Surface temperature                                                                                      | ≤ 85 °C                                                                                             | ≤ 135 °C                                   | ≤ 150 °C                                                                | ≤ 85 °C                                                                        | ≤ 100 °C     |
| Ambient temperature (2)                                                                                  | -40 ÷ +45 °C                                                                                        | -40 ÷ +70 °C                               | -20 ÷ +70 °C                                                            | -40 ÷ +55 °C                                                                   | -40 ÷ +70 °C |
| EN 60079-0<br>Applicable standards EN 60079-1<br>EN 60079-31                                             |                                                                                                     | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31 | UL 1203 and UL429,<br>CSA 22.2 n°30-1986<br>CSA 22.2 n°139-13           |                                                                                |              |
| able entrance: threaded connection rtical (standard) or horizontal (option /O)  GK = G  M = M20  NPT = 1 |                                                                                                     | 0x1,5                                      | 1/2" NPT ANSI/ASME B46.1                                                |                                                                                |              |

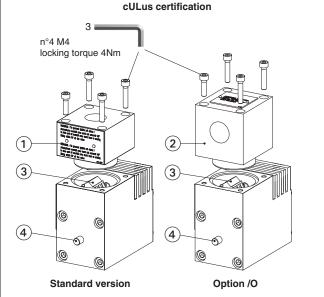
- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code


MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

### 8 SIL compliance with IEC 61508: 2010 - only subplate version DLAH and DLAHM

DLAH and DLAHM (multicertified for surface and mining) meets the requirements of:

- SC3 (systematic capability)
- max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
- max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)


#### 9 EX PROOF SOLENOIDS WIRING



- (1) cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- 2 cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4 standard manual override



### Pay attention to coil polarity

- 1 = Coil + PCB 3 poles terminal board sugge-2 = GND sted cable section up to 1,5 mm<sup>2</sup>
- 3 = Coil (max AWG16), see section 10 note 1

alternative GND screw terminal connected to solenoid housing

EX020 ON-OFF VALVES 437

# 10 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

# Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

Grounding: section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

# cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

# 10.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

# Multicertification

| Max ambient temperature [°C] | Temperature class<br>Group I Group II |    | Max surface temperature [°C] Group I   Group II |        | Min cable temperature |
|------------------------------|---------------------------------------|----|-------------------------------------------------|--------|-----------------------|
| 45 °C                        | -                                     | T6 | 150 °C                                          | 85 °C  | not prescribed        |
| 70 °C                        | -                                     | T4 | 150 °C                                          | 135 °C | 90 °C                 |

# cULus

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min cable temperature |
|------------------------------|-------------------|------------------------------|-----------------------|
| 55 °C                        | T6                | 85 °C                        | 100 °C                |
| 70 °C                        | T5                | 100 °C                       | 100 °C                |

# 11 CABLE GLANDS only for Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table KX800

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

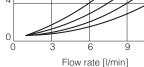
# 12 OPTIONS

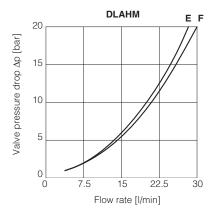
= Horizontal cable entrance, to be selected in case of limited vertical space

Only for DLAH: integral check valve for free reverse flow

The DLAH-\*/R are provided with integral check valve for free reverse flow A→B

= Manual override protect by metallic cap


# 12.1 Possible combined options: /OP, /OR, /PR, /OPR


# Q/\(\Delta\right) DIAGRAMS (based on mineral oil ISO VG 46 at 50°C)

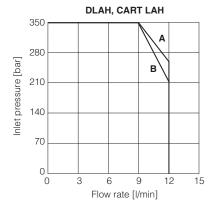
| Flow direction  Valve type | $P \rightarrow A(1)$<br>(P $\rightarrow$ B) | $\begin{array}{c} \textbf{A} \rightarrow \textbf{T} \\ (\textbf{B} \rightarrow \textbf{T}) \end{array}$ |
|----------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|
| DLAH-2A<br>CART LAH-2A     | В                                           | _                                                                                                       |
| DLAH-2C<br>CART LAH-2C     | С                                           | _                                                                                                       |
| DLAH-3A<br>CART LAH-3A     | D                                           | С                                                                                                       |
| DLAH-3C<br>CART LAH-3C     | С                                           | А                                                                                                       |
| DLAHM-3A<br>CART LAHM-3A   | F                                           | Е                                                                                                       |
| DLAHM-3C<br>CART LAHM-3C   | F                                           | E                                                                                                       |

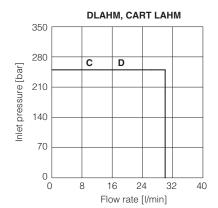
(1) For two-way valves, pressure drop refers to P→T








# 14 OPERATING LIMITS (based on mineral oil ISO VG 46 at 50°C)


# DLAH, CART LAH

A = CART LAH-3A, DLAH-3A; B = CART LAH-2A, DLAH-2A, CART LAH-3C, DLAH-3C

# **DLAHM, CART LAHM**

C = CART LAHM-3A, DLAHM-3A; **D** = CART LAHM-3C, DLAHM-3C

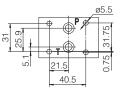




# DLAH-2\*

ISO 4401: 2005 (see table P005) Mounting surface: 4401-03-02-0-05 without A and B ports

Fastening bolts:


4 socket head screws M5x50 class 12.9

Tightening torque = 8 Nm Seals: 2 OR 108

Ports P, T:  $\emptyset$  = 7,5 mm (max)

P = PRESSURE PORT

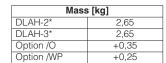
T = USE PORT



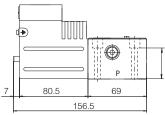
# DLAH-3\*

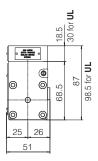
ISO 4401: 2005 (see table P005) Mounting surface: 4401-03-02-0-05

Fastening bolts: 4 socket head screws: M5X50 class 12.9

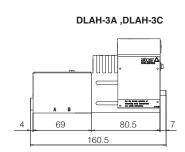

Tightening torque = 8 Nm

Seals: 4 OR 108


Ports P,A,B,T:  $\emptyset = 7.5 \text{ mm (max)}$ 


P = PRESSURE PORT

A = USE PORT (not used for DLAH-3C version)
 B = USE PORT (not used for DLAH-3A version)
 T = TANK PORT



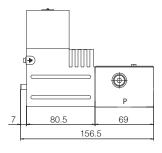

# DLAH-2A, DLHA-2C



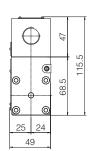


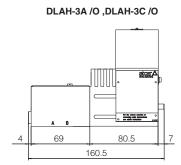




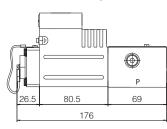

ø5.5

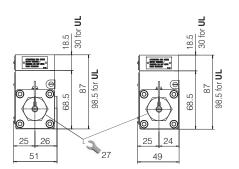
75 31.

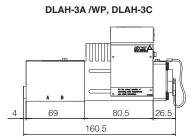

30.2


40.5

# DLAH-2A /O, DLHA-2C /O



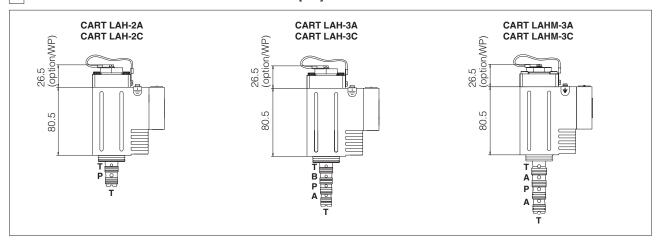






# DLAH-2A /WP, DLHA-2C /WP








EX020

439

### DLAHM-3\* ø5.5 Mass [kg] DLAHM-3 2,85 ISO 4401: 2005 (see table P005) Option /O +0,35 31.75 Mounting surface: 4401-03-02-0-05 Option /WP +0.25 Fastening bolts: 4 socket head screws: M5X50 class 12.9 P = PRESSURE PORT Tightening torque = 8 Nm A = USE PORT 21.5 Seals: 4 OR 108 **B** = not used 30.2 Ports P,A,B,T: $\emptyset = 7.5 \text{ mm (max)}$ T = TANK PORT 40.5 님 18.5 30 for **L** DLAHM-3C DLAHM-3A • 44 • 98.5 for **UL** 87 0 68.5 80.5 25 24 80 80.5 80 4 171.5 49 171.5 DLAHM-3C /O DLAHM-3A /O 47 0 68.5 80.5 80 24 80.5 171.5 49 171.5 DLAHM-3C /WP DLAHM-3A /WP ·**TI**-98.5 for **UL** 68.5

# 16 INSTALLATION DIMENSIONS FOR SCREW-IN VERSION [mm] - Multicertified and UL



24

# 17 RELATED DOCUMENTATION

80.5

191

80

X010 Basics for electrohydraulics in hazardous environments
X020 Summary of Atos ex-proof components certified to ATEX,

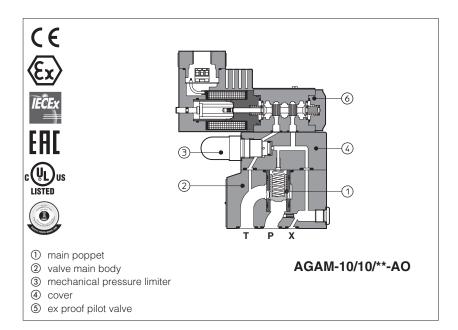
IECEx, EAC, PESO

X030 Summary of Atos ex-proof components certified to cULus
 EX900 Operating and manintenance information for ex-proof on-off valves

**KX800** Cable glands for ex-proof valves

P005 Mounting surfaces for electrohydraulic valves
P006 Mounting surfaces and cavities for cartridge valves

80


80.5

191



# **Ex-proof pressure relief valves**

piloted, subplate or in line mounting - ATEX, IECEx, EAC, PESO or cULus



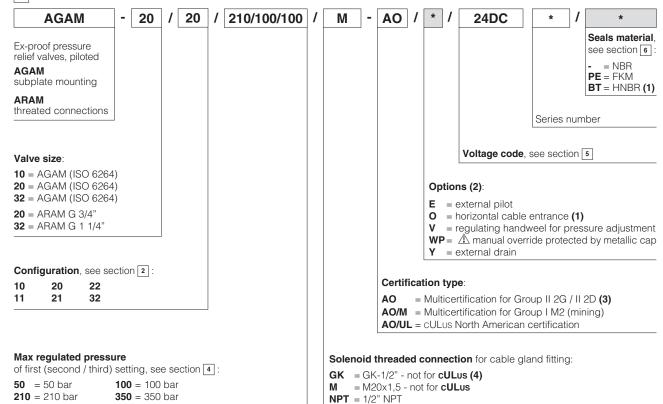
# AGAM, ARAM

Ex-proof pressure relief valves equipped with solenoid pilot valve for venting or multiple pressure selection, certified for safe operation in hazardous environments with potentially explosive atmosphere.

# Certifications:

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group **C&D**

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.

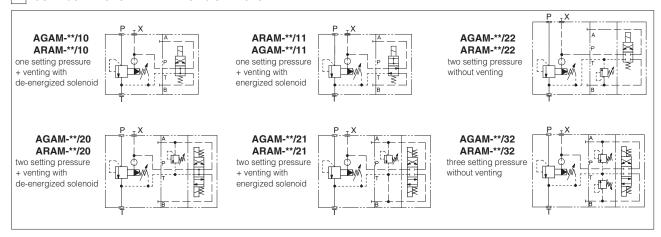

The solenoid is also designed to limit the surface temperature within the classified limits.

**AGAM**: pressure relief, subplate mounting Size: **10, 20, 32** - ISO 6264 Max flow: **200, 400, 600 l/min** 

**ARAM**: pressure relief, threaded connections Size: **G 3/4**" and **G 1 1/4**"

Max flow: 350 and 500 I/min Max pressure: 350 bar

# **MODEL CODE**




(1) Not for multicertification M group I (mining) (2) For possible combined options, see 11.1 (3) The valves with Multicertification for Group II are also certified for Indian market according to PESO (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com (4) Approved only for the Italian market

riangle The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

ON-OFF VALVES CX010 441

# 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS



# **3 GENERAL CHARACTERISTICS**

| Assembly position / location           | Any position                                                                                                                                                             |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                         |
| MTTFd values according to EN ISO 13849 | 75 years, for further details see technical table P007                                                                                                                   |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |
| Surface protection                     | Zinc coating with black passivation -salt spray test (EN ISO9227) > 200h                                                                                                 |
| Compliance                             | Explosion proof protection, see section 7 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                    |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                              |

# 4 HYDRAULIC CHARACTERISTICS

| Valve size             |         | 10  |       |                     | 20          |       | 32  |
|------------------------|---------|-----|-------|---------------------|-------------|-------|-----|
| Max operating pressure | [bar]   |     |       | port P = <b>350</b> | port T, Y = | 210   |     |
| Max regulated pressure | [bar]   |     | 50    | 100                 | 210         | 350   |     |
| Pressure range         | [bar]   |     | 4÷50; | 6÷100;              | 7÷210;      | 8÷350 |     |
| Max flow AGAM (1)      | [l/min] | 200 |       |                     | 400         |       | 600 |
| Max flow ARAM (1)      | [l/min] | -   |       |                     | 350         |       | 500 |

(1) see Q/ $\Delta$ p diagrams at section 12 and 13

# 5 ELECTRICAL CHARACTERISTICS

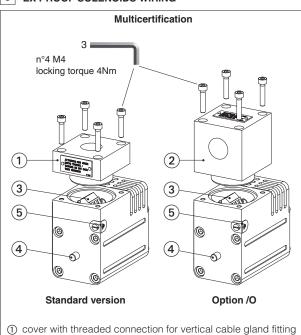
| Valve type                                  |                   | AGAM-*/AO AGAM-*/AO/M<br>ARAM-*/AO ARAM-*/AO/M |                                  | AGAM-* <b>/AO/UL</b><br>ARAM-* <b>/AO/UL</b> |
|---------------------------------------------|-------------------|------------------------------------------------|----------------------------------|----------------------------------------------|
| Voltage code (1)                            | VDC ±10%          | 12DC, 24DC, 28DC, 48DC                         | C, 110DC, 125DC, 220DC           | 12DC, 24DC, 110DC,<br>125DC, 220DC           |
|                                             | VAC 50/60 Hz ±10% | 12AC, 24AC, 1                                  | 12AC, 24AC, 110AC, 230AC         |                                              |
| Power consumption at 20°C                   |                   | 81                                             | 12W                              |                                              |
| Coil insulation                             |                   | class H                                        |                                  |                                              |
| Protection degree with relevant cable gland |                   | IP66/67 to D                                   | raintight enclosure, UL approved |                                              |
| Duty factor                                 |                   | 100%                                           |                                  | ·                                            |

<sup>(1)</sup> For alternating current supply a rectifier bridge is provided built-in the solenoid
For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                      | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                                            |                            |               |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|--|--|
| Seals, recommended fluid temperature | FKM seals (/PE option) = -20°C ÷ +80°C                                                                                     |                            |               |  |  |  |
|                                      | HNBR seals (/BT option) = $-40^{\circ}$ C ÷ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C ÷ $+50^{\circ}$ C |                            |               |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                           |                            |               |  |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                             |                            |               |  |  |  |
| Hydraulic fluid                      | Suitable seals type Classification                                                                                         |                            | Ref. Standard |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                             | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |  |  |
| Flame resistant without water        | FKM                                                                                                                        | ISO 12922                  |               |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                  | HFC                        | 130 12922     |  |  |  |

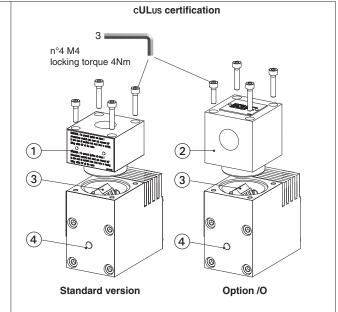
The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


# 7 CERTIFICATION DATA

| Valve type                                                                        | AGAM-* <b>/AO</b><br>ARAM-* <b>/AO</b>                                                              |                                                   | AGAM-* <b>/AO/M</b><br>Aram-* <b>/AO/M</b>           |                                                               | */AO/UL<br>*/AO/UL                 |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| Certifications                                                                    |                                                                                                     | tion Group II  EAC PESO                           | Multicertification Group I  ATEX IECEx               |                                                               | rican cULus<br>I <b>Lus</b>        |
| Solenoid certified code                                                           | 0                                                                                                   | Α                                                 | OA/M                                                 | OA                                                            | /EC                                |
| Type examination certificate (1)                                                  | ATEX: CESI 02 ATEX 014<br>IECEx: IECEx CES 10.0010x<br>EAC: TC RU C-IT. 08.B.01784<br>PESO: P338131 |                                                   | ATEX: CESI 03 ATEX 057x<br>IECEx: IECEx CES 12.0007x | 20170324                                                      | - E366100                          |
| Method of protection                                                              |                                                                                                     | C/T200°C Db                                       | ATEX Ex   M2 Ex db   Mb  IECEx Ex db   Mb            | • UL 1203<br>Class I, Div.I, (<br>Class I, Zone I             | Groups C & D<br>, Groups IIA & IIB |
| Temperature class                                                                 | Т6                                                                                                  | T4                                                | -                                                    | T6                                                            | T5                                 |
| Surface temperature                                                               | ≤ 85 °C                                                                                             | ≤ 135 °C                                          | ≤ 150 °C                                             | ≤ 85 °C                                                       | ≤ 100 °C                           |
| Ambient temperature (2)                                                           | -40 ÷ +45 °C                                                                                        | -40 ÷ +70 °C                                      | -20 ÷ +70 °C                                         | -40 ÷ +55 °C                                                  | -40 ÷ +70 °C                       |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                             |                                                   | IEC 60079-0<br>IEC 60079-1<br>IEC 60079-31           | UL 1203 and UL429,<br>CSA 22.2 n°30-1986<br>CSA 22.2 n°139-13 |                                    |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) |                                                                                                     | <b>GK</b> = G<br><b>M</b> = M20<br><b>NPT</b> = 1 | 0x1,5                                                | 1/2" NPT ANS                                                  | SI/ASME B46.1                      |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification


# 8 EX PROOF SOLENOIDS WIRING



- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- 4) standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm<sup>2</sup> (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- standard manual override



# Pay attention to coil polarity

- = Coil + PCB 3 poles terminal board sugge-= GND sted cable section up to 1,5 mm<sup>2</sup> = Coil (max AWG16), see section 9 note 1

alternative GND screw terminal connected to solenoid housing

# 9 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

# Multicertification Group I and Group II

**Power supply:** section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

# cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

# 9.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

# Multicertification

| Max ambient temperature [°C] | Temperature class Group I Group II |    | Max surface temperature [°C] Group I Group II |        | Min cable temperature |
|------------------------------|------------------------------------|----|-----------------------------------------------|--------|-----------------------|
| 45 °C                        | -                                  | T6 | 150 °C                                        | 85 °C  | not prescribed        |
| 70 °C                        | -                                  | T4 | 150 °C                                        | 135 °C | 90 °C                 |

# cULus certification

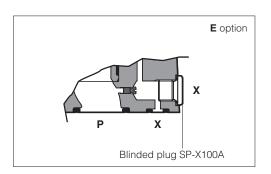
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min cable temperature |
|------------------------------|-------------------|------------------------------|-----------------------|
| 55 °C                        | T6                | 85 °C                        | 100 °C                |
| 70 °C                        | T5                | 100 °C                       | 100 °C                |

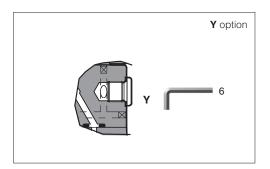
# 10 CABLE GLANDS only for Multicertification

Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

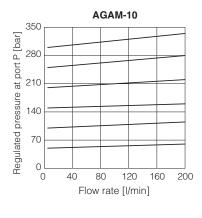
Note: a Loctite sealant type 545, should be used on the cable gland entry threads

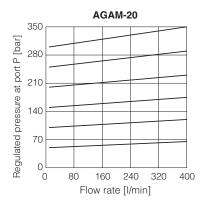
# 11 OPTIONS

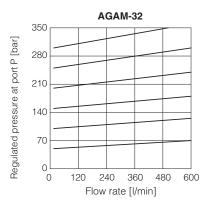

**E** = External pilot option to be selected when the pilot pressure is supplied from a different line respect to the P main line.

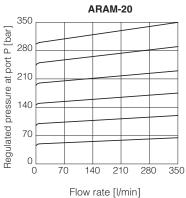

With option E the internal connection between port P and X of the valve is plugged. The pilot pressure must be connected to the X port available on the valve's mounting surface or on main body (threaded pipe connection G  $\frac{1}{4}$ ").

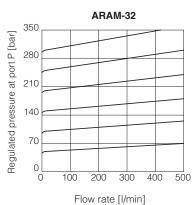
- **O** = Horizontal cable entrance, to be selected in case of limited vertical space
- V = Regulating handweel for pressure adjustment
- **WP** = Manual override protect by metallic cap
- Y = The external drain is mandatory in case the main line T is subjected to pressure peaks or it is pressurized.
  - The Y drain port has a threaded connection G  $\frac{1}{4}$ " available on the pilot stage body.



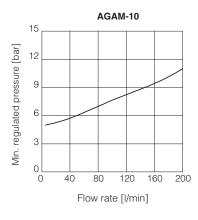


/EO, /EV, /EY, /EW, /EWP, /EOV, /EOY, /EVY /EOWP, /EWPY, /EOVY, /EOVWP, /EVWPY, /EOVWPY /OV, /OY, /OWP, /OVY, /OVWP, /OWPY, /OVWPY, /VY, /WWP, /VWPY /WPY

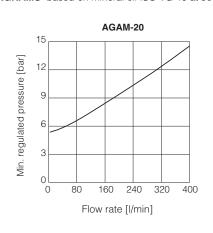


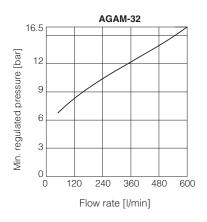



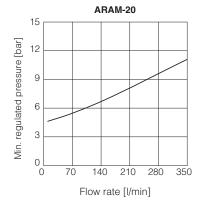


# 12 REGULATED PRESSURE VERSUS FLOW DIAGRAMS based on mineral oil ISO VG 46 at 50°C

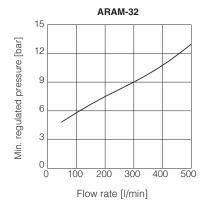






# 13 MINIMUM PRESSURE VERSUS FLOW DIAGRAMS based on mineral oil ISO VG 46 at 50°C



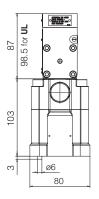






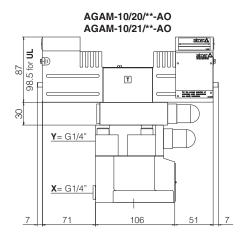


CX010 ON-OFF VALVES 445

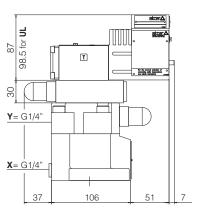

# AGAM-10

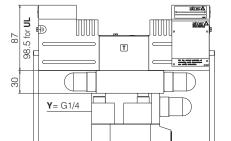
54 Valve's bottom view


# **ISO 6264: 2007** (see table P005) Mounting surface: 6264-06-09-1-97 Fastening bolts:


4 socket head screws M12x35 class 12.9 Tightening torque = 125 Nm Seals: 2 OR 123; 1 OR 109/70 Ports P, T:  $\emptyset$  = 14,5 mm Ports X:  $\emptyset$  = 3,2 mm

| Mass [kg]           |           |  |  |
|---------------------|-----------|--|--|
| AGAM-10/10<br>10/11 | 6,45      |  |  |
| AGAM-10/20<br>10/21 | 7,55      |  |  |
| AGAM-10/22<br>10/32 | 7,25<br>9 |  |  |
| option /V           | -         |  |  |
| option /O           | +0,35     |  |  |
| option /WP          | +0,25     |  |  |



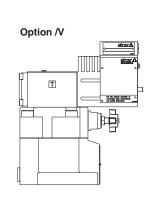


# AGAM-10/10/\*\*-AO AGAM-10/11/\*\*-AO

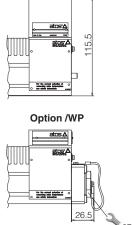




# AGAM-10/22/\*\*-AO

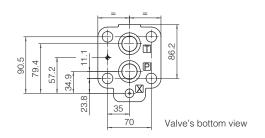






106

51

**X**= G1/4"

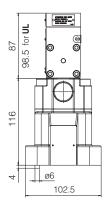

AGAM-10/32/\*\*-AO



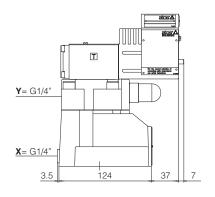


Option /O

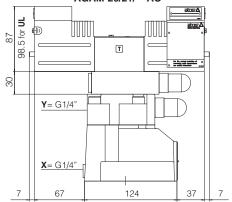
# AGAM-20



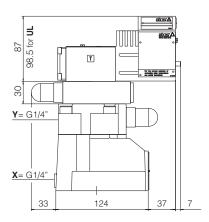

# **ISO 6264: 2007** (see table P005) Mounting surface: 6264-08-11-1-97


Fastening bolts:
4 socket head screws M16x50 class 12.9
Tightening torque = 300 Nm
Seals: 2 OR 4112; 1 OR 109/70

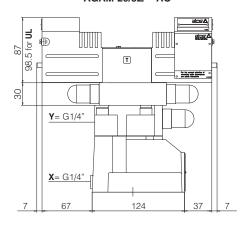
Ports P, T:  $\emptyset = 24 \text{ mm}$ Ports X:  $\emptyset = 3,2 \text{ mm}$ 


| Mass                | [kg]         |
|---------------------|--------------|
| AGAM-20/10<br>20/11 | 7,65         |
| AGAM-20/20<br>20/21 | 8,75         |
| AGAM-20/22<br>20/32 | 8,45<br>10,2 |
| Option /V           | -            |
| Option /O           | +0,35        |
| Option /WP          | +0,25        |




# AGAM-20/10/\*\*-AO AGAM-20/11/\*\*-AO

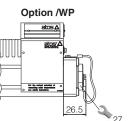







AGAM-20/22/\*\*-AO

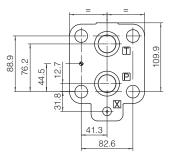



AGAM-20/32/\*\*-AO



Option /V T

CX010



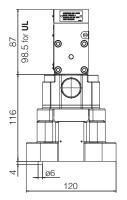



447

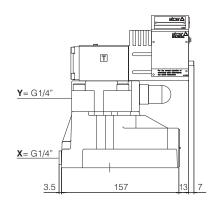
ON-OFF VALVES

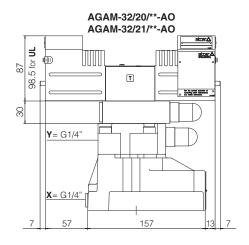
# AGAM-32



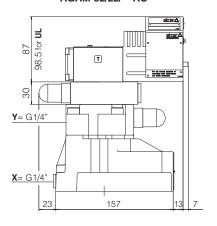

Valve's bottom view

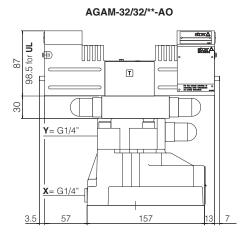
# **ISO 6264: 2007** (see table P005) Mounting surface: 6264-10-17-1-97 (with M20 fixing holes instead of standard M18)

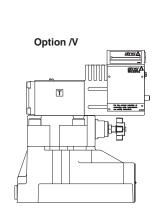

Fastening bolts: 4 socket head screws M20x60 class 12.9 Tightening torque = 600 Nm Seals: 2 OR 4131; 1 OR 109/70 Ports P, T:  $\emptyset$  = 28,5 mm Ports X:  $\emptyset$  = 3,2 mm

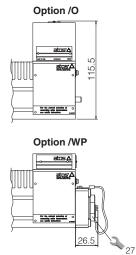

| <b>X</b> = port connection for external pilot |
|-----------------------------------------------|
| Y = port connection for external drain        |

| Mass [kg]           |              |  |  |  |  |
|---------------------|--------------|--|--|--|--|
| AGAM-32/10<br>32/11 | 9,05         |  |  |  |  |
| AGAM-32/20<br>32/21 | 10,05        |  |  |  |  |
| AGAM-32/22<br>32/32 | 9,85<br>11,6 |  |  |  |  |
| Option /V           | -            |  |  |  |  |
| Option /O           | +0,35        |  |  |  |  |
| Option /WP          | +0,25        |  |  |  |  |

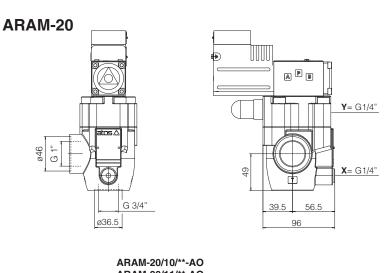




# AGAM-32/10/\*\*-AO AGAM-32/11/\*\*-AO



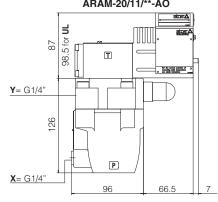

# AGAM-32/22/\*\*-AO



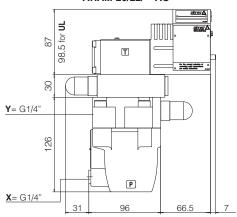


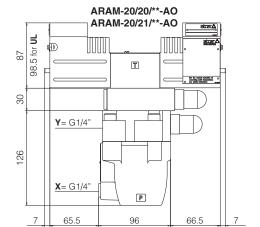




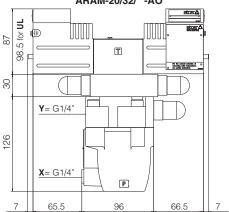





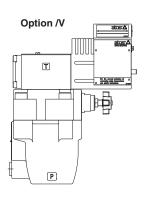


| Mass [kg]           |              |  |  |  |  |
|---------------------|--------------|--|--|--|--|
| ARAM-20/10<br>20/11 | 6,75         |  |  |  |  |
| ARAM-20/20<br>20/21 | 8,45         |  |  |  |  |
| ARAM-20/22<br>20/32 | 8,15<br>10,1 |  |  |  |  |
| Option /V           | -            |  |  |  |  |
| Option /O           | +0,35        |  |  |  |  |
| Option /WP          | +0,25        |  |  |  |  |


- **X** = port connection for external pilot
- **Y** = port connection for external drain

# ARAM-20/10/\*\*-AO ARAM-20/11/\*\*-AO




# ARAM-20/22/\*\*-AO



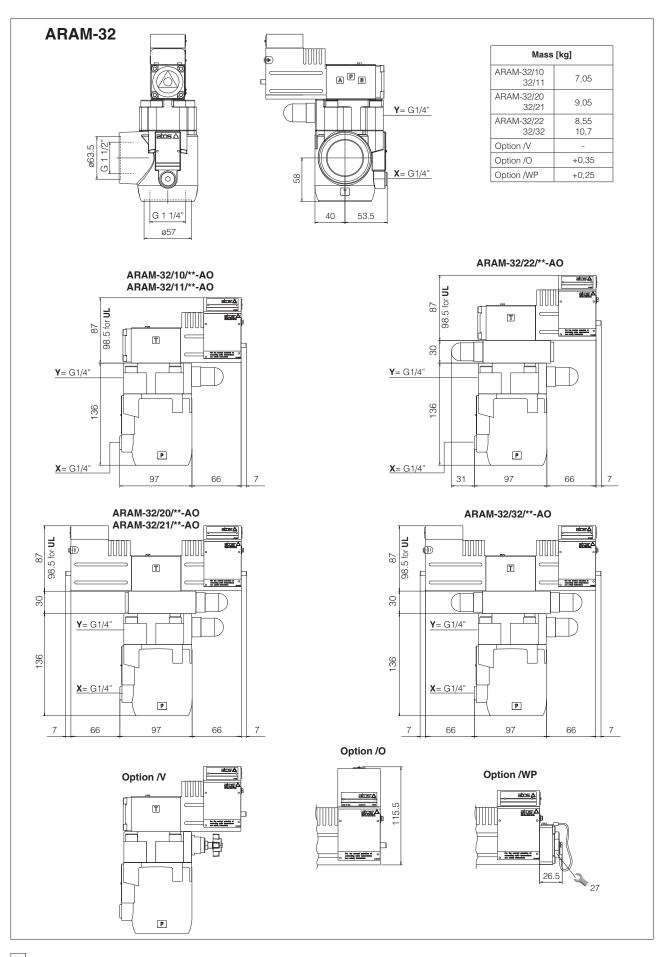



# ARAM-20/32/\*\*-AO



# Option /O





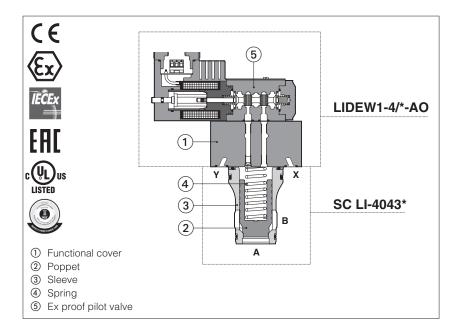

CX010

# Option /WP

449

ON-OFF VALVES




# 16 RELATED DOCUMENTATION

| X010 | Basics for electrohydraulics in hazardous environments | EX900 | Operating and manintenance information for ex- |
|------|--------------------------------------------------------|-------|------------------------------------------------|
| X020 | Summary of Atos ex-proof components certified to ATEX, |       | proof on-off valves                            |
|      | IECEX, EAC, PESO                                       | KX800 | Cable glands for ex-proof valves               |
| X030 | Summary of Atos ex-proof components certified to cULus | P005  | Mounting surfaces for electrohydraulic valves  |



# **Ex-proof ISO cartridges**

directional control - ATEX, IECEx, EAC, PESO or cULus



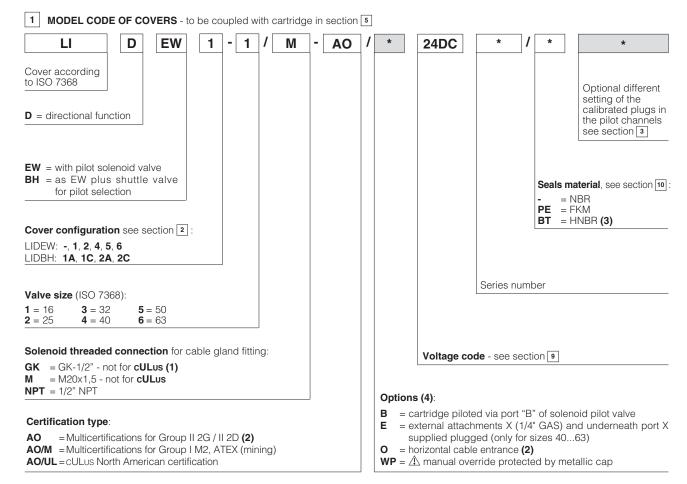
# LIDEW, LIDBH

Directional ISO cartridgs equipped with exproof solenoid pilot valve, certified for safe operation in hazardous environments, with potentially explosive atmosphere.

### Certifications:

- Multicertification ATEX, IECEx, EAC and PESO for gas group II 2G and dust category II 2D
- Multicertification ATEX and IECEx for gas group I M2 (mining)
- cULus North American certification for gas group C&D

The flameproof enclosure of solenoid prevents the propagation of accidental internal sparks or fire to the external environment.


The solenoid is also designed to limit the surface temperature within the classified limits.

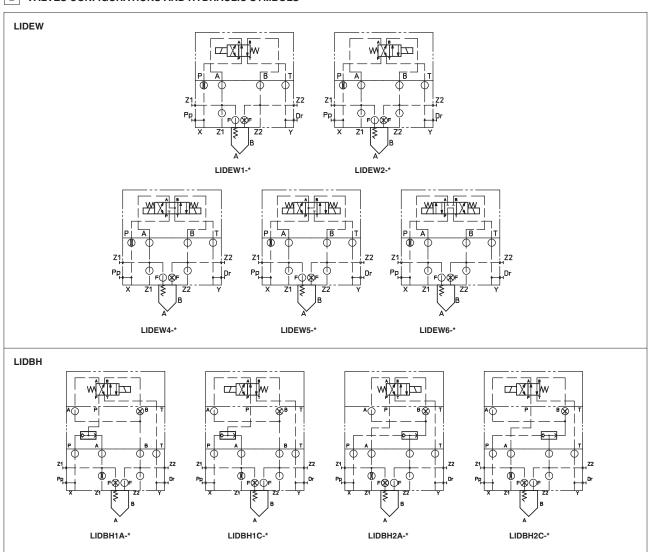
**LIDEW**: directional control with ex-proof solenoid valve for pilot selection

**LIDBH**: directional control with ex-proof solenoid valve and shuttle valve for pilot selection

Size: **16** ÷ **63** - ISO 7368 Flow: **240** ÷ **4000 l/min** at Δp 5 bar

Max pressure: 350 bar




(1) Approved only for the Italian market (2) The valves with Multicertification for Group II are also certified for Indian market according to **PESO** (Petroleum and Explosives Safety Organization). The PESO certificate can be downloaded from www.atos.com

(3) Not for multicertification M group I (mining) (4) For possible combined options, see 3.1

riangle The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

EX050 ON-OFF VALVES 451

# 2 VALVES CONFIGURATIONS AND HYDRAULIC SYMBOLS



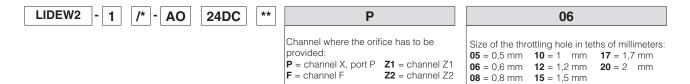
# 3 OPTIONS

For LIDEW\*, LIDBH\* covers (sizes 40...63):

/E = with external attachments Pp and underneath port X supplied plugged;

For all the models:

/B = cartridge piloted via port "B" of solenoid pilot valve;


/F = prearranged for coupling to an intermediate element with poppet position detector for safety function. See tab. EY120.

**MP** = prolonged manual override protected by rubber cap for solenoid pilot valve. See table K150.

\*\*\* = Calibrated plugs different from standard ones reported in section 4. The restrictors configuration (if different from the standard) must be indicated at the end of the model code:

# 3.1 Possible combined options:

All combinations are available



# 4 STANDARD ORIFICES CONFIGURATION

| Cover                  | LIDEW*-1 | LIDEW*-2 | LIDEW*-3 | LIDEW*-4 | LIDEW*-5 | LIDEW*-6 |
|------------------------|----------|----------|----------|----------|----------|----------|
|                        | LIDBH*-1 | LIDBH*-2 | LIDBH*-3 | LIDBH*-4 | LIDBH*-5 | LIDBH*-6 |
| Z1 (only for LIDBH*-*) | M4       | M4       | M6       | M6       | M6       | M6       |
|                        | 12A      | 12A      | 15A      | 17A      | 20A      | 20A      |
| Р                      | M6       | M6       | M6       | M6       | M6       | M6       |
|                        | 12A      | 12A      | 15A      | 17A      | 20A      | 20A      |

# 5 MODEL CODE OF SLIP-IN CARTRIDGES, to be coupled with covers in section 1

SC LI 43 16 Cartridge valve **Size** (ISO 7368): 16 25 40 50 63

Type of poppet, see section 6 for maximum flow

32, 33

42 = as 32 but with dumping nose 43 = as 33 but with dumping nose

40 1 Seals material: - = NBR **PE** = FKM BT = HNBRHigh flow:

Spring cracking pressure:

**2** = 1,5 bar for poppet 32, 42;

**1** = 0,3 bar for poppet 32, 42;

**3** = 3 bar for all poppets

1 = 0.6 bar for poppet 33, 43; **6** = 5,5 bar for all poppets

40 = all sizes

# 6 TYPE OF POPPET

| Type of poppet                          |          | 32       | 33              | 42                 | 43      |
|-----------------------------------------|----------|----------|-----------------|--------------------|---------|
| Functional sketch<br>(Hydraulic symbol) |          | AP<br>B  | AP<br>B         | AP<br>B            | AP<br>B |
| Operating pre                           | essure   |          | 420 bar max (on | ly SCLI cartridge) |         |
|                                         | Size 16  | 270      | 270             | 240                | 240     |
| Nominal flow                            | 25       | 550      | 550             | 500                | 500     |
| at ∆p 5bar                              | 32       | 1000     | 1000            | 800                | 800     |
| (I/min)<br>see                          | 40       | 1700     | 1700            | 1400               | 1400    |
| diagrams Q/Δ                            | 50       | 2500     | 2500            | 2200               | 2200    |
| at section 9                            | 63       | 4000     | 4000            | 3300               | 3300    |
| Typical sec                             | ction    |          |                 |                    |         |
| Area ratio                              | 4:Ар     | 1:1,1    | 1:1,5           | 1:1,1              | 1:1,5   |
| Cracking                                | Spring 1 | 0,3 bar  | 0,6 bar         | 0,3 bar            | 0,6 bar |
| pressure                                | 2        | 1,5 bar  | -               | 1,5 bar            | -       |
| A→B                                     | 3        | 3 bar    | 3 bar           | 3 bar              | 3 bar   |
|                                         | 6        | 5,5 bar  | 5,5 bar         | 5,5 bar            | 5,5 bar |
| Cracking                                | Spring 1 | 3 bar    | 1,2 bar         | 3 bar              | 1,2 bar |
| pressure                                | 3        | 12,8 bar | -               | 12,8 bar           | -       |
| B→A                                     |          | 32,5 bar | 6 bar           | 32,5 bar           | 6 bar   |
|                                         | 6        | 54,5 bar | 11 bar          | 54,5 bar           | 11 bar  |

# 7 GENERAL CHARACTERISTICS

| Assembly position / location           | Any position                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 75 years, for further details see technical table P007                                                                                                                         |  |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C       |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                    |  |  |  |  |  |
| Compliance                             | Explosion proof protection, see section 11 -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                         |  |  |  |  |  |
|                                        | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |  |

# 8 HYDRAULIC CHARACTERISTICS

| Functional cover operating pressure | port A, B, X, Z1, Z2 = <b>350</b> ; port Y = <b>210</b> |
|-------------------------------------|---------------------------------------------------------|
| Rated flow                          | see section 6                                           |

ON-OFF VALVES EX050 453

# 9 ELECTRICAL CHARACTERISTICS

| Valve type                                  | LIDEW*/AO LIDEW*/AO/M LIDBH*/AO LIDBH*/AO/M |                          |                                    | LIDEW* <b>/AO/UL</b><br>LIDBH* <b>/AO/UL</b> |
|---------------------------------------------|---------------------------------------------|--------------------------|------------------------------------|----------------------------------------------|
| Voltage code (1)                            | VDC ±10%                                    | 12DC, 24DC, 28DC, 48DC   | 12DC, 24DC, 110DC,<br>125DC, 220DC |                                              |
|                                             | VAC 50/60 Hz ±10%                           | 12AC, 24AC, 110AC, 230AC |                                    | 12AC, 24AC, 110AC, 230AC                     |
| Power consumption at 20°C                   |                                             | 8W                       |                                    | 12W                                          |
| Coil insulation                             |                                             | class H                  |                                    |                                              |
| Protection degree with relevant cable gland |                                             | IP66/67 to DIN EN60529   |                                    | raintight enclosure, UL approved             |
| Duty factor                                 | 100%                                        |                          |                                    |                                              |

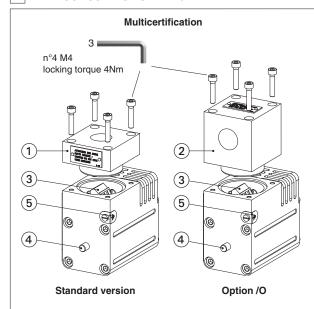
<sup>(1)</sup> For alternating current supply a rectifier bridge is provided built-in the solenoid For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C FKM seals (/PE option) = -20°C ÷ +80°C HNBR seals (/BT option) = -40°C ÷ +60°C, with HFC hydraulic fluids = -40°C ÷ +50°C |            |                |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--|--|--|
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                                                                                                          |            |                |  |  |  |
| Max fluid contamination level        | ISO 4406 class 20/18/15 NAS 1638 class 9, see also filter section at www.atos.com or KTF catalog                                                                                                          |            |                |  |  |  |
| Hydraulic fluid                      | Suitable seals type Classification Ref. Standard                                                                                                                                                          |            |                |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                                                                                            | DIN 51524  |                |  |  |  |
| Flame resistant without water        | FKM                                                                                                                                                                                                       | HFDU, HFDR | HFDR ISO 12022 |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                                                                                                 | HFC        | ISO 12922      |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

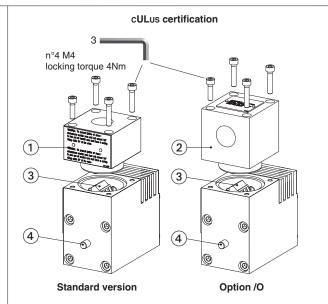
# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = $50^{\circ}$ C


# 11 EX-PROOF SOLENOIDS CERTIFICATION DATA

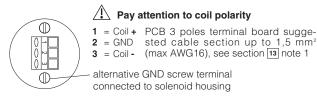
| Valve type                                                                        |                                                                                             | V* <b>/AO</b><br>⊣* <b>/AO</b>                                                                                                                                  | LIDEW*/AO/M<br>LIDBH*/AO/M           |              | /AO/UL<br>/AO/UL                                                               |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------------------------------------------------------------------------|--|
| Certifications                                                                    | ATEX IECEX                                                                                  | EAC PESO                                                                                                                                                        | ATEX IECEx                           | cU           | Lus                                                                            |  |
|                                                                                   | Multicertifica                                                                              | ation Group II                                                                                                                                                  | Multicertification Group I           | North Ame    | rican cULus                                                                    |  |
| Solenoid certified code                                                           | 0                                                                                           | Α                                                                                                                                                               | OA/M                                 | OA           | /EC                                                                            |  |
| Type examination certificate (1)                                                  | ATEX: CESI 02<br>IECEx: IECEx C<br>EAC: TC RU C-<br>PESO: P33813                            | ES 10.0010x<br>IT. 08.B.01784                                                                                                                                   | 10.0010x   IECEx: IECEx CES 12.0007x |              | - E366100                                                                      |  |
| Method of protection                                                              | ATEX, EAC EX II 2G EX d II EX II 2D EX tb IIIC  IECEX EX d IIC T6/T4/ EX tb IIIC T85°  PESO | • ATEX, EAC EX II 2G EX d IIC T6/T4/T3 Gb EX II 2D Ex tb IIIC T85°C/T200°C Db • ATEX EX   M2 Ex db   Mb • IECEX EX d IIC T6/T4/T3 Gb EX tb IIIC T85°C/T200°C Db |                                      |              | UL 1203     Class I, Div.I, Groups C & D     Class I, Zone I, Groups IIA & IIB |  |
| Temperature class                                                                 | T6                                                                                          | T4                                                                                                                                                              | -                                    | Т6           | T5                                                                             |  |
| Surface temperature                                                               | ≤ 85 °C                                                                                     | ≤ 135 °C                                                                                                                                                        | ≤ 150 °C                             | ≤ 85 °C      | ≤ 100 °C                                                                       |  |
| Ambient temperature (2)                                                           | -40 ÷ +45 °C                                                                                | -40 ÷ +70 °C                                                                                                                                                    | -20 ÷ +70 °C                         | -40 ÷ +55 °C | -40 ÷ +70 °C                                                                   |  |
| Applicable standards                                                              | EN 60079-0<br>EN 60079-1<br>EN 60079-31                                                     | EN 60079-1 IEC 60079-1                                                                                                                                          |                                      |              | nd UL429,<br>n°30-1986<br>n°139-13                                             |  |
| Cable entrance: threaded connection vertical (standard) or horizontal (option /O) | GK = GK-1/2"<br>M = M20x1,5<br>NPT = 1/2" NPT                                               |                                                                                                                                                                 |                                      | 1/2" NPT ANS | SI/ASME B46.1                                                                  |  |

<sup>(1)</sup> The type examinator certificates can be downloaded from www.atos.com

<sup>(2)</sup> The solenoids **Group II** and **cULus** are certified for minimum ambient temperature -40°C In case the complete valve must withstand with minimum ambient temperature of -40°C, select /BT in the model code


# 12 EX PROOF SOLENOIDS WIRING




- ① cover with threaded connection for vertical cable gland fitting
- 2) cover with threaded connection for horizontal cable gland fitting
- 3 terminal board for cables wiring
- standard manual override
- (5) screw terminal for additional equipotential grounding



PCB 3 poles terminal board suitable for wires cross sections up to 2,5 mm² (max AWG14)



- ① cover with threaded connection for vertical cable gland fitting
- ② cover with threaded connection for horizontal cable gland fitting
- (3) terminal board for cables wiring
- (4) standard manual override



13 CABLE SPECIFICATION AND TEMPERATURE - Power supply and grounding cables have to comply with following characteristics:

# **Multicertification Group I and Group II**

**Power supply:** section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

# cULus certification:

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

# 13.1 Cable temperature

The cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of the products.

# Multicertification

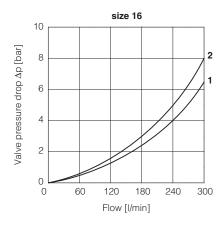
| Max ambient temperature [°C] | Tempera<br>Group I | ture class<br>Group II | Max surface temperature [°C] Group I Group II |        | Min cable temperature |
|------------------------------|--------------------|------------------------|-----------------------------------------------|--------|-----------------------|
| 45 °C                        | -                  | T6                     | 150 °C                                        | 85 °C  | not prescribed        |
| 70 °C                        | -                  | T4                     | 150 °C                                        | 135 °C | 90 °C                 |

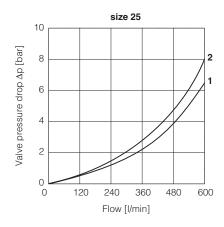
# **cULus** certification

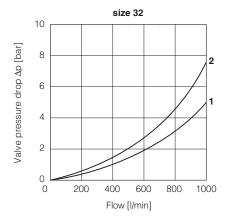
| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min cable temperature |
|------------------------------|-------------------|------------------------------|-----------------------|
| 55 °C                        | T6                | 85 °C                        | 100 °C                |
| 70 °C                        | T5                | 100 °C                       | 100 °C                |

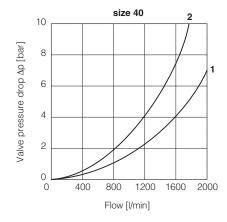
# 14 CABLE GLANDS only for Multicertification

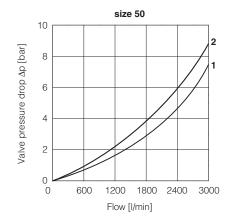
Cable glands with threaded connections GK-1/2", 1/2"NPT or M20x1,5 for standard or armoured cables have to be ordered separately, see tech. table **KX800** 

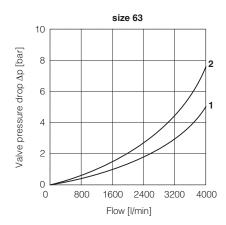

Note: a Loctite sealant type 545, should be used on the cable gland entry threads


455

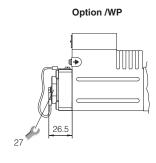

# SC LI High flow - series 40


1 = poppet type 32 and 33


2 = poppet type 42 and 43



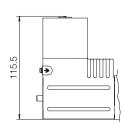




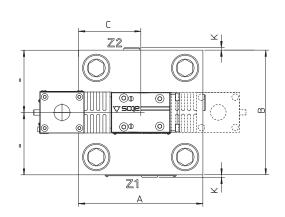







# Drawing of size 50 dotted line: example of double solenoid version 98.5 for **UL** 87 T Shuttle valve Only for LIDBH 40 =atos ∆ X F Y Z Z |Pp Dr X (o) ØG


Size 16 ÷ 63

Option /O

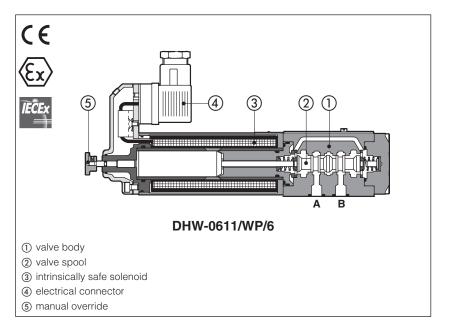


# Notes referred to the below table:

(1) LIDEW1\* - LIDBH\*A: solenoid at side of port Y of cover LIDEW2\* - LIDBH\*C: solenoid at side of port X of cover



| Size (1) | А   | В   | С    | D<br>max | E<br>max | F | G | ı  | J   | К   | Ports<br>Pp-Dr | Ports<br>Z1-Z2 | Seals     | Fastening bolts (3) | Tightening torque [Nm] | Mass<br>[Kg] |
|----------|-----|-----|------|----------|----------|---|---|----|-----|-----|----------------|----------------|-----------|---------------------|------------------------|--------------|
| 16       | 70  | 65  | 41   | 80       | 92       | 4 | 3 | 40 | -   | -   | -              | -              | 4 OR-108  | Nr. 4 M8x45         | 35                     | 3,95 ÷ 5,7   |
| 25       | 85  | 85  | 42,5 | 78       | 78       | 6 | 5 | 40 | -   | -   | -              | -              | 4 OR-108  | Nr. 4 M12x45        | 125                    | 4,35 ÷ 6,1   |
| 32       | 100 | 100 | 50   | 71       | 71       | 6 | 5 | 50 | -   | -   | -              | -              | 4 OR-2043 | Nr. 4 M16x55        | 300                    | 4,85 ÷ 6,7   |
| 40       | 125 | 125 | 62,5 | 58       | 58       | 6 | 5 | 60 | 3,5 | -   | G 1/4          | -              | 4 OR-3043 | Nr. 4 M20x70        | 600                    | 7,75 ÷ 9,6   |
| 50       | 140 | 140 | 70   | 51       | 51       | 4 | 6 | 70 | 3,5 | 3,5 | G 1/4          | G 1/4          | 4 OR-3043 | Nr. 4 M20x80        | 600                    | 10,85 ÷ 12,7 |
| 63       | 180 | 180 | 90   | 31       | 31       | 4 | 6 | 80 | 3,5 | 3,5 | G 3/8          | G 3/8          | 4 OR-3050 | Nr. 4 M30x90        | 2100                   | 18,65 ÷ 20,4 |


# 17 RELATED DOCUMENTATION

| X030         | IECEx, EAC, PESO<br>Summary of Atos ex-proof components certified to cULus                                    | KX800<br>P006 | Cable glands for ex-proof valves  Mounting surfaces and cavities for cartridge valves |  |
|--------------|---------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------|--|
| X010<br>X020 | Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, | EX900         | Operating and manintenance information for exproof on-off valves                      |  |



# Intrinsically safe solenoid directional valves

on-off spool type, direct - ATEX or IECEx

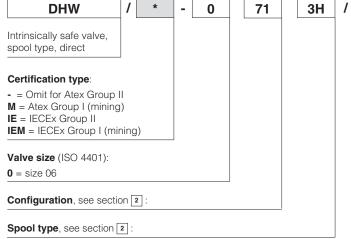


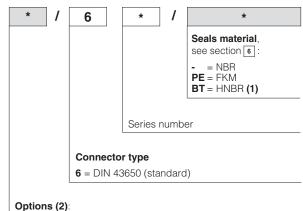
# DHW

On-off, spool type, directional valves equipped with intrinsically safe solenoids certified for safe operation in hazardous environment with potentially explosive atmosphere.

# Certifications:

- ATEX or IECEx: II 1G Ex ia IIC, IIB, IIA surface plants zone 0, 1 and 2
- ATEX or IECEx-IM2 Ex ia IMb, Ex ib IMb surface, tunnels or mining plants


DHW are SIL compliance with IEC 61508

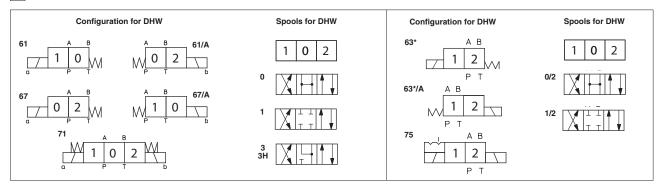

See section 7 for certification data

The valves must be electrically powered through specific "safety barriers" limiting the max current to the solenoid, see section 13

Max flow: up to 25 l/min Max pressure: 350 bar

# 1 MODEL CODE






A = solenoid at side of port B **WP** = prolunged manual override

- (1) Not for certification M and IEM, Group I (mining)
- (2) Possible combined options: all combinations are available

 $\perp$  The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

# 2 CONFIGURATION and SPOOLS (representation according to ISO 1219-1)



Note: Spool type 3H is available only for configuration 71. It is similar to spool type 3 but with higher flow capability A-B  $\rightarrow$  T in central position, see section 10

> EX100 ON-OFF VALVES

# 3 GENERAL CHARACTERISTICS

| Assembly position / location           | Horizontal position only                                                                                                                                         |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100)                                                                                |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 150 years, for further details see technical table P007                                                                                                          |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /PE option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C /BT option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                       |  |  |  |  |
|                                        | Intrinsically safe protection "Ex ia", see section 7                                                                                                             |  |  |  |  |
| Compliance                             | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                      |  |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS

| Operating pressure | Ports P,A,B: <b>350</b> bar;<br>Port T <b>160</b> bar |
|--------------------|-------------------------------------------------------|
| Rated flow         | See Q/ $\Delta$ p diagrams at section 10              |
| Maximum flow       | 25 I/min, see operating limits at section [1]         |

# 5 ELECTRICAL CHARACTERISTICS - see also section 7

| Nominal resistance at 20°C | 150 Ω                    |
|----------------------------|--------------------------|
| Coil insulation            | Class H                  |
| Working voltage            | 12 ÷ 26 V                |
| Minimum supply current     | 65mA, from I.S. barriers |
| Protection degree          | IP66                     |
| Duty factor                | 100%                     |
| Electrical connector       | DIN 43650 2 pin+GND      |

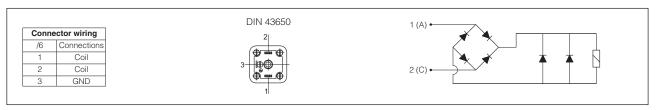
# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                                                                                                  | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                  |                                        |               |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|---------------|--|--|--|
| Seals, recommended fluid temperature                                                                             | FKM seals (/PE option) = -20°C ÷                                                                 | FKM seals (/PE option) = -20°C ÷ +80°C |               |  |  |  |
| HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ +50°C |                                                                                                  |                                        |               |  |  |  |
| Recommended viscosity                                                                                            | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                 |                                        |               |  |  |  |
| Max fluid contamination level                                                                                    | ISO 4406 class 20/18/15 NAS 1638 class 9, see also filter section at www.atos.com or KTF catalog |                                        |               |  |  |  |
| Hydraulic fluid                                                                                                  | Suitable seals type                                                                              | Classification                         | Ref. Standard |  |  |  |
| Mineral oils                                                                                                     | NBR, FKM, HNBR                                                                                   | HL, HLP, HLPD, HVLP, HVLPD             | DIN 51524     |  |  |  |
| Flame resistant without water                                                                                    | FKM                                                                                              | HFDU, HFDR                             | ISO 12022     |  |  |  |
| Flame resistant with water                                                                                       | NBR, HNBR                                                                                        | NBR, HNBR HFC ISO 12922                |               |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

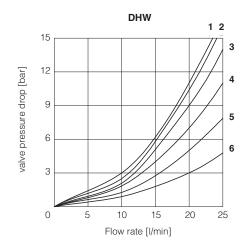
# 7 CERTIFICATION DATA


| Valve type                                              |      |      |           | DHW                                |                         | DHW <b>/I</b>     | E     |                         | DHW <b>/M</b>       |       |                         | DHW/IEM              | 1    |                                |  |  |                        |  |          |
|---------------------------------------------------------|------|------|-----------|------------------------------------|-------------------------|-------------------|-------|-------------------------|---------------------|-------|-------------------------|----------------------|------|--------------------------------|--|--|------------------------|--|----------|
| Certification                                           |      |      | ATEX      | (Group II)                         | (Group II) IECEx (Group |                   |       | ATEX (mining) (Group I) |                     |       | ATEX (mining) (Group I) |                      |      | iroup I) IECEx (mining) (Group |  |  | l) IECEx (mining) (Gro |  | Group I) |
| Solenoid code                                           |      |      | 0         | W-18/6                             |                         | OWI-18            | 3/6   |                         | OWM-18/6            | 6     | OWIM-18/6               |                      |      |                                |  |  |                        |  |          |
| Type examination certific                               | cate | (1)  |           | ESI 02<br>EX 013                   |                         | IECE:<br>CES 12.0 |       |                         | CESI 02<br>ATEX 013 |       | С                       | IECEX<br>CES 12.0017 |      |                                |  |  |                        |  |          |
| Method of protection                                    |      |      |           |                                    | II 1G                   | Ex ia             |       |                         | Ex I M2             | Ex ia | alMb ExiblMb            |                      |      |                                |  |  |                        |  |          |
|                                                         |      |      | IIA T5 Ga | IIB T6 Ga                          |                         | IIC T6 Ga         |       |                         |                     |       |                         |                      |      |                                |  |  |                        |  |          |
|                                                         | Ui   | [V]  | 28        | 28                                 | 27                      | 19,5              | 19,11 | 28                      | 28                  | 27    | 19,5                    | 19,11                | 12,4 |                                |  |  |                        |  |          |
| Electrical                                              | li [ | mA]  | 396       | 250                                | 130                     | 360               | 360   | 396                     | 250                 | 130   | 360                     | 360                  | 2200 |                                |  |  |                        |  |          |
| characteristics<br>(max values)                         | Pi   | [W]  | 2,8       | 1,8                                | 0,9                     | 1,64              | 1,72  | 2,8                     | 1,8                 | 0,9   | 1,64                    | 1,72                 | 6,82 |                                |  |  |                        |  |          |
|                                                         | Ci   | , Li | ≅ 0       | ≅ 0                                |                         |                   |       | :                       |                     |       | <b>≅</b> 0              |                      |      |                                |  |  |                        |  |          |
| Temperature class                                       |      |      | T5        |                                    |                         | Т6                |       | -                       |                     |       |                         |                      |      |                                |  |  |                        |  |          |
| Surface temperature (ambient temp. +60°C)               |      |      | ≤ 100°C   |                                    | <b>\leq</b>             | 85°C              |       |                         | ≤ 150°C             |       |                         |                      |      |                                |  |  |                        |  |          |
| Ambient temperature                                     |      |      |           | -20 ÷ +60°C -40 ÷ +60°C <b>(2)</b> |                         |                   |       | -20 ÷ +60°C             |                     |       |                         |                      |      |                                |  |  |                        |  |          |
| Applicable standards EN 60079-0 EN 60079-11 EN 60079-26 |      |      |           |                                    | IEC 6007<br>IEC 6007    | 79-11             |       |                         |                     |       |                         |                      |      |                                |  |  |                        |  |          |

(1) The type examinator certificates can be downloaded from www.atos.com (2) Only for /BT option

# 8 SIL compliance with IEC 61508: 2010

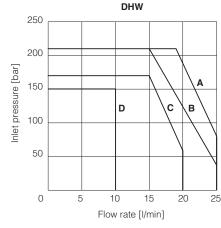
- SC3 (systematic capability)
- max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
- max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)


# 9 EX PROOF SOLENOIDS WIRING



# 10 Q/\(\Delta\pi\) DIAGRAMS based on mineral oil ISO VG 46 at 50°C

# DHW


| spool type                          |   |     |     |   |   |    |
|-------------------------------------|---|-----|-----|---|---|----|
|                                     | 0 | 0/2 | 1/2 | 1 | 3 | 3H |
| Flow direction                      |   |     |     |   |   |    |
| $P \rightarrow A / P \rightarrow B$ | 4 | 5   | 5   | 3 | 3 | 3  |
| A→T / B→T                           | 6 | 2   | 1   | 2 | 4 | 5  |
| A - B→T                             |   |     |     |   |   | 4  |



# 11 OPERATING LIMITS based on mineral oil ISO VG 46 at 50°C

The diagrams refer to warm solenoids and power supply provided by the Atos barrier type **Y-BXNE-412**. For DHW valves the curves refer to application with symmetrical flow through the valve (i.e.  $P \rightarrow A$  and  $B \rightarrow T$ ). In case of asymmetric flow the operating limits must be reduced.

| DHW type | 0 | 0/2 | 1/2 | 1 | 3 | зн |
|----------|---|-----|-----|---|---|----|
| Diagram  | В | В   | С   | С | Α | D  |



# 12 INTERNAL LEAKAGES

DHW internal leakages based on mineral oil ISO VG 46 at 50°C

- 18 cm³/min with P=100 bar fluid viscosity = 43 cSt at 40 °C
- **30 cm³/min** with P=140 bar fluid viscosity = 22 cSt at 45  $^{\circ}$ C

# 13 INTRINSICALLY SAFE BARRIERS - see tech. table GX010

Intrinsically safe valves must be powered through safety barriers certified according to Ex-ie protection mode, limiting the energy to the solenoid.

To select the proper intrinsically safe barriers following data must be considered:

- 1) Vmax and Imax of the solenoid as specified in section 7 must not be exceeded also in fault conditions;
- 2) the resistance of the solenoid is  $150 \Omega$  and the current supplied by the barrier, in normal operation condition, must be over the min. limit (65 mA) to ensure the valve correct operation (over 70 mA for max performances).

The barriers type **Y-BXNE 412** are galvanically isolated electronic devices, complying with European Norms EN60079-0/06, EN60079-11/07 and ATEX certified according to protection mode Ex ia IIC.

These barriers ensure the optimized functioning of the Atos valves up to the max operating limits specified in section [4]

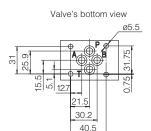
The barriers Y-BXNE-412 are double channel type, suitable to operate valves with double or single solenoid. Two single solenoid valves can be connected to the barrier (one to each channel) but they cannot be contemporary operated.

# MODEL CODE OF I.S. BARRIER

Y-BXNE 412 00 \*

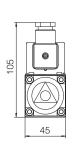
Supply voltage
E = 110/230 VAC
2 = 24÷48 VDC

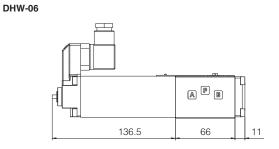
# 14 INSTALLATION DIMENSIONS [mm]

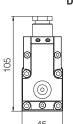

**ISO 4401: 2005** (see table P005)

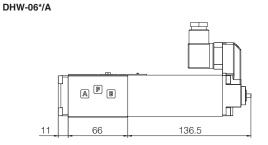
Mounting surface: 4401-03-02-0-05
Fastening bolts: 4 socket head screws:

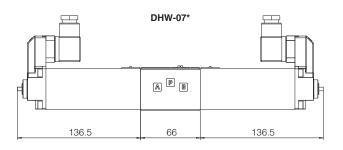
M5x50 class 12.9 Tightening torque = 8 Nm

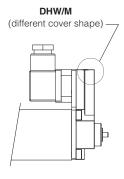

Seals: 4 OR 108

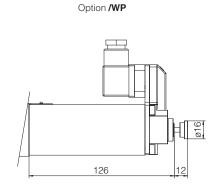

Ports P,A,B,T:  $\emptyset = 7.5 \text{ mm (max)}$ 





P = PRESSURE PORTA, B = USE PORTT = TANK PORT


| Mass      | s [kg] |
|-----------|--------|
| DHW-06    | 2,4    |
| DHW-06*/A | 2,4    |
| DHW-07*   | 4      |









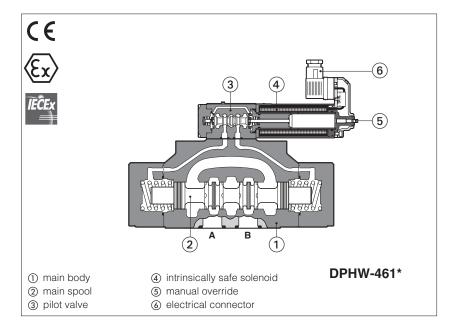





Note: the connector is supplied with the valve

# 15 RELATED DOCUMENTATION

**X010** Basics for electrohydraulics in hazardous environments


X050 Summary of Atos intrinsically safe components certified to ATEX, IECExEX950 Operating and maintenance information for intrinsically safe valves

**P005** Mounting surfaces for electrohydraulic valves



# Intrinsically safe solenoid directional valves

on-off spool type, piloted - ATEX or IECEx

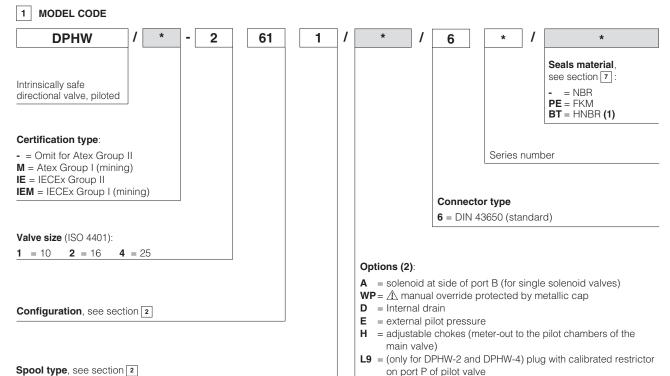


# **DPHW**

On-off spool type, piloted directional valves equipped with intrinsically safe solenoids certified for safe operation in hazardous environment with potentially explosive atmosphere.

# Certifications:

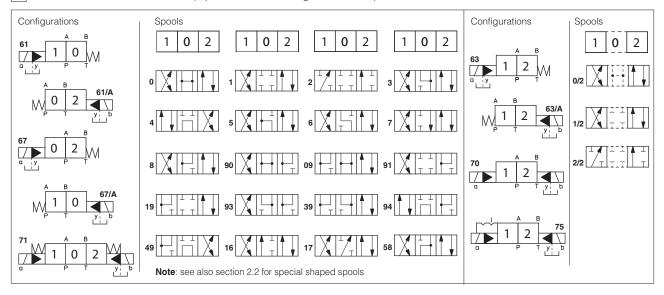
- ATEX or IECEx: II 1G Ex ia IIC, IIB, IIA surface plants zone 0, 1 and 2
- ATEX or IECEx:
   IM2 Ex ia IMb, Ex ib IMb
   surface, tunnels or mining plants


See section 7 for certification data

The valves must be electrically powered through specific "safety barriers" limiting the max current to the solenoid, see section [12]

Size: **10, 16** and **25** 

Max flow: up to 160, 300 and 700 I/min


Max pressure: 350 bar



- (1) Not for certification M and IEM, Group I (mining)
- (2) Possible combined options: all combinations are available
- The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

EX130 ON-OFF VALVES 46

# 2 CONFIGURATIONS and SPOOLS (representation according to ISO 1219-1)



# 2.1 Standard spools availability

- DPHW-1 are available only with spools 0, 0/2, 1, 1/2, 3, 4, 5, 58, 6, 7
- DPHW-2 and DPHW-4 are available with all spools shown in the above table

# 2.2 Special shaped spools

- spools type 0 and 3 are also available as 0/1 and 3/1 with restricted oil passages in central position, from user ports to tank.
- spools type 1, 4, 5, 58, 6 and 7 are also available as 1/1, 4/8, 5/1, 58/1, 6/1 and 7/1 that are properly shaped to reduce water-hammer shocks during the switching.

# 2.3 Special spool availability

| Valve size     | standard spools |     |     |     |     |      |     |     |
|----------------|-----------------|-----|-----|-----|-----|------|-----|-----|
|                | 0/1             | 3/1 | 1/1 | 4/8 | 5/1 | 58/1 | 6/1 | 7/1 |
| DPHW-1         | •               | •   |     | •   |     |      |     |     |
| DPHW-2, DPHW-4 | •               | •   | •   | •   | •   | •    | •   | •   |

# The state of the fast main spool switching are suggested to reduce the hydraulic shocks at the valve operation The Adjustable chokes (meter-out to the pilot chambers of the main valve). The state of the main valve operation options of the main valve operation option option

# 4 GENERAL CHARACTERISTICS

| Assembly position / location           | Horizontal position only                                                                                                                                                                               |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                                                       |  |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 75 years, for further details see technical table P007                                                                                                                                                 |  |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ <b>/PE</b> option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ <b>/BT</b> option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C                               |  |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                                                             |  |  |  |  |  |
|                                        | Intrinsically safe protection "Ex ia", see section 8                                                                                                                                                   |  |  |  |  |  |
| Compliance                             | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                                                            |  |  |  |  |  |

# 5 HYDRAULIC CHARACTERISTICS

| Operating pressure | P, A, B, X = <b>350 bar</b> T = <b>250 bar</b> with external drain (standard) T and Y = <b>160 bar</b> with internal drain (option /D) Minimum pilot pressure for correct operation is = <b>8 bar</b> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rated flow         | See diagrams Q/ $\Delta$ p at section 10                                                                                                                                                              |
| Maximum flow       | DPHW-1: <b>160 l/min</b> ; DPHW-2: <b>300 l/min</b> ; DPHW-4: <b>700 l/min</b> ; see Q/Δp diagrams at section 10 and operating limits at section 11                                                   |

# 6 ELECTRICAL CHARACTERISTICS - see also section 8

| Nominal resistance at 20°C | 150 Ω                    |
|----------------------------|--------------------------|
| Coil insulation            | Class H                  |
| Working voltage            | 12 ÷ 26 V                |
| Minimum supply current     | 65mA, from I.S. barriers |
| Protection degree          | IP66                     |
| Duty factor                | 100%                     |
| Electrical connector       | DIN 43650 2 pin+GND      |

# 7 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature | NBR seals (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$<br>FKM seals (/PE option) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$<br>HNBR seals (/BT option) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ , with HFC hydraulic fluids = $-40^{\circ}\text{C} \div +50^{\circ}\text{C}$ |                            |               |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|--|--|
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                                                                                                                                                                                                                                                                                       |                            |               |  |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                                                                                                                                                                                                                                                                                         |                            |               |  |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                                                                                                                                                                                                                                                                                                                    | Classification             | Ref. Standard |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                                                                                                                                                                                                                                                                         | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |  |  |
| Flame resistant without water        | FKM                                                                                                                                                                                                                                                                                                                                                                                    | HFDU, HFDR                 | ISO 12922     |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                                                                                                                                                                                                                                                                              | HFC                        | 130 12922     |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

(1) Performance limitations in case of flame resistant fluids with water:

-max operating pressure = 210 bar -max fluid temperature = 50°C

# 8 CERTIFICATION DATA

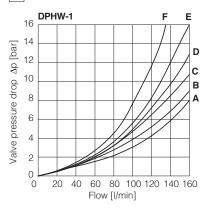
| Valve type                                |      |      | DPHW DPHW/                 |                                    |                | IE                   | DPHW <b>/M</b> |                     |           | DPHW/IEM               |            |                      |      |
|-------------------------------------------|------|------|----------------------------|------------------------------------|----------------|----------------------|----------------|---------------------|-----------|------------------------|------------|----------------------|------|
| Certification                             |      |      | ATEX                       | (Group II)                         |                | IECEx (Gro           | oup II)        | ATEX (              | mining) ( | ing) (Group I) IECEx ( |            | x (mining) (Group I) |      |
| Solenoid code                             |      |      | 0                          | W-18/6                             |                | OWI-18               | 3/6            |                     | OWM-18/6  | 6                      | OWIM-18/6  |                      | 6    |
| Type examination certificate (1)          |      | (1)  | CESI 02<br>ATEX 013        |                                    |                | IECEx<br>CES 12.0017 |                | CESI 02<br>ATEX 013 |           | IECEX<br>CES 12.0017   |            | 17                   |      |
| Method of protection                      |      |      |                            | Ex                                 | II 1G          | Ex ia                |                |                     | Ex I M2   | Ex ia                  | Mb ExibIMb |                      |      |
|                                           |      |      | IIA T5 Ga                  | IIB T6 Ga                          |                | IIC T6 Ga            |                |                     |           |                        |            |                      |      |
|                                           | Ui   | [V]  | 28                         | 28                                 | 27             | 19,5                 | 19,11          | 28                  | 28        | 27                     | 19,5       | 19,11                | 12,4 |
| Electrical                                | li [ | mA]  | 396                        | 250                                | 130            | 360                  | 360            | 396                 | 250       | 130                    | 360        | 360                  | 2200 |
| characteristics<br>(max values)           | Pi   | [W]  | 2,8                        | 1,8                                | 0,9            | 1,64                 | 1,72           | 2,8                 | 1,8       | 0,9                    | 1,64       | 1,72                 | 6,82 |
|                                           | Ci   | , Li | ≅ 0                        | ≅ 0 ≅ 0                            |                |                      |                | ≅ O                 |           |                        |            |                      |      |
| Temperature class                         |      |      | T5                         |                                    |                | Т6                   |                |                     |           |                        | -          |                      |      |
| Surface temperature (ambient temp. +60°C) |      |      | ≤ 100°C                    | ≤ 85°C                             |                |                      |                | ≤ 150°C             |           |                        |            |                      |      |
| Ambient temperature                       |      |      |                            | -20 ÷ +60°C -40 ÷ +60°C <b>(2)</b> |                |                      |                | -20 ÷ +60°C         |           |                        |            |                      |      |
| Applicable standards                      |      |      | EN 600<br>EN 600<br>EN 600 | 79-11                              | '9-11 IEC 600' |                      |                | 79-11               |           |                        |            |                      |      |

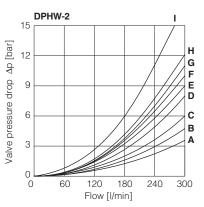
(1) The type examinator certificates can be downloaded from www.atos.com

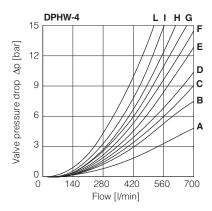
(2) Only for /BT option

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

EX130 ON-OFF VALVES 465


# 9 SOLENOIDS WIRING


| Connector wiring |             |  |  |  |  |
|------------------|-------------|--|--|--|--|
| /6               | Connections |  |  |  |  |
| 1                | Coil        |  |  |  |  |
| 2                | Coil        |  |  |  |  |
| 3                | GND         |  |  |  |  |






# 10 FLOW VERSUS PRESSURE DIAGRAMS Based on mineral oil ISO VG 46 at 50°C







# DPHW-1

| Flow direction Spool type | P→A | Р→В | A→T | В→Т | P→T |
|---------------------------|-----|-----|-----|-----|-----|
| 0/2, 1/2                  | D   | Ε   | D   | С   | -   |
| 0                         | D   | Е   | С   | С   | Ε   |
| 1                         | Α   | В   | D   | С   | -   |
| 3, 6, 7                   | Α   | В   | С   | С   | -   |
| 4, 4/8                    | В   | С   | D   | D   | -   |
| 5, 58                     | Α   | E   | С   | С   | F   |

# DPHW-2

| Flow direction Spool type | ₽→Α                   | Р→В         | А→Т              | В→Т    | P→T    |
|---------------------------|-----------------------|-------------|------------------|--------|--------|
| 0/2, 1, 3, 6, 7, 8        | Α                     | Α           | D                | Α      | -      |
| 1/1, 1/2, 7/1             | В                     | В           | D                | Е      | -      |
| 0                         | A                     | Α           | D                | Е      | С      |
| 0/1                       | Α                     | Α           | D                | -      | -      |
| 2 2/2                     | Α                     | Α           | -                | -      | -      |
| 2/2                       | В                     | B<br>A<br>C | -                | -      | -      |
| 3/1                       | Α                     | Α           | D                | D      | -      |
| 4                         | B<br>A<br>C<br>C      | С           | Н                | - 1    | F      |
| 4/8                       | С                     | С           | G                | - 1    | F<br>G |
| 5                         |                       | В           | F                | Н      | G      |
| 5/1                       | A<br>B<br>A<br>C<br>C | В           | G<br>F<br>D<br>C | F      | -      |
| 6/1                       | В                     | В           | С                | G<br>F | -      |
| 09                        | Α                     | -<br>C      | -                | G      | -      |
| 16                        | Α                     |             | D                | F      | -      |
| 17                        | С                     | Α           | E -              | F      | -      |
| 19                        | С                     | -           | -                | G      | -      |
| 39                        | С                     | -           | -                | Н      | -      |
| 49                        | -                     | D           | -                | -      | -      |
| 58                        | В                     | Α           | F                | Н      | Н      |
| 58/1                      | В                     | Α           | D                | F      | -      |
| 90                        | B<br>A<br>C           | A<br>A<br>C | E<br>E<br>D      | -      | D      |
| 91                        | С                     | С           | Е                | -      | -      |
| 93                        | -                     | С           | D                | -      | -      |
| 94                        | D                     | -           | -                | -      | -      |

# DPHW-4

| Spool type                            | P→A                        | Р→В         | A→T    | В→Т    | P→T |
|---------------------------------------|----------------------------|-------------|--------|--------|-----|
| 1                                     | В                          | B<br>E      | В      | D      | -   |
| 1/1                                   | D                          | Е           | Е      | D<br>F | -   |
| 1/2                                   | Е                          | D           | В      | С      | -   |
| 1/2<br>0                              | E<br>D<br>D                | D<br>C<br>D | D<br>D | E<br>F | F   |
| 0/1, 3/1, 5/1, 6, 7                   |                            | D           | D      | F      | -   |
| 0/2                                   | B<br>E<br>B<br>C<br>A<br>D | D           | D      | Е      | -   |
| 0/2<br>2<br>2/2<br>3<br>4<br>5<br>6/1 | В                          | В           | -      | -      | -   |
| 2/2                                   | Е                          | D           | -      | -      | -   |
| 3                                     | В                          | В           | D      | F      | -   |
| 4                                     | С                          | B<br>C<br>D | Н      | L      | L   |
| 5                                     | Α                          | D           | D      | D      | Н   |
| 6/1                                   | D                          | E<br>E      | D      | F      | -   |
| 7/1                                   | D                          | Е           | F      | F      | -   |
| 8                                     | D                          | D           | E -    | F      | -   |
| 09                                    | D                          | -           |        | F      | F   |
| 16                                    | С                          | D           | Е      | F      | -   |
| 17                                    | Е                          | D           | Е      | F      | -   |
| 19                                    | F                          | -           | -      | E<br>F | -   |
| 39                                    | G                          | F           | -      | F      | -   |
| 58                                    | D<br>C<br>E<br>F<br>G<br>E | Α           | В      | F      | Н   |
| 58/1                                  | Е                          | D           | D      | F      | -   |
| 90                                    |                            | D           | D      | -      | F   |
| 91                                    | F                          | F           | D      |        |     |
| 93                                    | -                          | G           | D      | -      | -   |

# 11 OPERATING LIMITS

For a correct valve operation do not exceed the max recommended flow rates (I/min) shown in the below tables

# DPHW-1

|               | Inlet pressure [bar] |          |            |     |  |  |
|---------------|----------------------|----------|------------|-----|--|--|
| Spool type    | 70                   | 160      | 210        | 350 |  |  |
|               |                      | Flow rat | te [l/min] |     |  |  |
| 0, 1, 3, 6, 7 | 160                  | 160      | 160        | 145 |  |  |
| 4, 4/8        | 160                  | 160      | 135        | 100 |  |  |
| 5, 58         | 160                  | 160      | 145        | 110 |  |  |
| 0/1, 0/2, 1/2 | 160                  | 160      | 145        | 135 |  |  |

# DPHW-4

|                    | sure [ba          | ır] |     |     |  |  |
|--------------------|-------------------|-----|-----|-----|--|--|
| Spool type         | 70                | 140 | 210 | 350 |  |  |
|                    | Flow rate [l/min] |     |     |     |  |  |
| 1, 6, 7, 8         | 700               | 700 | 700 | 600 |  |  |
| 2, 4, 4/8          | 500               | 500 | 450 | 400 |  |  |
| 5, 0/1, 0/2, 1/2   | 600               | 520 | 400 | 300 |  |  |
| 0, 3               | 700               | 700 | 600 | 540 |  |  |
| 16, 17, 58, *9, 9* | 500               | 500 | 500 | 450 |  |  |

# DPHW-2

|                    | Inlet pressure [bar] |     |     |     |  |  |  |
|--------------------|----------------------|-----|-----|-----|--|--|--|
| Spool type         | 70                   | 350 |     |     |  |  |  |
|                    | Flow rate [l/min]    |     |     |     |  |  |  |
| 0, 1, 3, 6, 7, 8   | 300                  | 300 | 300 | 300 |  |  |  |
| 2, 4, 4/8          | 300                  | 300 | 240 | 140 |  |  |  |
| 5                  | 260                  | 220 | 180 | 100 |  |  |  |
| 0/1, 0/2, 1/2      | 300                  | 250 | 210 | 180 |  |  |  |
| 16, 17, 56, *9, 9* | 300                  | 300 | 270 | 200 |  |  |  |

# 12 INTRINSICALLY SAFE BARRIERS - see tech. table GX010

Intrinsically safe valves must be powered through safety barriers certified according to Ex-ie protection mode, limiting the energy to the solenoid.

To select the proper intrinsically safe barriers following data must be considered:

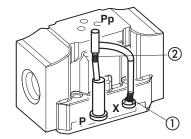
- 1) Vmax and Imax of the solenoid as specified in section a must not be exceeded also in fault conditions;
- 2) the resistance of the solenoid is 150 Ω and the current supplied by the barrier, in normal operation condition, must be over the min. limit (65 mA) to ensure the valve correct operation (over 70 mA for max performances).

The barriers type **Y-BXNE 412** are galvanically isolated electronic devices, complying with European Norms EN60079-0/06, EN60079-11/07 and ATEX certified according to protection mode Ex ia IIC.

These barriers ensure the optimized functioning of the Atos valves up to the max operating limits specified in section [11]

The barriers Y-BXNE-412 are double channel type, suitable to operate valves with double or single solenoid. Two single solenoid valves can be connected to the barrier (one to each channel) but they cannot be contemporary operated.

# MODEL CODE OF I.S. BARRIER




# 13 PLUGS LOCATION FOR PILOT/DRAIN CHANNELS

Depending on the position of internal plugs, different pilot/drain configurations can be obtained as shown below. To modify the pilot/drain configuration, proper plugs must only be interchanged. The plugs have to be sealed using loctite 270. Standard valves configuration provides internal pilot and external drain

Drain channels

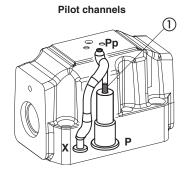


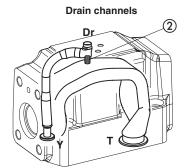


Pilot channels



Internal piloting: blinded plug SP-X300F ① in X;


plug SP-X310F ② in Pp;


External piloting: blinded plug SP-X300F ② in Pp;

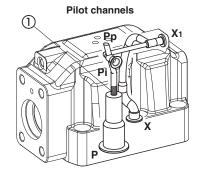
plug SP-X310F ① in X;

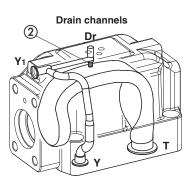
Internal drain: blinded plug SP-X300F ③ in Y; External drain: blinded plug SP-X300F ④ in Dr.

# DPHW-2






Internal piloting: Without blinded plug SP-X300F ①;
External piloting: Add blinded plug SP-X300F ①;
Internal drain: Without blinded plug SP-X300F ②;
External drain: Add blinded plug SP-X300F ②.


# Option L9

This option provides a calibrated restrictor PLUG-H-12A ( $\varnothing$  1,2 mm) in the P port of the pilot valve



DPHW-4

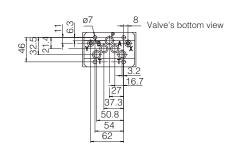




Internal piloting: Without blinded plug SP-X500F ①; External piloting: Add blinded plug SP-X500F ①; Internal drain: Without blinded plug SP-X300F ②; External drain: Add blinded plug SP-X300F ②.

# Option L9

This option provides a a calibrated restrictor PLUG-H-15A (Ø 1,5 mm) in the P port of the pilot valve




EX130 ON-OFF VALVES 467

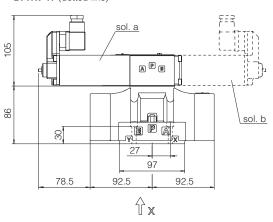
# DPHW-1\*

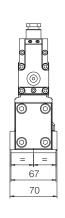
ISO 4401: 2005 (see table P005)
Mounting surface: 4401-05-05-0-05
Fastening bolts:
4 socket head screws M6x40 class 12.9

Tightening torque = 15 Nm Diameter of ports A,B, P, T: Ø = 11 mm; Diameter of ports X, Y: Ø = 5 mm; Seals: 5 OR 2050, 2 OR 108

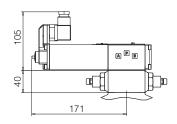


= PRESSURE PORT


A,B = USE PORT T = TANK POR = TANK PORT


= EXTERNAL PILOT PORT

= DRAIN PORT


| Mass [kg] |      |  |  |  |  |  |
|-----------|------|--|--|--|--|--|
| DPHW-16   | 8,0  |  |  |  |  |  |
| DPHW-17   | 9,5  |  |  |  |  |  |
| Option /H | +1,0 |  |  |  |  |  |

DPHW-16 DPHW-17 (dotted line)





Valve's bottom view



# **DPHW-2\***

**ISO 4401: 2005** (see table P005) Mounting surface: 4401-07-07-0-05

Fastening bolts:
4 socket head screws M10x50 class 12.9
Tightening torque = 70 Nm

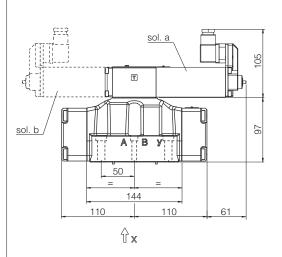
2 socket head screws M6x45 class 12.9

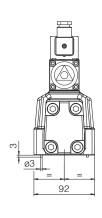
Tightening torque = 15 Nm
Diameter of ports A, B, P, T: Ø = 20 mm;
Diameter of ports X, Y: Ø = 7 mm;
Seals: 4 OR 130, 2 OR 2043

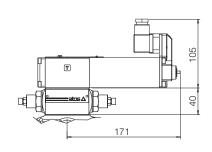
55.6 57.2 69.8 15.9 18.3 34.1 50 65.9 76.6 88.1 101.6

ø6.5

ø11


= PRESSURE PORT A,B = USE PORT T = TANK POR


= TANK PORT


= EXTERNAL PILOT PORT

= DRAIN PORT

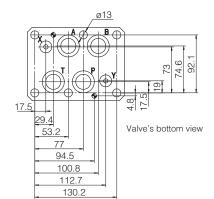
| Mass [kg] |      |  |  |  |  |  |
|-----------|------|--|--|--|--|--|
| DPHW-26   | 11   |  |  |  |  |  |
| DPHW-27   | 12,5 |  |  |  |  |  |
| Option /H | +1,0 |  |  |  |  |  |







# DPHW-4\*


ISO 4401: 2005 (see table P005) Mounting surface: 4401-08-08-0-05

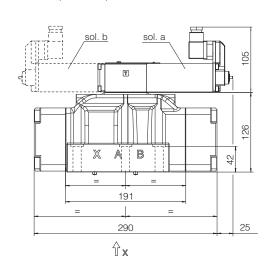
Fastening bolts:

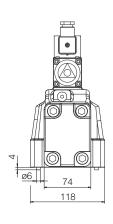
6 socket head screws M12x60 class 12.9

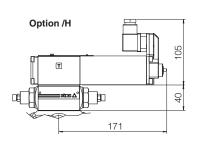
Tightening torque = 125 Nm Seals: 4 OR 4112; 2 OR 3056

Diameter of ports A, B, P, T:  $\emptyset$  = 24 mm; Diameter of ports X, Y:  $\emptyset = 7$  mm;

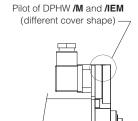


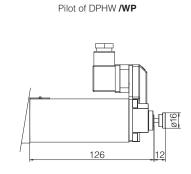

= PRESSURE PORT


A,B = USE PORT T = TANK PORT X = EXTERNAL PILOT PORT


= DRAIN PORT

| Mass [kg] |      |  |  |  |  |  |
|-----------|------|--|--|--|--|--|
| DPHW-46   | 18,5 |  |  |  |  |  |
| DPHW-47   | 20   |  |  |  |  |  |
| Option /H | +1,0 |  |  |  |  |  |


# DPHW-46 DPHW-47 (dotted line)








# Options for all sizes of DPHW

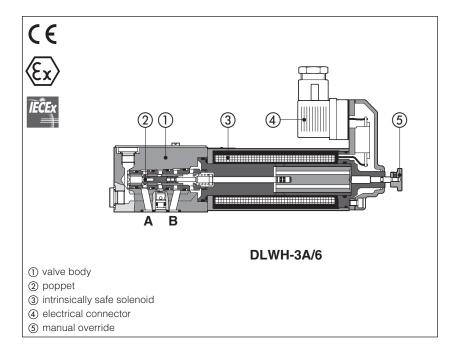




Note: the connector is supplied with the valve

# 15 RELATED DOCUMENTATION

X010 Basics for electrohydraulics in hazardous environments


X050 Summary of Atos intrinsically safe components certified to ATEX, IECEx EX950 Operating and maintenance information for intrinsically safe valves

P005 Mounting surfaces for electrohydraulic valves



# Intrinsically safe solenoid directional valves

on-off poppet type, leak free, direct - ATEX or IECEx

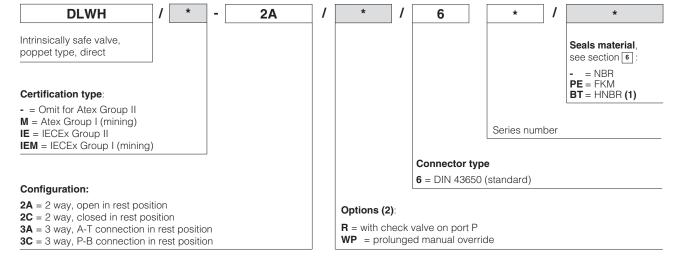


# **DLWH**

On-off poppet type, directional valves designed for application in hydraulic systems with leak-free requirements and equipped with intrinsically safe solenoids certified for safe operation in hazardous environment with potentially explosive atmosphere.

# Certifications:

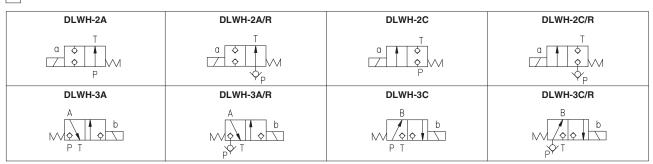
- ATEX or IECEx:
   II 1G Ex ia IIC, IIB, IIA
   surface plants zone 0, 1 and 2
- ATEX or IECEx:
   IM2 Ex ia IMb, Ex ib IMb
   surface, tunnels or mining plants


See section 7 for certification data

The valves must be electrically powered through specific "safety barriers" limiting the max current to the solenoid, see section [12]

Size: 06

Max flow: up to 12 l/min Max pressure: 350 bar


# 1 MODEL CODE



- (1) Not for certification M and IEM, Group I (mining)
- (2) Possible combined options: all combinations are available

🗥 The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

# 2 VALVE CONFIGURATION



# **3 GENERAL CHARACTERISTICS**

| Assembly position / location           | Horizontal position only                                                                                                                                                       |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                               |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 150 years, for further details see technical table P007                                                                                                                        |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C       |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation                                                                                                                                            |  |  |  |  |
|                                        | Intrinsically safe protection "Ex ia", see section 7                                                                                                                           |  |  |  |  |
| Compliance                             | RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006                                                                                       |  |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS

| Operating pressure | Ports P,A,B: <b>350</b> bar;<br>Port T <b>160</b> bar |
|--------------------|-------------------------------------------------------|
| Rated flow         | See Q/Δp diagrams at section 9                        |
| Maximum flow       | 12 l/min, see operating limits at section 10          |

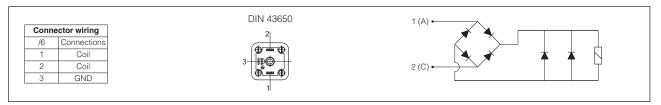
# 5 ELECTRICAL CHARACTERISTICS - see also section 7

| Nominal resistance at 20°C | 150 Ω                    |
|----------------------------|--------------------------|
| Coil insulation            | Class H                  |
| Working voltage            | 12 ÷ 26 V                |
| Minimum supply current     | 65mA, from I.S. barriers |
| Protection degree          | IP66                     |
| Duty factor                | 100%                     |
| Electrical connector       | DIN 43650 2 pin+GND      |

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                      | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                  |                                                  |           |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|--|--|--|--|
| Seals, recommended fluid temperature | FKM seals (/PE option) = $-20^{\circ}$ C ÷ $+80^{\circ}$ C                                       |                                                  |           |  |  |  |  |
|                                      | HNBR seals (/BT option) = -40°C $\div$ +60°C, with HFC hydraulic fluids = -40°C $\div$ +50°C     |                                                  |           |  |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed ran                                                                   | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s |           |  |  |  |  |
| Max fluid contamination level        | ISO 4406 class 20/18/15 NAS 1638 class 9, see also filter section at www.atos.com or KTF catalog |                                                  |           |  |  |  |  |
| Hydraulic fluid                      | Suitable seals type Classification Ref. Standard                                                 |                                                  |           |  |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR HL, HLP, HLPD, HVLP, HVLPD DIN 51524                                              |                                                  |           |  |  |  |  |
| Flame resistant without water        | FKM HFDU, HFDR                                                                                   |                                                  |           |  |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                        | HFC                                              | ISO 12922 |  |  |  |  |

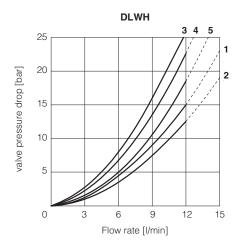
The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature


### (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

7 CERTIFICATION DATA

| Valve type                                |    |                     |                            | DLWH                                           |       | DLWH <b>/</b>           | ΊE                  | DLWH/M DLWH/IEM                             |          |                   | Л                 |           |      |
|-------------------------------------------|----|---------------------|----------------------------|------------------------------------------------|-------|-------------------------|---------------------|---------------------------------------------|----------|-------------------|-------------------|-----------|------|
| Certification                             |    |                     | ATEX                       | ATEX (Group II)                                |       | up II) IECEx (Group II) |                     | ATEX (mining) (Group I) IECEx (mining) (Gro |          |                   | Group I)          |           |      |
| Solenoid code                             |    |                     | 0                          | W-18/6                                         |       | OWI-18/6                |                     |                                             | OWM-18/6 | WM-18/6 OWIM-18/6 |                   |           | 6    |
| Type examination certificate (1)          |    | CESI 02<br>ATEX 013 |                            |                                                |       |                         | CESI 02<br>ATEX 013 | }                                           | С        | IECEx<br>ES 12.00 | 17                |           |      |
| Method of protection                      |    |                     |                            | Ex                                             | II 1G | Ex ia                   |                     |                                             | Ex I M2  | Ex ia             | IMb F             | x ib I Mb |      |
| Wiethed of protection                     |    |                     | IIA T5 Ga                  | IIB T6 Ga                                      |       | IIC T6 Ga               |                     |                                             |          | _x .u             | I WID EX ID I WID |           |      |
|                                           | Ui | [V]                 | 28                         | 28                                             | 27    | 19,5                    | 19,11               | 28                                          | 28       | 27                | 19,5              | 19,11     | 12,4 |
| Electrical                                | li | [mA]                | 396                        | 250                                            | 130   | 360                     | 360                 | 396                                         | 250      | 130               | 360               | 360       | 2200 |
| characteristics<br>(max values)           | Pi | [W]                 | 2,8                        | 1,8                                            | 0,9   | 1,64                    | 1,72                | 2,8                                         | 1,8      | 0,9               | 1,64              | 1,72      | 6,82 |
|                                           | Ci | , Li                | ≅0                         |                                                |       | ≅ 0                     |                     | ≅ 0                                         |          |                   |                   |           |      |
| Temperature class                         |    |                     | T5                         |                                                |       | Т6                      |                     |                                             |          |                   | _                 |           |      |
| Surface temperature (ambient temp. +60°C) |    |                     | ≤ 100°C                    | ≤85°C                                          |       |                         |                     |                                             |          | ≤ 15              | 50°C              |           |      |
| Ambient temperature                       |    |                     |                            | -20 ÷ +60°C -40 ÷ +60°C <b>(2)</b> -20 ÷ +60°C |       |                         |                     |                                             |          |                   |                   |           |      |
| Applicable standards                      |    |                     | EN 600<br>EN 600<br>EN 600 | 79-11 IEC 60079-11                             |       |                         |                     |                                             |          |                   |                   |           |      |

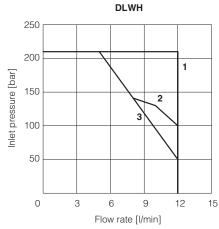
- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) Only for /BT option


# 8 SOLENOIDS WIRING



# 9 Q/Δp DIAGRAMS based on mineral oil ISO VG 46 at 50°C

| configuration Flow direction                  | 2A | 2C | 3A | 3C |
|-----------------------------------------------|----|----|----|----|
| <b>P</b> → <b>A</b> / <b>P</b> → <b>B</b> (1) | 1  | 2  | 4  | 3  |
| A→T / B→T                                     | -  | -  | 5  | 4  |


(1) For two-way valves pressure drop refers to P→T



# 10 OPERATING LIMITS based on mineral oil ISO VG 46 at 50°C

The diagrams refer to warm solenoids and power supply provided by the Atos barrier type **Y-BXNE-412**. In case of asymmetric flow the operating limits must be reduced.

| configuration | 2A | 2C | 3A | 3C |
|---------------|----|----|----|----|
| Diagram       | 1  | 1  | 2  | 3  |



# 11 INTERNAL LEAKAGES

**DLWH internal leakages** based on mineral oil ISO VG 46 at 50°C less than 5 drops/min (0,36 cm³/min) at max pressure.

# 12 INTRINSICALLY SAFE BARRIERS - see tech. table GX010

The electric supply to these valves must be done through intrinsically safe barriers situated out of potentially flammable environment (i.e. in safe zone), which limit the electric current to the intrinsically safe solenoid. The "intrinsically safe" circuit is virtually unable to produce electrical surges or thermic effects able to cause explosion in hazardous environments also in presence of specific break-down situations. The intrinsically safe barriers must be approved and certified according to the Ex ia protection mode.

To select the proper intrinsically safe barriers following data must be considered:

- 1) Vmax and Imax of the solenoid as specified in section 7 must not be exceeded also in fault conditions;
- 2) the resistance of the solenoid is 150 Ω and the current supplied by the barrier, in normal operation condition, must be over the min. limit (65 mA) to ensure the valve correct operation (over 70 mA for max performances).

The barriers type **Y-BXNE 412** are galvanically isolated electronic devices, complying with European Norms EN60079-0/06, EN60079-11/07 and ATEX certified according to protection mode Ex ia IIC.

These barriers ensure the optimized functioning of the Atos valves up to the max operating limits specified in section 10.

The barriers Y-BXNE-412 are double channel type, suitable to operate valves with double or single solenoid. Two single solenoid valves can be connected to the barrier (one to each channel) but they cannot be contemporary operated.

# MODEL CODE OF I.S. BARRIER



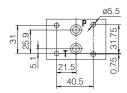
### 13 INSTALLATION DIMENSIONS [mm]

#### DLWH-2A, DLWH-2C

ISO 4401: 2005

**Mounting surface: 4401-03-02-0-05** (see table P005)

Fastening bolts:


4 socket head screws M5x50 class 12.9

Tightening torque = 8 Nm

Seals: 2 OR 108

Diameter of ports P, T: Ø 7,5 mm (max)

Valve's bottom view



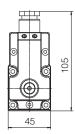
P = PRESSURE PORT

T = USE PORT

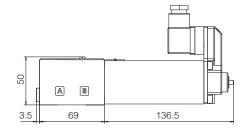
#### DLWH-3A, DLWH-3C

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05 (see table P005)


Fastening bolts:

4 socket head screws M5x50 class 12.9


Tightening torque = 8 Nm

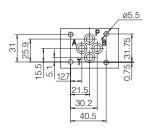
Seals: 4 OR 108

Diameter of ports P, A, B, T:  $\emptyset$  7,5 mm (max)



136.5




20

45

P

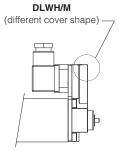
69

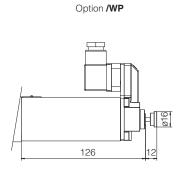
# Valve's bottom view



P = PRESSURE PORT

A = USE PORT


(not used for DLAH-3C version)


 $\mathbf{B} = \mathsf{USE} \; \mathsf{PORT}$ 

(not used for DLAH-3A version)

T = TANK PORT

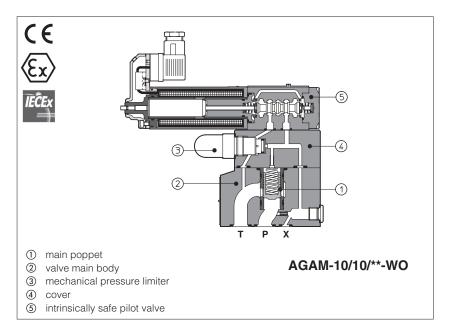
| Mass    | s [kg] |
|---------|--------|
| DLWH-02 | 2,3    |
| DLWH-03 | 2,3    |





Note: the connector is supplied with the valve

### 14 RELATED DOCUMENTATION


| X010  | Basics for electrohydraulics in hazardous environments                 |
|-------|------------------------------------------------------------------------|
| X050  | Summary of Atos intrinsically safe components certified to ATEX, IECE: |
| EX950 | Operating and maintenance information for intrinsically safe valves    |

P005 Mounting surfaces for electrohydraulic valves



# Intrinsically safe pressure relief valves

piloted, subplate or in line mounting - ATEX or IECEx certification

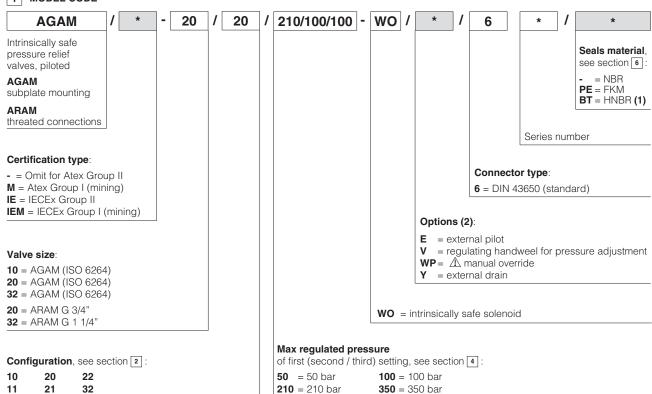


#### AGAM. ARAM

Intrinsically safe pressure relief valves equipped with solenoid pilot valve for venting or multiple pressure selection, certified for safe operation in hazardous environment with potentially explosive atmosphere.

#### Certifications

- ATEX or IECEx: II 1G Ex ia IIC, IIB, IIA surface plants zone 0, 1 and 2
- ATEX or IECEx:
   IM2 Ex ia IMb, Ex ib IMb
   surface, tunnels or mining plants


The valves must be electrically powered through specific "safety barriers" limiting the max current to the solenoid, see section [10].

**AGAM**: pressure relief, subplate mounting Size: **10, 20** and **32** - ISO 6264 Max flow: **200, 400** and **600 l/min** 

ARAM: pressure relief, threaded connections

Size: G 3/4" and G 1 1/4" Max flow: 350 and 500 l/min Max pressure: 350 bar

# 1 MODEL CODE




- (1) Not for certification M and IEM, Group I (mining)
- (2) Possible combined options: all combinations are available

The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

CX030 ON-OFF VALVES 475

# 2 CONFIGURATIONS AND HYDRAULIC SYMBOLS



# 3 GENERAL CHARACTERISTICS

| Assembly position / location           | Horizontal position only                                                                                                                                                 |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | cceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100                                                                                          |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 75 years, for further details see technical table P007                                                                                                                   |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C $\div +60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +60^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C $\div +70^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C $\div +70^{\circ}$ C |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                               |  |  |  |  |
|                                        | Intrinsically safe protection "Ex ia", see section 7                                                                                                                     |  |  |  |  |
| Compliance                             | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                              |  |  |  |  |

# 4 HYDRAULIC CHARACTERISTICS

| Valve size             | 10      |     | 20    |                     | 32          |       |     |
|------------------------|---------|-----|-------|---------------------|-------------|-------|-----|
| Max operating pressure | [bar]   |     | ŀ     | oort P = <b>350</b> | port T, Y = | 210   |     |
| Max regulated pressure | [bar]   |     | 50    | 100                 | 210         | 350   |     |
| Pressure range         | [bar]   | 4   | 4÷50; | 6÷100;              | 7÷210;      | 8÷350 |     |
| Max flow AGAM (1)      | [l/min] | 200 |       |                     | 400         |       | 600 |
| Max flow ARAM (1)      | [l/min] | -   |       |                     | 350         |       | 500 |

<sup>(1)</sup> see Q/ $\Delta$ p diagrams at section 11 and 12

# 5 ELECTRICAL CHARACTERISTICS - see also section 7

| Nominal resistance at 20°C | 150 Ω                    |
|----------------------------|--------------------------|
| Coil insulation            | Class H                  |
| Working voltage            | 12 ÷ 26 V                |
| Minimum supply current     | 65mA, from I.S. barriers |
| Protection degree          | IP66                     |
| Duty factor                | 100%                     |
| Electrical connector       | DIN 43650 2 pin+GND      |

# 6 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

|                                      | NBR seals (standard) = -20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C                                                      |                                                  |               |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|--|--|--|
| Seals, recommended fluid temperature | FKM seals (/PE option) = -20°C ÷ +80°C                                                                                               |                                                  |               |  |  |  |
|                                      | HNBR seals (/BT option) = $-40^{\circ}$ C $\div$ $+60^{\circ}$ C, with HFC hydraulic fluids = $-40^{\circ}$ C $\div$ $+50^{\circ}$ C |                                                  |               |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed ran                                                                                                       | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s |               |  |  |  |
| Max fluid contamination level        | ISO 4406 class 20/18/15 NAS 1638 class 9, see also filter section at www.atos.com or KTF catalog                                     |                                                  |               |  |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                                                                  | Classification                                   | Ref. Standard |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                       | HL, HLP, HLPD, HVLP, HVLPD                       | DIN 51524     |  |  |  |
| Flame resistant without water        | FKM                                                                                                                                  | HFDU, HFDR                                       | ISO 12922     |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                            | HFC                                              | 130 12922     |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C

# 7 CERTIFICATION DATA

| Valve type                                |      | AGAM<br>ARAM |                            |                                    | AGAM <b>/IE</b><br>ARAM <b>/IE</b> |                      | AGAM <b>/M</b><br>Aram <b>/M</b> |                     |                               | AGAM <b>/IEM</b><br>Aram <b>/Iem</b> |                      |                          |       |      |
|-------------------------------------------|------|--------------|----------------------------|------------------------------------|------------------------------------|----------------------|----------------------------------|---------------------|-------------------------------|--------------------------------------|----------------------|--------------------------|-------|------|
| Certification                             |      |              | ATEX                       | (Group II)                         |                                    | IECEx (Group II)     |                                  |                     | ATEX (mining) (Group I)       |                                      |                      | IECEx (mining) (Group I) |       |      |
| Solenoid code                             |      |              | 0                          | W-18/6                             |                                    |                      | OWI-18                           | /6                  | OWM-18/6 OWIM-18/6            |                                      |                      |                          | 6     |      |
| Type examination certificate (1)          |      |              | CESI 02<br>ATEX 013        |                                    |                                    | IECEx<br>CES 12.0017 |                                  | CESI 02<br>ATEX 013 |                               |                                      | IECEX<br>CES 12.0017 |                          |       |      |
| Method of protection                      |      |              | IIA T5 Ga                  | Ex II 1G Ex ia                     |                                    |                      |                                  |                     | Ex I M2 Ex ia I Mb Ex ib I Mb |                                      |                      |                          |       |      |
|                                           | Ui   | [V]          | 28                         | 28                                 | 27                                 |                      | 19,5                             | 19,11               | 28                            | 28                                   | 27                   | 19,5                     | 19,11 | 12,4 |
| Electrical                                | li [ | [mA]         | 396                        | 250                                | 130                                | )                    | 360                              | 360                 | 396                           | 250                                  | 130                  | 360                      | 360   | 2200 |
| characteristics (max values)              | Pi   | [W]          | 2,8                        | 1,8                                | 0,9                                | )                    | 1,64                             | 1,72                | 2,8                           | 1,8                                  | 0,9                  | 1,64                     | 1,72  | 6,82 |
| ,                                         | Ci   | , Li         | ≅ 0                        | ≅ 0                                |                                    |                      |                                  |                     | ≅ O                           |                                      |                      |                          |       |      |
| Temperature class                         |      |              | T5                         |                                    |                                    | Т                    | 6                                |                     |                               |                                      |                      | _                        |       |      |
| Surface temperature (ambient temp. +60°C) |      |              | ≤ 100°C                    | ≤ 85°C                             |                                    |                      |                                  | ≤ 150°C             |                               |                                      |                      |                          |       |      |
| Ambient temperature                       |      |              |                            | -20 ÷ +60°C -40 ÷ +60°C <b>(2)</b> |                                    |                      |                                  |                     | -20 ÷ +60°C                   |                                      |                      |                          |       |      |
| Applicable standards                      |      |              | EN 600<br>EN 600<br>EN 600 | 79-11 IEC 6007                     |                                    |                      | 9-11                             |                     |                               |                                      |                      |                          |       |      |

<sup>(1)</sup> The type examinator certificates can be downloaded from www.atos.com

WARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

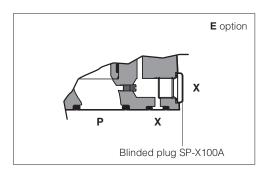
ON-OFF VALVES CX030 477

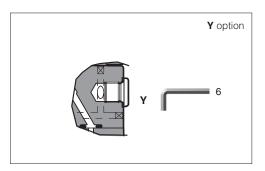
<sup>(2)</sup> Only for /BT option

#### 8 OPTIONS

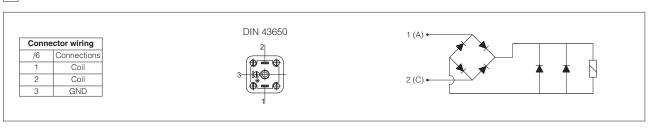
E = External pilot option to be selected when the pilot pressure is supplied from a different line respect to the P main line.

With option E the internal connection between port P and X of the valve is plugged. The pilot pressure must be connected to the X port available on the valve's mounting surface or on main body (threaded pipe connection  $G^{1/4}$ ").


V = Regulating handweel for pressure adjustment


WP = Manual override protect by metallic cap

Y = The external drain is mandatory in case the main line T is subjected to pressure peaks or it is pressurized.


The Y drain port has a threaded connection G 1/4" available on the pilot stage body.

11.1 Possible combined options: all combinations are available





# 9 SOLENOIDS WIRING



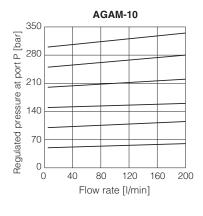
# 10 INTRINSICALLY SAFE BARRIERS - see tech. table GX010

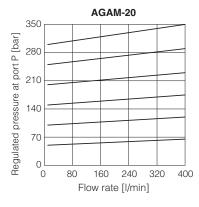
Intrinsically safe valves must be powered through safety barriers certified according to Ex-ie protection mode, limiting the energy to the solenoid.

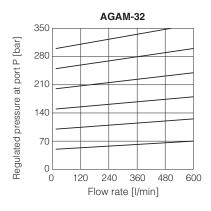
To select the proper intrinsically safe barriers following data must be considered:

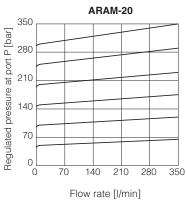

- 1) Vmax and Imax of the solenoid as specified in section 7 must not be exceeded also in fault conditions;
- 2) the resistance of the solenoid is 150  $\dot{\Omega}$  and the current supplied by the barrier, in normal operation condition, must be over the min. limit (65 mA) to ensure the valve correct operation (over 70 mA for max performances).

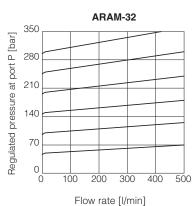
The barriers type **Y-BXNE 412** are galvanically isolated electronic devices, complying with European Norms EN60079-0/06, EN60079-11/07 and ATEX certified according to protection mode Ex ia IIC.


These barriers ensure the optimized functioning of the Atos valves up to the max operating limits specified in section 4.

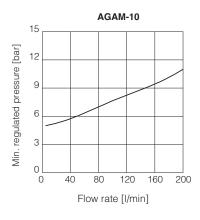

The barriers Y-BXNE-412 are double channel type, suitable to operate valves with double or single solenoid. Two single solenoid valves can be connected to the barrier (one to each channel) but they cannot be contemporary operated.

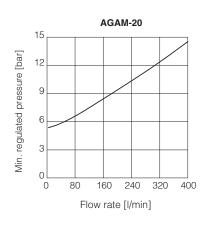

#### MODEL CODE OF I.S. BARRIER

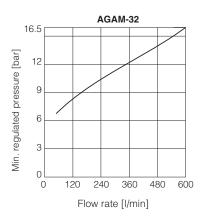


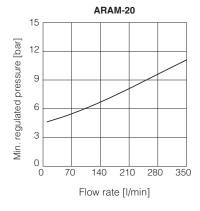


# 11 REGULATED PRESSURE VERSUS FLOW DIAGRAMS based on mineral oil ISO VG 46 at 50°C

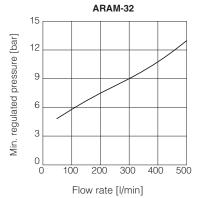




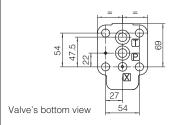





# 12 MINIMUM PRESSURE VERSUS FLOW DIAGRAMS based on mineral oil ISO VG 46 at 50°C





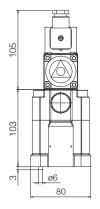




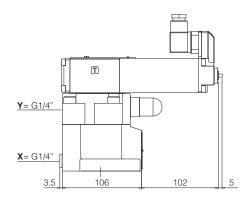


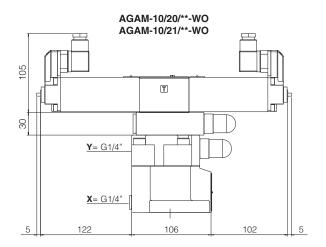

CX030 ON-OFF VALVES 479

# AGAM-10




ISO 6264: 2007 (see table P005) Mounting surface: 6264-06-09-1-97

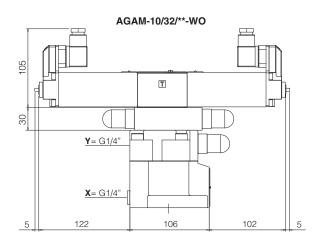

Fastening bolts: 4 socket head screws M12x35 class 12.9 Tightening torque = 125 Nm Seals: 2 OR 123; 1 OR 109/70 Ports P, T:  $\emptyset$  = 14,5 mm Ports X:  $\emptyset = 3,2 \text{ mm}$ 

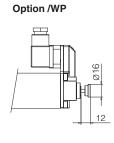

**X** = port connection for external pilot (option /E) **Y** = port connection for external drain (option /Y)

| Mass                | [kg]      |
|---------------------|-----------|
| AGAM-10/10<br>10/11 | 6,45      |
| AGAM-10/20<br>10/21 | 7,55      |
| AGAM-10/22<br>10/32 | 7,25<br>9 |

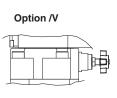


#### AGAM-10/10/\*\*-WO AGAM-10/11/\*\*-WO




# 105 T **Y**= G1/4" **X**= G1/4"

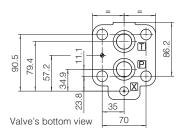

AGAM-10/22/\*\*-WO

106





71



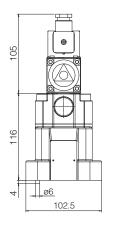

# Mining version /M and /IEM

102

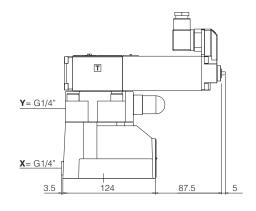


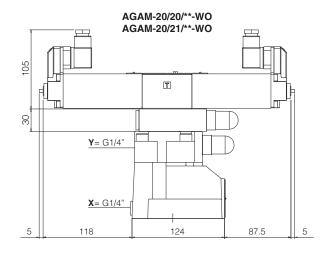
# AGAM-20

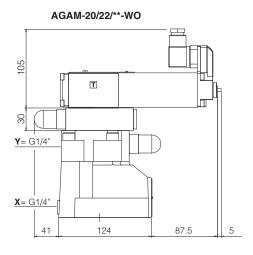


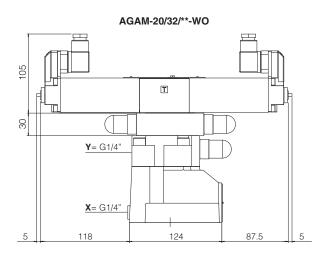

#### **ISO 6264: 2007** (see table P005) Mounting surface: 6264-08-11-1-97

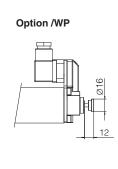
Fastening bolts:
4 socket head screws M16x50 class 12.9
Tightening torque = 300 Nm
Seals: 2 OR 4112; 1 OR 109/70

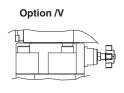

Ports P, T:  $\emptyset$  = 24 mm Ports X:  $\emptyset = 3,2 \text{ mm}$ 


X = port connection for external pilot (option /E)Y = port connection for external drain (option /Y)


| Mass                | [kg]         |
|---------------------|--------------|
| AGAM-20/10<br>20/11 | 7,65         |
| AGAM-20/20<br>20/21 | 8,75         |
| AGAM-20/22<br>20/32 | 8,45<br>10,2 |





#### AGAM-20/10/\*\*-WO AGAM-20/11/\*\*-WO

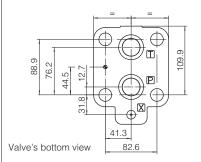










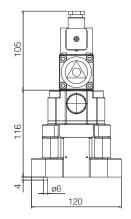


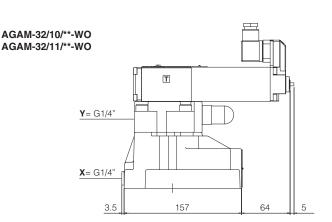


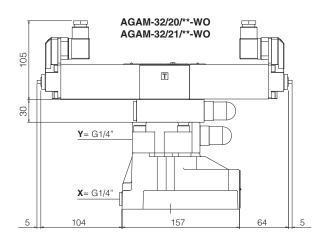

481

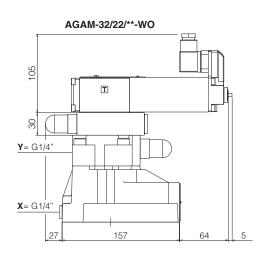
# AGAM-32

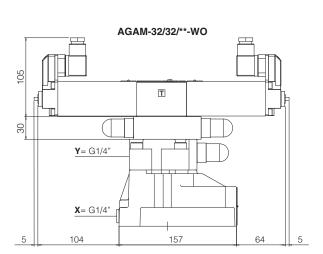


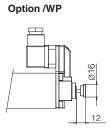

ISO 6264: 2007 (see table P005)
Mounting surface: 6264-10-17-1-97
(with M20 fixing holes instead of standard M18)

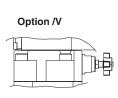

Fastening bolts:


4 socket head screws M20x60 class 12.9 Tightening torque = 600 Nm Seals: 2 OR 4131; 1 OR 109/70 Ports P, T:  $\emptyset$  = 28,5 mm Ports X:  $\emptyset$  = 3,2 mm

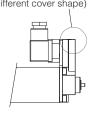

| Mass                | [kg]         |
|---------------------|--------------|
| AGAM-32/10<br>32/11 | 9,05         |
| AGAM-32/20<br>32/21 | 10,05        |
| AGAM-32/22<br>32/32 | 9,85<br>11,6 |


X = port connection for external pilot (option /E)Y = port connection for external drain (option /Y)



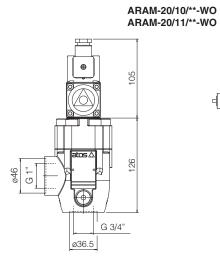


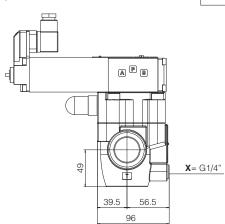





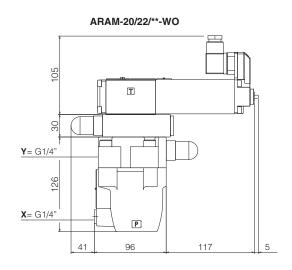


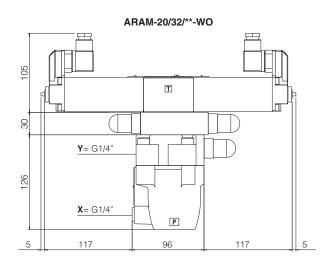


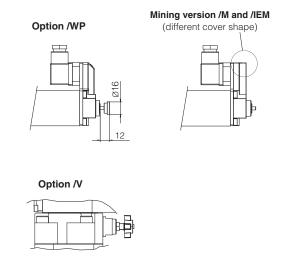


# Mining version /M and /IEM (different cover shape)

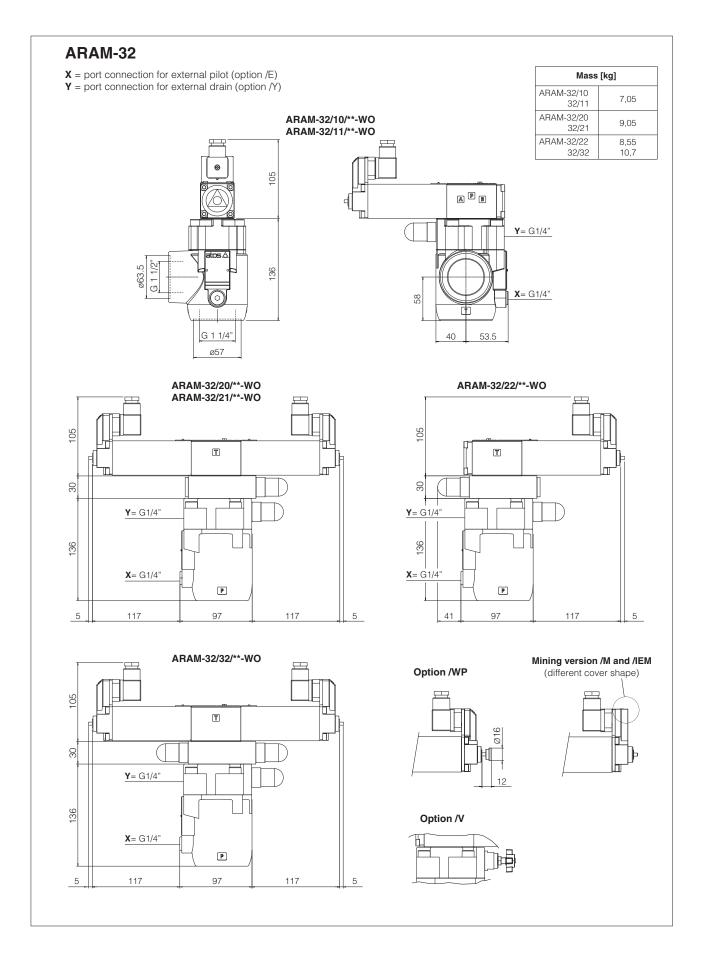



# ARAM-20


 $\mathbf{X}$  = port connection for external pilot (option /E)  $\mathbf{Y}$  = port connection for external drain (option /Y)


| Mass                | [kg]         |
|---------------------|--------------|
| ARAM-20/10<br>20/11 | 6,75         |
| ARAM-20/20<br>20/21 | 8,45         |
| ARAM-20/22<br>20/32 | 8,15<br>10,1 |




# ARAM-20/20/\*\*-WO ARAM-20/21/\*\*-WO 105 T 30 **Y**= G1/4" 56 **X**= G1/4" P 117 96 117



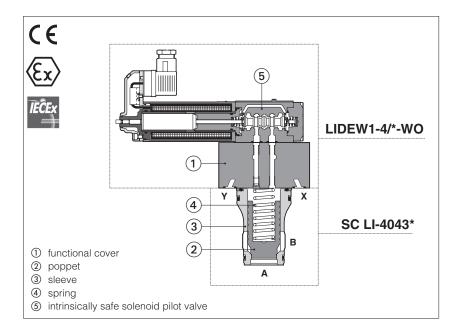






# 15 RELATED DOCUMENTATION

| X010 | Basics for electrohydraulics in hazardous environments                 |
|------|------------------------------------------------------------------------|
| X050 | Summary of Atos intrinsically safe components certified to ATEX, IECEX |


**EX950** Operating and maintenance information for intrinsically safe valves

P005 Mounting surfaces for electrohydraulic valves



# Intrinsically safe ISO cartridge valves

on-off directional control, ISO 7368 - ATEX or IECEx



#### LIDEW, LIDBH, SC LI

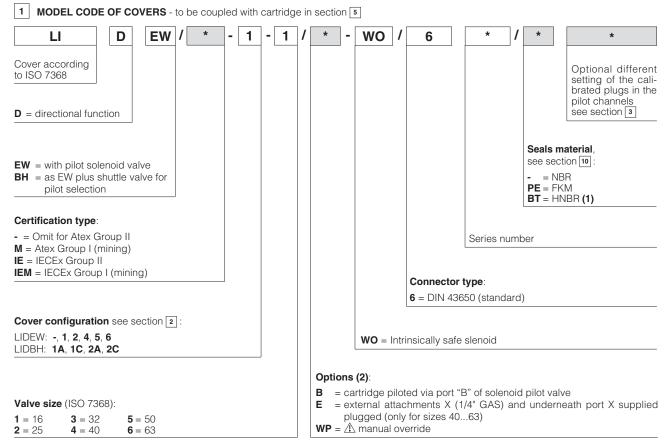
On-off ISO directional cartridges equipped with intrinsically safe solenoid pilot valve for poppet control, certified for safe operation in hazardous environment with potentially explosive atmosphere.

Certifications:

- ATEX or IECEx: II 1G Ex ia IIC, IIB, IIA surface plants zone 0, 1 and 2
- ATEX or IECEx: IM2 Ex ia IMb, Ex ib IMb surface, tunnels or mining plants

See section [11] for certification data

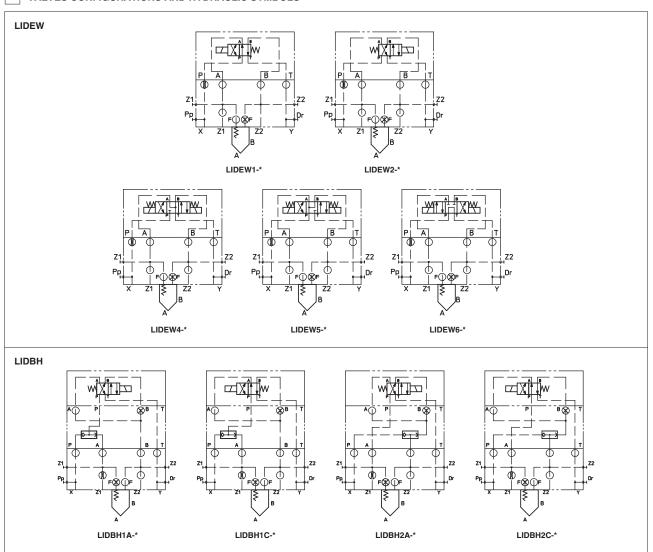
The valves must be electrically powered through specific "safety barriers" limiting the max current to the solenoid, see section [13]


**LIDEW**: directional control with ex-proof solenoid valve for oppet control

**LIDBH**: directional control with solenoid valve and shuttle valve for pilot line selection

Size: **16** ÷ **63** 

Flow: **240** ÷ **4000 l/min** at ∆p 5 bar


Max pressure: 350 bar



- (1) Not for certification M and IEM, Group I (mining)
- (2) Possible combined options: all combinations are available
- The pressure at T port makes difficult the manual override operation that can be possible only if its value is lower than 50 bar

EX150 ON-OFF VALVES 485

# 2 VALVES CONFIGURATIONS AND HYDRAULIC SYMBOLS



# 3 OPTIONS

For LIDEW\*, LIDBH\* covers (sizes 40...100):

/E = with external attachments Pp and underneath port X supplied plugged;

For all the models:

/B = cartridge piloted via port "B" of solenoid pilot valve;

/F = prearranged for coupling to an intermediate element with poppet position detector for safety function. See tab. EY120.

**/WP** = prolonged manual override protected for solenoid pilot valve.

\*\*\* = Calibrated plugs different from standard ones reported in section 4. The restrictors configuration (if different from the standard) must be indicated at the end of the model code:



# 4 STANDARD ORIFICES CONFIGURATION

| Cover                  | LIDEW*-1 | LIDEW*-2 | LIDEW*-3 | LIDEW*-4 | LIDEW*-5 | LIDEW*-6 |
|------------------------|----------|----------|----------|----------|----------|----------|
|                        | LIDBH*-1 | LIDBH*-2 | LIDBH*-3 | LIDBH*-4 | LIDBH*-5 | LIDBH*-6 |
| Z1 (only for LIDBH*-*) | M4       | M4       | M6       | M6       | M6       | M6       |
|                        | 12A      | 12A      | 15A      | 17A      | 20A      | 20A      |
| Р                      | M6       | M6       | M6       | M6       | M6       | M6       |
|                        | 12A      | 12A      | 15A      | 17A      | 20A      | 20A      |

# MODEL CODE OF SLIP-IN CARTRIDGES, to be coupled with covers in section 1

SC LI 43 16 Cartridge valve Size (ISO 7368): 25 32 40 50 63

Type of poppet, see section 6 for maximum flow

32, 33

42 = as 32 but with dumping nose

43 = as 33 but with dumping nose

40 Seals material: - = NBR **PE** = FKM **BT** = HNBR High flow: 40 = all sizes

Spring cracking pressure:

2 = 1,5 bar for poppet 32, 42;
3 = 3 bar for all poppets
6 = 5,5 bar for all poppets

1 = 0,3 bar for poppet 32, 42; 1 = 0,6 bar for poppet 33, 43;

# 6 TYPE OF POPPET

| Type of popp                     | pet            | 32                                | 33      | 42       | 43      |  |  |  |
|----------------------------------|----------------|-----------------------------------|---------|----------|---------|--|--|--|
| Functional ske<br>(Hydraulic sym |                | AP<br>B                           | AP<br>B | AP<br>B  | AP<br>B |  |  |  |
| Operating pressure               |                | 420 bar max (only SCLI cartridge) |         |          |         |  |  |  |
| S                                | Size <b>16</b> | 270                               | 270     | 240      | 240     |  |  |  |
| Nominal flow                     | 25             | 550                               | 550     | 500      | 500     |  |  |  |
| at ∆p 5bar                       | 32             | 1000                              | 1000    | 800      | 800     |  |  |  |
| (l/min)<br>see                   | 40             | 1700                              | 1700    | 1400     | 1400    |  |  |  |
| diagrams Q/Δp                    | 50             | 2500                              | 2500    | 2200     | 2200    |  |  |  |
| at section 9                     | 63             | 4000                              | 4000    | 3300     | 3300    |  |  |  |
| Typical section                  | on             |                                   |         |          |         |  |  |  |
| Area ratio A:                    | Αр             | 1:1,1                             | 1:1,5   | 1:1,1    | 1:1,5   |  |  |  |
| Sp. Sp.                          | oring <b>1</b> | 0,3 bar                           | 0,6 bar | 0,3 bar  | 0,6 bar |  |  |  |
| Cracking pressure                | 2              | 1,5 bar                           | -       | 1,5 bar  | -       |  |  |  |
| A→B                              | 3              | 3 bar                             | 3 bar   | 3 bar    | 3 bar   |  |  |  |
|                                  | 6              | 5,5 bar                           | 5,5 bar | 5,5 bar  | 5,5 bar |  |  |  |
| Cracking Sr                      | oring 1        | 3 bar                             | 1,2 bar | 3 bar    | 1,2 bar |  |  |  |
| pressure                         | 2              | 12,8 bar                          | -       | 12,8 bar | -       |  |  |  |
| B→A                              | 3              | 32,5 bar                          | 6 bar   | 32,5 bar | 6 bar   |  |  |  |
|                                  | 6              | 54,5 bar                          | 11 bar  | 54,5 bar | 11 bar  |  |  |  |

# 7 GENERAL CHARACTERISTICS

| Assembly position / location           | Horizontal position only                                                                                                                                        |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subplate surface finishing to ISO 4401 | Acceptable roughness index, Ra ≤0,8 recommended Ra 0,4 - flatness ratio 0,01/100)                                                                               |  |  |  |  |
| MTTFd values according to EN ISO 13849 | 75 years, for further details see technical table P007                                                                                                          |  |  |  |  |
| Ambient temperature                    | <b>Standard</b> = $-20^{\circ}$ C ÷ $+60^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+60^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+60^{\circ}$ C |  |  |  |  |
| Storage temperature range              | <b>Standard</b> = $-20^{\circ}$ C $\div$ +70°C /PE option = $-20^{\circ}$ C $\div$ +70°C /BT option = $-40^{\circ}$ C $\div$ +70°C                              |  |  |  |  |
| Surface protection                     | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200h                                                                                      |  |  |  |  |
|                                        | Intrinsically safe protection "Ex ia", see section [1]                                                                                                          |  |  |  |  |
| Compliance                             | RoHs Directive 2011/65/EU as last update by 2015/65/EU<br>REACH Regulation (EC) n°1907/2006                                                                     |  |  |  |  |

# 8 HYDRAULIC CHARACTERISTICS

| Functional cover operating pressure | port A, B, X, Z1, Z2 = <b>350</b> ; port Y = <b>160</b> |
|-------------------------------------|---------------------------------------------------------|
| Rated flow                          | see section 6                                           |

# 9 ELECTRICAL CHARACTERISTICS - see also section 11

| Nominal resistance at 20°C | 150 Ω                    |
|----------------------------|--------------------------|
| Coil insulation            | Class H                  |
| Working voltage            | 12 ÷ 26 V                |
| Minimum supply current     | 65mA, from I.S. barriers |
| Protection degree          | IP66                     |
| Duty factor                | 100%                     |
| Electrical connector       | DIN 43650 2 pin+GND      |

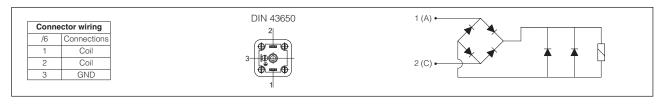
ON-OFF VALVES EX150 487

# 10 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended fluid temperature | NBR seals (standard) = $-20^{\circ}$ C $\div$ +60°C, with HFC hydraulic fluids = $-20^{\circ}$ C $\div$ +50°C FKM seals (/PE option) = $-20^{\circ}$ C $\div$ +80°C |                            |               |  |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--|--|--|--|
| ·                                    | HNBR seals (/BT option) = $-40$ °C $\div$ $+60$ °C, with HFC hydraulic fluids = $-40$ °C $\div$ $+50$ °C                                                            |                            |               |  |  |  |  |
| Recommended viscosity                | 15÷100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s                                                                                                                    |                            |               |  |  |  |  |
| Max fluid contamination level        | ISO4406 class 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog                                                                      |                            |               |  |  |  |  |
| Hydraulic fluid                      | Suitable seals type                                                                                                                                                 | Classification             | Ref. Standard |  |  |  |  |
| Mineral oils                         | NBR, FKM, HNBR                                                                                                                                                      | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |  |  |  |
| Flame resistant without water        | FKM                                                                                                                                                                 | HFDU, HFDR                 | ISO 12922     |  |  |  |  |
| Flame resistant with water           | NBR, HNBR                                                                                                                                                           | HFC                        | 130 12922     |  |  |  |  |

The ignition temperature of the hydraulic fluid must be 50°C higher than the max solenoid surface temperature

# (1) Performance limitations in case of flame resistant fluids with water: -max operating pressure = 210 bar -max fluid temperature = 50°C


# 11 CERTIFICATION DATA

| Valve type                                             |                                                                                 |                | LIDEW <b>/M</b><br>LIDBH <b>/M</b> |            | LIDEW/IEM<br>LIDBH/IEM |                  |         |                                             |        |           |          |                          |       |      |
|--------------------------------------------------------|---------------------------------------------------------------------------------|----------------|------------------------------------|------------|------------------------|------------------|---------|---------------------------------------------|--------|-----------|----------|--------------------------|-------|------|
| Certification                                          |                                                                                 |                | ATEX                               | (Group II) |                        | IECEx (Group II) |         |                                             | ATEX ( | mining) ( | Group I) | IECEx (mining) (Group I) |       |      |
| Solenoid code                                          |                                                                                 |                | 0                                  | W-18/6     |                        |                  | OWI-18  | /6                                          | (      | OWM-18/0  | 6        | OWIM-18/6                |       |      |
| Type examination certific                              | examination certificate (1) CESI 02 IECEX CESI 02 ATEX 013 CES 12.0017 ATEX 013 |                |                                    |            | IECEX<br>CES 12.0017   |                  |         |                                             |        |           |          |                          |       |      |
| Method of protection                                   |                                                                                 | Ex II 1G Ex ia |                                    |            |                        |                  | Ex I M2 | Ex ia                                       | IMb E  | x ib l Mb |          |                          |       |      |
|                                                        |                                                                                 |                | IIA 15 Ga                          | IIB T6 Ga  |                        | IIC T6 Ga        |         |                                             |        |           |          |                          |       |      |
|                                                        | Ui                                                                              | [V]            | 28                                 | 28         | 27                     | 7                | 19,5    | 19,11                                       | 28     | 28        | 27       | 19,5                     | 19,11 | 12,4 |
| Electrical                                             | li [                                                                            | [mA]           | 396                                | 250        | 13                     | 30               | 360     | 360                                         | 396    | 250       | 130      | 360                      | 360   | 2200 |
| characteristics<br>(max values)                        | Pi                                                                              | [W]            | 2,8                                | 1,8        | 0,                     | 9                | 1,64    | 1,72                                        | 2,8    | 1,8       | 0,9      | 1,64                     | 1,72  | 6,82 |
|                                                        | Ci                                                                              | , Li           | ≅ 0                                |            |                        | ~                | 0       |                                             | ≅ 0    |           |          |                          |       |      |
| Temperature class                                      |                                                                                 |                | T5                                 |            |                        | ٦                | Γ6      |                                             | -      |           |          |                          |       |      |
| Surface temperature (ambient temp. +60°C)              |                                                                                 | ≤ 100°C        | ≤ 85°C                             |            |                        |                  |         | ≤ 150°C                                     |        |           |          |                          |       |      |
| Ambient temperature -20 ÷ +60°C -40 ÷ +60°C <b>(2)</b> |                                                                                 | -20 ÷ +60°C    |                                    |            |                        |                  |         |                                             |        |           |          |                          |       |      |
| Applicable standards                                   |                                                                                 |                | EN 600<br>EN 600<br>EN 600         | 79-11      |                        |                  |         | IEC 60079-0<br>IEC 60079-11<br>IEC 60079-26 |        |           |          |                          |       |      |

- (1) The type examinator certificates can be downloaded from www.atos.com
- (2) Only for /BT option

MARNING: service work performed on the valve by the end users or not qualified personnel invalidates the certification

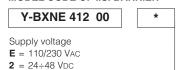
# 12 SOLENOIDS WIRING



#### 13 INTRINSICALLY SAFE BARRIERS - see tech. table GX010

The electric supply to these valves must be done through intrinsically safe barriers situated out of potentially flammable environment (i.e. in safe zone), which limit the electric current to the intrinsically safe solenoid. The "intrinsically safe" circuit is virtually unable to produce electrical surges or thermic effects able to cause explosion in hazardous environments also in presence of specific break-down situations. The intrinsically safe barriers must be approved and certified according to the Ex ia protection mode.

To select the proper intrinsically safe barriers following data must be considered:

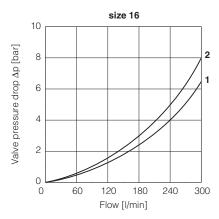

- 1) Vmax and Imax of the solenoid as specified in section [11] must not be exceeded also in fault conditions;
- 2) the resistance of the solenoid is  $150 \Omega$  and the current supplied by the barrier, in normal operation condition, must be over the min. limit (65 mA) to ensure the valve correct operation (over 70 mA for max performances).

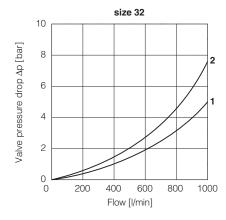
The barriers type **Y-BXNE 412** are galvanically isolated electronic devices, complying with European Norms EN60079-0/06, EN60079-11/07 and ATEX certified according to protection mode Ex ia IIC.

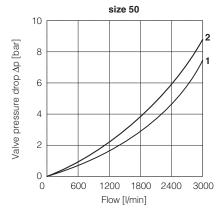
These barriers ensure the optimized functioning of the Atos valves up to the max operating limits specified in section [8].

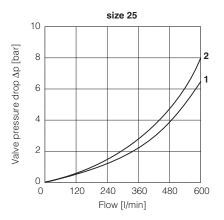
The barriers Y-BXNE-412 are double channel type, suitable to operate valves with double or single solenoid. Two single solenoid valves can be connected to the barrier (one to each channel) but they cannot be contemporary operated.

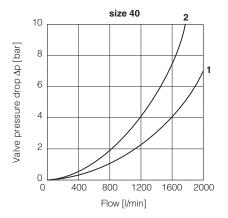
#### MODEL CODE OF I.S. BARRIER

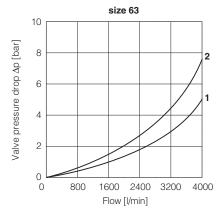




#### 14 Q/Ap DIAGRAMS based on mineral oil ISO VG 46 at 50 °C

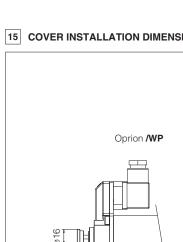

#### SC LI High flow - series 40

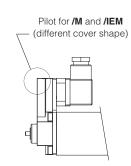

**1** = poppet type 32 and 33

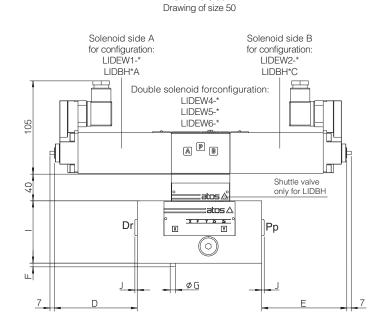

2 = poppet type 42 and 43



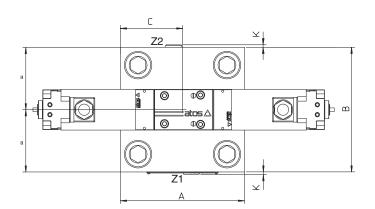






EX150 ON-OFF VALVES 489







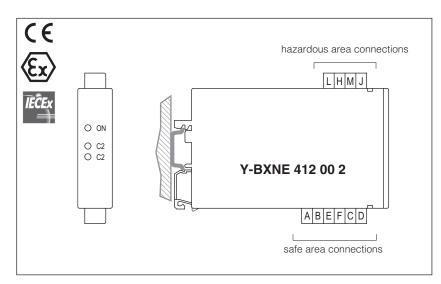
Size 16 ÷ 63



# Notes referred to the below table:

(1) LIDEW1\* - LIDBH\*A: solenoid at side of port Y of cover LIDEW2\* - LIDBH\*C: solenoid at side of port X of cover

| Size (1) | А   | В   | С    | D<br>max | E<br>max | F | G | I  | J   | K   | Ports<br>Pp-Dr | Ports<br>Z <sub>1</sub> -Z <sub>2</sub> | Seals     | Fastening bolts (3) | Tightening torque [Nm] | Mass<br>[Kg] |
|----------|-----|-----|------|----------|----------|---|---|----|-----|-----|----------------|-----------------------------------------|-----------|---------------------|------------------------|--------------|
| 16       | 70  | 65  | 41   | 135      | 123      | 4 | 3 | 40 | 1   | -   | -              | -                                       | 4 OR-108  | Nr. 4 M8x45         | 35                     | 3,95 ÷ 5,7   |
| 25       | 85  | 85  | 42,5 | 123      | 123      | 6 | 5 | 40 | 1   | -   | -              | -                                       | 4 OR-108  | Nr. 4 M12x45        | 125                    | 4,35 ÷ 6,1   |
| 32       | 100 | 100 | 50   | 115      | 115      | 6 | 5 | 50 | -   | -   | -              | -                                       | 4 OR-2043 | Nr. 4 M16x55        | 300                    | 4,85 ÷ 6,7   |
| 40       | 125 | 125 | 62,5 | 102      | 102      | 6 | 5 | 60 | 3,5 | -   | G 1/4          | -                                       | 4 OR-3043 | Nr. 4 M20x70        | 600                    | 7,75 ÷ 9,6   |
| 50       | 140 | 140 | 70   | 95       | 95       | 4 | 6 | 70 | 3,5 | 3,5 | G 1/4          | G 1/4                                   | 4 OR-3043 | Nr. 4 M20x80        | 600                    | 10,85 ÷ 12,7 |
| 63       | 180 | 180 | 90   | 75       | 75       | 4 | 6 | 80 | 3,5 | 3,5 | G 3/8          | G 3/8                                   | 4 OR-3050 | Nr. 4 M30x90        | 2100                   | 18,65 ÷ 20,4 |


# 16 RELATED DOCUMENTATION

| X010  | Basics for electrohydraulics in hazardous environments                 |
|-------|------------------------------------------------------------------------|
| X050  | Summary of Atos intrinsically safe components certified to ATEX, IECEx |
| EX950 | Operating and maintenance information for intrinsically safe valves    |
| P006  | Mounting surfaces and cavities for cartridge valves                    |



# Safety barriers for on-off intrinsically safe valves

DIN-rail panel format - ATEX and IECEx



#### Y-BXNE

Safety barriers are designed to electrically supply Atos intrinsically safe valves.

In intrinsically safe systems, the safety barrier is installed between the "safe area" and the "hazardous area" with potential presence of explosive gases and vapors, so that any fault that generates a high energy level, would not get carried over to the hazardous area.

Y-BXNE safety barriers are ATEX and IECEx certified according to the Ex ia protection mode

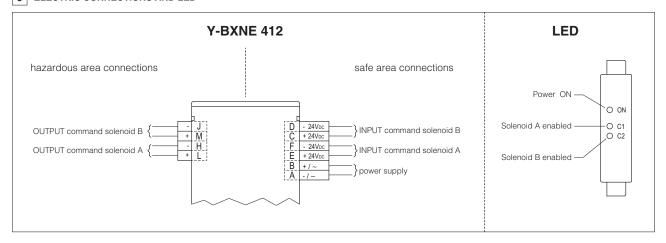
# 1 MODEL CODE OF I.S. BARRIER

| Y-BXNE                                                             | 412 |
|--------------------------------------------------------------------|-----|
| Intrinsically safe barrier                                         |     |
| Model:                                                             |     |
| 412 = output voltage 19,5 V<br>output current 170 mA<br>2 channels |     |

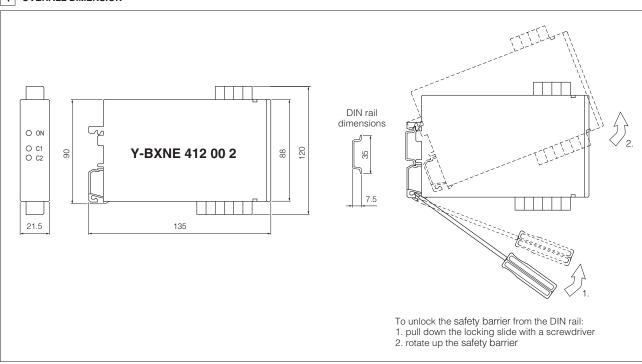
| 00              | *                                                     |
|-----------------|-------------------------------------------------------|
|                 | Power supply:<br>E = 110 / 230 VAC<br>2 = 24 / 48 VDC |
| 00 = no options |                                                       |

The above barrier can be used both for double or for single solenoid valves. With one barrier, two single solenoid valves can be operated but not contemporary

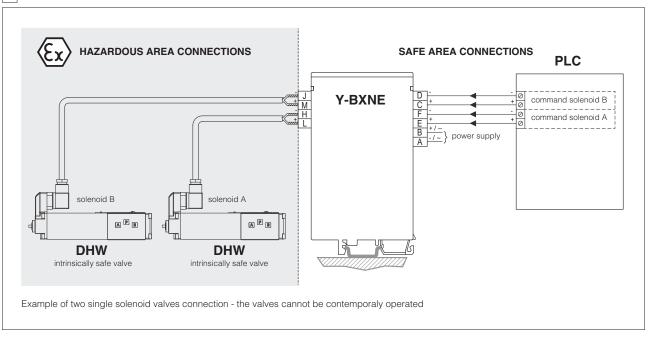
# 2 TECHNICAL CHARACTERISTICS


| Power supply                      | 21,6 ÷ 53 VDC or 110÷230 VAC ±10% (50/60 HZ)                            |
|-----------------------------------|-------------------------------------------------------------------------|
| Power consumption                 | < 3W                                                                    |
| Output voltage Uo                 | 19,5 V                                                                  |
| Output current Io                 | 170 mA                                                                  |
| Output power Po                   | 1,64 W                                                                  |
| N° output channels                | 2                                                                       |
| Galvanic insulation supply/output | 2500 VAC / 50 Hz                                                        |
| Storage temperature               | -25 °C ÷ +70 °C                                                         |
| Working temperature               | -10 °C ÷ +60 °C                                                         |
| Format                            | Plastic box ; IP20 protection degree ; DIN-rail mounting as per EN50022 |
| Electrical connections            | screw terminals                                                         |
| Max conductor size                | 2,5 mm² max                                                             |
| Mass                              | 200 gr                                                                  |

#### 2.1 CERTIFICATION DATA


| Certification                | ATEX                                           | IECEx          |  |
|------------------------------|------------------------------------------------|----------------|--|
| Type examination certificate | LCIE 02 ATEX 6104 X                            | LCI 09.0013 X  |  |
| Method of protection         | Ex II 1 G ,Ex ia II C ,Ex II 1 D ,Ex ia D II C |                |  |
|                              | EN 60079 - 0                                   | IEC 60079 - 0  |  |
| Applicabile standards        | EN 60079 - 11                                  | IEC 60079 - 11 |  |
| Applicabile standards        | EN 61241 - 0                                   | IEC 61241 - 0  |  |
|                              | EN 61241 - 11                                  | IEC 61241 - 11 |  |

GX010 ON-OFF VALVES 491


# 3 ELECTRIC CONNECTIONS AND LED



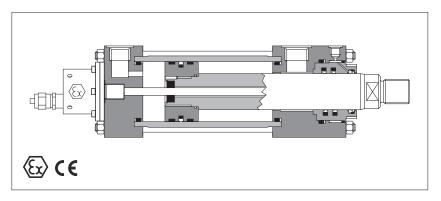
### 4 OVERALL DIMENSION



### 5 INSTALLATION EXAMPLE






| TECHNICAL INFORMAT                                                                                                              | TION                                                                                                                                                                                                                        |                                                                           |                        | Table                   | Pag         |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------|-------------------------|-------------|
|                                                                                                                                 | ulics in hazardous environments                                                                                                                                                                                             |                                                                           |                        | X010                    | 547         |
| Summary of Atos ex-pro                                                                                                          | oof components multicertified to ATEX, IECEx, EAC, PE                                                                                                                                                                       | SO                                                                        |                        | X020                    | 55          |
|                                                                                                                                 |                                                                                                                                                                                                                             |                                                                           |                        |                         |             |
| CYLINDERS                                                                                                                       |                                                                                                                                                                                                                             | ø bores [mm]                                                              | Pmax [bar]             | Table                   | Pag         |
| ISO 6020-2                                                                                                                      |                                                                                                                                                                                                                             |                                                                           |                        |                         |             |
| CKA                                                                                                                             | square heads with tie rods                                                                                                                                                                                                  | 25 ÷ 200                                                                  | 250                    | BX500                   | 497         |
| ACCESSORIES                                                                                                                     |                                                                                                                                                                                                                             |                                                                           |                        |                         |             |
| ATTACHMENTS                                                                                                                     | for hydraulic cylinders                                                                                                                                                                                                     |                                                                           |                        | B800                    | 539         |
|                                                                                                                                 |                                                                                                                                                                                                                             |                                                                           |                        |                         |             |
| OPERATING INFORMAT<br>Operating and mainten                                                                                     | TION  ance information for ex-proof cylinders & servocylinde                                                                                                                                                                | rs                                                                        |                        | BX900                   | 62          |
| Operating and mainten                                                                                                           |                                                                                                                                                                                                                             | rs  Disp. [cm <sup>3</sup> /rev]                                          | Pmax [bar]             | BX900                   |             |
| Operating and mainten                                                                                                           | ance information for ex-proof cylinders & servocylinde                                                                                                                                                                      |                                                                           | Pmax [bar]             |                         |             |
| Operating and mainten  PUMPS  fixed displacement, van                                                                           | ance information for ex-proof cylinders & servocylinde                                                                                                                                                                      |                                                                           | Pmax [bar]             | Table                   | Paç         |
| Operating and mainten  PUMPS fixed displacement, van  PFEA-31, 41, 51                                                           | ance information for ex-proof cylinders & servocylinde                                                                                                                                                                      | Disp. [cm³/rev]                                                           |                        |                         | Ρας         |
| PUMPS fixed displacement, van PFEA-31, 41, 51 PFEA-32, 42, 52                                                                   | ne  cartridge design cartridge design, high pressure                                                                                                                                                                        | Disp. [cm³/rev]                                                           | 160 ÷ 210              | Table                   | Ρας         |
| PUMPS fixed displacement, van PFEA-31, 41, 51 PFEA-32, 42, 52 variable displacement, v                                          | ne  cartridge design cartridge design, high pressure                                                                                                                                                                        | Disp. [cm³/rev]                                                           | 160 ÷ 210              | Table                   | Pag<br>499  |
|                                                                                                                                 | ne cartridge design cartridge design, high pressure                                                                                                                                                                         | Disp. [cm³/rev]<br>10,5 ÷ 150,2<br>16,5 ÷ 150,2                           | 160 ÷ 210<br>210 ÷ 300 | Table<br>AX010          | Paç<br>499  |
| PUMPS fixed displacement, van PFEA-31, 41, 51 PFEA-32, 42, 52 variable displacement, of                                         | ne cartridge design cartridge design, high pressure                                                                                                                                                                         | Disp. [cm <sup>3</sup> /rev]  10,5 ÷ 150,2  16,5 ÷ 150,2  29 ÷ 88         | 160 ÷ 210<br>210 ÷ 300 | Table<br>AX010          | Pag 499     |
| PUMPS fixed displacement, van PFEA-31, 41, 51 PFEA-32, 42, 52 variable displacement, o                                          | ne  cartridge design cartridge design, high pressure  axial piston  load sensing, constant power or pressure controls                                                                                                       | Disp. [cm <sup>3</sup> /rev]  10,5 ÷ 150,2  16,5 ÷ 150,2  29 ÷ 88  signal | 160 ÷ 210<br>210 ÷ 300 | Table AX010 AX050       | Pαφ 499 507 |
| PUMPS fixed displacement, van PFEA-31, 41, 51 PFEA-32, 42, 52  variable displacement, of PVPCA mechanical  ACCESSORIES E-ATRA-7 | ne  cartridge design cartridge design, high pressure  axial piston  load sensing, constant power or pressure controls  pressure transducer with amplified analog output for proportional and on-off valves, standard or arm | Disp. [cm <sup>3</sup> /rev]  10,5 ÷ 150,2  16,5 ÷ 150,2  29 ÷ 88  signal | 160 ÷ 210<br>210 ÷ 300 | Table AX010 AX050 GX800 | Pag 499 507 |

Supplementary components range available on www.atos.com



# Hydraulic cylinders type CKA - for potentially explosive atmospheres

ATEX - ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)



#### 1 ATEX CERTIFICATION

| Cylinder type                    | Group | Equipment category | Gas/dust group | Temperature class (1)   | Zone      |
|----------------------------------|-------|--------------------|----------------|-------------------------|-----------|
| CKA                              | Ш     | 2 GD               | II C/III C     | T85°C(T6) / T135 °C(T4) | 1,2,21,22 |
| CKA + ex-proof                   | Ш     | 2 G                | IIΒ            | T6/T5                   | 1,2       |
| rod position transducer (2)      | Ш     | 2 D                | III C          | T85°C/T100°C            | 21,22     |
| CKA + ex-proof proximity sensors | Ш     | 3 G                | Ш              | T4                      | 2         |

(1) Temperature class depends to the max fluid temperature and sealing system
(2) The rod position transducer is certified to work with explosive gas (cat. 2G) and dust (cat. 2D)

CKA cylinders are derived from standard CK (tab.B137) with certification according to ATEX 2014/34/EU. They are designed to limit the external surface temperature, according to the certified class, to avoid the self-ignition of the explosive mixtures potentially present in the environment. CKAM servocylinders are equipped with ex-proof built-in digital magnetostrictive position transducer, ATEX certified.

- · Optional ex-proof proximity sensors, ATEX certified
- Bore sizes from 25 to 200 mm
- Up to 3 rod diameters per bore
- Strokes up to 5000 mm
- Single or double rod
- 15 standard mounting styles
- 5 seals options
- · Attachments for rods and mounting styles, see tab. B800

For cylinder's dimensions and options see tab B.137

For cylinder's choice and sizing criteria see tab. B015

2 MODEL CODE

| CKA M / 10 -                                                                                                      | 50 / 22 / 22 * 0500                                                         | S 3 0                                                   | 1 - A - B1E3X1Z3 **                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cylinder series CKA to ATEX 2014/34/EU dimensions to ISO 6020 - 2                                                 |                                                                             |                                                         | Series number (2)  Heads' configuration (1)(3)  Oil ports positions                                                                                                                                                                                                                                                                                  |
| Ex-proof position transducer See section 5 - = omit if not requested M = Digital magnetostrictive                 |                                                                             |                                                         | B*= front head X*= rear head Cushioning adjustments positions, to be entere only if adjustable cushioning are selected E*= front head                                                                                                                                                                                                                |
| Incorporated subplate (1)                                                                                         |                                                                             |                                                         | <b>Z*</b> = rear head<br>* = selected position (1, 2, 3 or 4)                                                                                                                                                                                                                                                                                        |
| - = omit if subplate is not requested<br>10 = size 06<br>20 = size 10<br>30 = size 16<br>40 = size 25             |                                                                             |                                                         | Options (1)(3): Rod end F = female thread G = light female thread H = light male thread                                                                                                                                                                                                                                                              |
| Bore size (1)<br>from 25 to 200 mm                                                                                |                                                                             |                                                         | Oversized oil ports  D = front oversized oil port Y = rear oversized oil port                                                                                                                                                                                                                                                                        |
| Rod diameter (1)<br>from 12 to 140 mm                                                                             |                                                                             |                                                         | Ex-proof proximity sensors, see section B  R = front sensor S = rear sensor                                                                                                                                                                                                                                                                          |
| Second rod diameter for double rod (1)                                                                            |                                                                             |                                                         | Rod treatment <b>K</b> = nickel and chrome plating <b>T</b> = induction surface hardening and chrome plating                                                                                                                                                                                                                                         |
| from 12 to 140 mm, omit for single rod                                                                            |                                                                             |                                                         | Air bleeds  A = front air bleed                                                                                                                                                                                                                                                                                                                      |
| Stroke (1) up to 5000 mm ( 4000 mm for CKAM )                                                                     |                                                                             |                                                         | <ul><li>W = rear air bleed</li><li>Draining</li><li>L = rod side draining</li></ul>                                                                                                                                                                                                                                                                  |
|                                                                                                                   |                                                                             |                                                         | Sealing system, see section 7                                                                                                                                                                                                                                                                                                                        |
| Mounting style (1)  C = fixed clevis D = fixed eye E = feet G = front trunnion                                    | REF. ISO  MP1 (4)  MP3 (4)  MS2  MT1                                        |                                                         | <ul> <li>I = (NBR + POLYURETHANE) high static and dynamic sealing</li> <li>2 = (FKM + PTFE) very low friction and high temperatures</li> <li>4 = (NBR + PTFE) very low friction and high speeds</li> <li>5 = (NBR + PTFE) very low friction, single acting - pushing</li> <li>7 = (NBR + PTFE) very low friction, single acting - pulling</li> </ul> |
| H = rear trunnion L = intermediate trunnion N = front flange P = rear flange S = fixed eye + spherical bearing    | MT2 <b>(4)</b><br>MT4 <b>(5)</b><br>ME5<br>ME6 <b>(4)</b><br>MP5 <b>(4)</b> |                                                         | <b>2</b> = 50 mm <b>4</b> = 100 mm <b>6</b> = 150 mm <b>8</b> = 200 mm                                                                                                                                                                                                                                                                               |
| T = threaded hole+tie rods extended V = rear tie rods extended W = both end tie rods extended X = basic execution | MX7<br>MX2<br>MX1                                                           | Cushioning<br>0 = none<br>Fast adjusta<br>1 = rear only | ble Slow adjustable Fast fixed                                                                                                                                                                                                                                                                                                                       |
| Y = front tie rods extended<br>Z = front threaded holes                                                           | MX3<br>MX5                                                                  | 2 = front only<br>3 = front and                         | $5 = \text{front only} \qquad 8 = \text{front only}$                                                                                                                                                                                                                                                                                                 |

(1) For details see table B137

(3) To be entered in alphabetical order

(2) For spare parts request indicate the series number printed on the nameplate only for series < 30 (4) Not available for double rod

(5) XV dimension must be indicated in the model code

CYLINDERS & PUMPS

#### 3 CERTIFICATION

In the following are resumed the cylinders marking according to Atex certification. Reference norm ISO 80079-36, ISO 80079-37.

### II 2G Ex h IIC T6, T4 Gb (gas)

#### II 2D Ex h IIIC T85°C, T135°C Db (dust)

#### **GROUP II, Atex**

II = Group II for surface plants

2 = High protection (equipment category)

**G** = For gas, vapours

**D** = For dust

**Ex** = Equipment for explosive atmospheres

IIC = Gas group
IIIC = Dust group

IIC = Gas group

T85°C/T135°C = Surface temperature class for dust, see section 6

**T6/T4** = Surface temperature class for gas, see section 6

**Gb/Db** = EPL Equipment group

Compliance RoHS Directive 2011/65/EU as last update by 2015/65/EU (only CKAM) REACH Regulation (EC) no.1907/2006

#### 4 INSTALLATION NOTES

#### Before installation and start-up refer to tab. BX900

- The max surface temperature indicated in the nameplate must be lower than the following values:

#### GAS - 80% of gas ignition temperature

DUST - max value between dust ignition temperature - 75°C and 2/3 of dust ignition temperature

- The ignition temperature of the fluid must be  $50^{\circ}\text{C}$  greater than the maximum surface temperature indicated in the nameplate
- The cylinder must be grounded using the threaded hole on the rear head, evidenced by the nameplate with ground symbol. The hydraulic cylinder must be put at the same electric potential of the machine

# 5 EX-PROOF ROD POSITION TRANSDUCER

CODE: M

CKA cylinders are available with "Balluff" Ex-proof rod position transducer, ATEX certified to II 1/2 G Ex d IIC T6/T5 Ga/Gb for gas and II 2D Ex tb IIIC T85°C/T100°C Db IP 67 -40°C Ta +65°C (T6) -40°C Ta +80°C (T5) for dust. Ex-proof transducers meet the requirements of the following european standard documentations:

#### II 1/2 G Ex d IIC T6/T5 Ga/Gb

II 2D Ex tb IIIC T85°C/T100°C Db IP 67

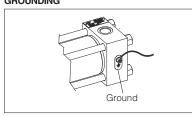
EN 60079-0 EN 61241-0 EN 60079-1 EN 61241-0/AA EN 60079-26 EN 61241-1

The transducer housing is made in AISI 303.

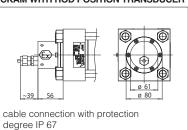
For dimensions and details, contact our technical office.

For certification and start-up refer to the user's guide included in the supply The transducer is available with SIL certified on request

#### 6 MAIN CHARACTERISTICS AND FLUID REQUIREMENTS


| Ambient temperature           | -20÷+70°C; -40 ÷ +65°C for <b>CKAM</b>                                                   |
|-------------------------------|------------------------------------------------------------------------------------------|
| Fluid temperature             | -20÷+70°C ( <b>T6</b> ); -20÷+120°C ( <b>T4</b> ) for seals type <b>2</b> (*)            |
| Max surface temperature       | $\leq$ +85 °C ( <b>T6</b> ); $\leq$ +135 °C ( <b>T4</b> ) for seals type <b>2</b> (*)    |
| Max working pressure          | 16 MPa (160 bar)                                                                         |
| Max pressure                  | 25 MPa (250 bar)                                                                         |
| Max frequency                 | 5 Hz                                                                                     |
| Max speed (see section 7)     | 1 m/s (seals type 2, 4, 6, 7); 0,5 m/s (seals type 1)                                    |
| Recommended viscosity         | 15 ÷ 100 mm²/s                                                                           |
| Max fluid contamination level | ISO4406 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog |

Note: (\*) Cylinders with seals type 2 may also be certified T6 limiting the max fluid temperature to 70°C


# Serial N° I 2G Ex h IIC T6,T4 Gb Tfmax -20°C<Tambe+70°C Pmax fmax 5Hz TÜV xxxx ATEX xxxxxxx made in Italy www.atos.com Notified body and certified number Working conditions - legend Tfmax = Max fluid temperature Pmax = Max pressure Tamb = Ambient temperature fmax = Max frequency

Marking according to Atex directive

#### GROUNDING



#### **CKAM WITH ROD POSITION TRANSDUCER**



CKA cylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters) depending to the sealing system.

# 7 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015** When single acting seals are selected (types **6** and **7**), the not pressurized cylinder's chamber must be connected to the tank. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition.

| Sealing | ng                    |                                                      | Max            | Fluid                |                                                                                                            | ISO Standards for seals |            |
|---------|-----------------------|------------------------------------------------------|----------------|----------------------|------------------------------------------------------------------------------------------------------------|-------------------------|------------|
| system  | Material              | Features                                             | speed<br>[m/s] | temperature<br>range | Fluids compatibility                                                                                       | Piston                  | Rod        |
| 1       | NBR +<br>POLYURETHANE | high static and dynamic sealing                      | 0.5            | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV                                                                    | ISO 7425/1              | ISO 5597/1 |
| 2       | FKM + PTFE            | very low friction<br>and high temperatures           | 1              | -20°C to 120°C       | Mineral oils HH, HL, HLP, HLP-D, HM, HV,<br>fire resistance fluids HFA, HFB, HFD-U,HFD-R                   | ISO 7425/1              | ISO 7425/2 |
| 4       | NBR + PTFE            | very low friction<br>and high speeds                 | 1              | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U | ISO 7425/1              | ISO 7425/2 |
| 6 - 7   | NBR + PTFE            | very low friction<br>single acting - pushing/pulling | 1              | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV, fire resistance fluids HFA, HFC (water max 45%), HFD-U            | ISO 7425/1              | ISO 7425/2 |

# 8 EX-PROOF PROXIMITY SENSORS

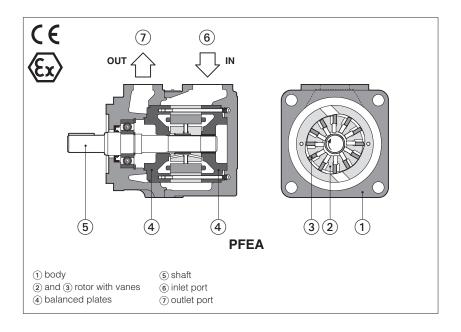
CODES: **R** = front sensor; **S** = rear sensor

CKA cylinders are available with ex-proof proximity sensors, ATEX certified to **Ex II 3G Ex nA II T4**-25≤Ta≤80°C. They meet the requirements of the following european standard documentations: EN 60079-0, EN 60079-15.

Their functioning is based on the variation of the magnetic field, generated by the sensor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off) of the sensors. The sensor housing is made in stainless steel.

For dimensions and details, contact our technical office.

For certification and start-up refer to the user's guide included in the supply


# SENSORS TECHNICAL DATA

|   | SENSORS TECHNICAL DATA |             |
|---|------------------------|-------------|
|   | Ambient temperature    | -25 ÷ +80°C |
|   | Nominal voltage        | 24 VDC      |
| ĺ | Operating voltage      | 10 ÷ 30 VDC |
| ĺ | Max load               | 200 mA      |
|   | Repeatability          | <5%         |
|   | Protection degree      | IP 68       |
| ĺ | Max frequency          | 1000 Hz     |
|   | Max pressure           | 25 MPa      |



# Ex-proof vane pumps type PFEA

fixed displacement - for potentialy explosive atmospheres - ATEX

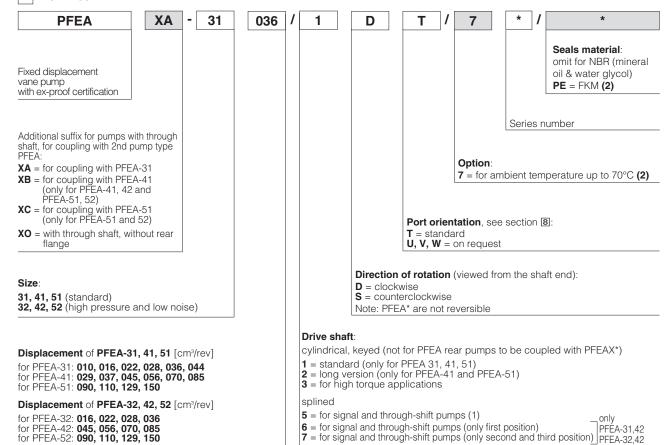


PFEA are fixed displacement-twelvevane pumps available in threebody sizes and two different executions.

They are certified for application in potentially explosive atmospheres according to ATEX 2014/34/EU. protection mode

Ex II 2/2G Ex h IIC T5, T4 Gb, and Ex II 2/2D Ex h IIIC T100°C, T135°C Db (group II for surface plants with gas, vapours and dust environment, category 2, zone 1, 2, 21 and 22).

The external surface temperature of the pump is in accordance with the certified class, to avoid the self ignition of the explosive mixture present in the


PFEA are available in two executions:

PFEA-\*1 max pressure 210 bar

PFEA-\*2 max pressure 300 bar

Displacements up to 150 cm³/rev.

# MODEL CODE



AX010

(1) Shaft type 5 has to be selected for PFEA rear pumps to be coupled with PFEAX\* first pumps

(2) Pumps with option /7 are always equipped with seals FKM

CYLINDERS & PUMPS

499

6 = for signal and through-shift pumps (only first position)
7 = for signal and through-shift pumps (only second and third position)
9FEA-31,42
9FEA-32,42

# 2 GENERAL CHARACTERISTICS

| Assembly position                  | Any position                                                                                                                              |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Loads on the shaft                 | Axial and radial loads are not allowed on the shaft. The coupling should be sized to absorb the power peak.                               |
| Ambient temperature range          | -20°C to +70°C                                                                                                                            |
| Recommended pressure on inlet port | from -0,15 to 1,5 bar for speed up to 1800 rpm; from 0 to +1,5 bar for speed over 1800 rpm                                                |
| Compliance                         | Explosion proof protection "Ex h", see section 6 RoHs Directive 2011/65/EU as last update by 2015/65/EU REACH Regulation (EC) n°1907/2006 |

# 3 OPERATING CHARACTERISTICS of PFEA - 31,41,51 at 1450 rpm (based on mineral oil ISO VG 46 at 50°C)

| Model      | Displacement<br>cm³/rev | Max<br>pressure (1) | Speed range rpm (2) | 7 ba<br>l/min | ır (3)<br>kW | 140 k<br>l/min | oar (3)<br>kW | 21<br>I/mi | 0 bar (3)<br>n kW |    |      |
|------------|-------------------------|---------------------|---------------------|---------------|--------------|----------------|---------------|------------|-------------------|----|------|
| PFEA-31010 | 10,5                    | 160                 | 800-2400            | 15            | 0,2          | 12             | 5             | -          | -                 |    |      |
| PFEA-31016 | 16,5                    |                     |                     | 23            | 0,5          | 19             | 5             | 16         | 8,3               |    |      |
| PFEA-31022 | 21,6                    | ]                   | 800-2800            | 30            | 0,6          | 26             | 7             | 23         | 10,8              |    |      |
| PFEA-31028 | 28,1                    | 1                   | 800-2800            | 40            | 0,8          | 36             | 10            | 33         | 14                |    |      |
| PFEA-31036 | 35,6                    |                     |                     | 51            | 1            | 46             | 12,5          | 43         | 17,8              |    |      |
| PFEA-31044 | 43,7                    | ]                   |                     | 63            | 1,3          | 58             | 15,5          | 55         | 22                |    |      |
| PFEA-41029 | 29,3                    | 210 bar             |                     | 41            | 0,8          | 37             | 10            | 34         | 14,7              |    |      |
| PFEA-41037 | 36,6                    |                     | 800-2500            | 52            | 1            | 48             | 12,5          | 45         | 18,3              |    |      |
| PFEA-41045 | 45,0                    |                     | 210 bar             | 210 bar       | 800-2500     | 64             | 1,3           | 60         | 16                | 57 | 22,6 |
| PFEA-41056 | 55,8                    |                     |                     |               |              |                |               | 80         | 1,6               | 75 | 21   |
| PFEA-41070 | 69,9                    | 1                   |                     | 101           | 2            | 95             | 26            | 91         | 35                |    |      |
| PFEA-41085 | 85,3                    | 1                   | 800-2000            | 124           | 2,4          | 118            | 32            | 114        | 43                |    |      |
| PFEA-51090 | 90,0                    | 1                   |                     | 128           | 2,7          | 119            | 33            | 114        | 45                |    |      |
| PFEA-51110 | 109,6                   | 1                   | 800-2200            | 157           | 3,2          | 147            | 40            | 141        | 55                |    |      |
| PFEA-51129 | 129,2                   | 1                   |                     | 186           | 3,7          | 174            | 47            | 168        | 65                |    |      |
| PFEA-51150 | 150,2                   | 1                   | 800-1800            | 215           | 4,2          | 204            | 55            | 197        | 75                |    |      |

- (1) Max pressure is 160 bar for /PE version and water glycol fluid
- (2) Max speed is 1800 rpm for /PE versions; 1500 rpm for water glycol fluid
- (3) Flow rate and power consumption are proportional to the rotation speed

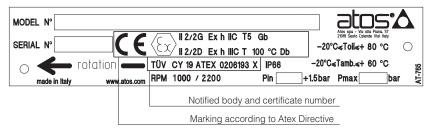
# 4 OPERATING CHARACTERISTICS of PFEA - 32, 42, 52 at 1450 rpm (based on mineral oil ISO VG 46 at 50°C)

| Model      | Displacement cm³/rev | Max<br>pressure (1) | Speed range rpm (2) | 7 baı<br>I/min | (3)<br><b>kW</b> | 140 ba<br>I/min | ar (3)<br>kW | at max. pre | essure (3)<br>kW |
|------------|----------------------|---------------------|---------------------|----------------|------------------|-----------------|--------------|-------------|------------------|
| PFEA-32016 | 16,5                 | 210 bar             | 1000-2500           | 23             | 0,35             | 20              | 6            | 16          | 10               |
| PFEA-32022 | 21,6                 |                     |                     | 30             | 0,6              | 26              | 7            | 20          | 16               |
| PFEA-32028 | 28,1                 | 300 bar             | 1200-2500           | 40             | 0,8              | 36              | 10           | 30          | 20               |
| PFEA-32036 | 35,6                 |                     |                     | 51             | 1                | 46              | 12,5         | 40          | 26               |
| PFEA-42045 | 45                   | 280 bar             |                     | 64             | 1,3              | 60              | 16           | 56          | 31               |
| PFEA-42056 | 55,8                 | 280 Dar             | 1000-2200           | 80             | 1,6              | 75              | 21           | 70          | 40               |
| PFEA-42070 | 69,9                 | 250 bar             |                     | 101            | 2                | 95              | 26           | 90          | 42               |
| PFEA-42085 | 85,3                 | 210 bar             | 800-2000            | 124            | 2,4              | 118             | 32           | 114         | 43               |
| PFEA-52090 | 90                   |                     |                     | 128            | 2,7              | 119             | 33           | 111         | 54               |
| PFEA-52110 | 109,6                | 250 bar             | 1000-2000           | 157            | 3,2              | 147             | 40           | 138         | 66               |
| PFEA-52129 | 129,2                |                     |                     | 186            | 3,7              | 174             | 47           | 163         | 78               |
| PFEA-52150 | 150,2                | 210 bar             | 800-1800            | 215            | 4,2              | 204             | 55           | 197         | 80               |

- (1) Max pressure is 160 bar for /PE version and water glycol fluid
- (2) Max speed is 1800 rpm for /PE versions; 1500 rpm for water glycol fluid
- (3) Flow rate and power consumption are proportional to the rotation speed

# 5 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended f          | luid temperature                                          | NBR seals (standard) = -20°C $\div$ +60°C, with HFC hydraulic fluids = -20°C $\div$ +50°C FKM seals (/PE option) = -20°C $\div$ +80°C |                                             |               |  |
|-------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|--|
| Recommended viscos            | cosity 15÷100 mm²/s - max start-up viscosity = 1000 mm²/s |                                                                                                                                       |                                             |               |  |
| Max fluid                     | normal operation                                          | ISO4406 class 21/19/16 NAS1                                                                                                           | ISO4406 class 21/19/16 NAS1638 class 10 sec |               |  |
| contamination level           | longer life                                               | ISO4406 class 19/17/14 NAS1                                                                                                           | ISO4406 class 19/17/14 NAS1638 class 8 ww   |               |  |
| Hydraulic fluid               |                                                           | Suitable seals type                                                                                                                   | Classification                              | Ref. Standard |  |
| Mineral oils                  |                                                           | NBR, FKM                                                                                                                              | HL, HLP, HLPD, HVLP, HVLPD                  | DIN 51524     |  |
| Flame resistant without water |                                                           | FKM                                                                                                                                   | HFDU, HFDR                                  | ISO 12922     |  |
| Flame resistant with wa       | ater                                                      | NBR                                                                                                                                   | HFC                                         | 130 12922     |  |


# 6 CERTIFICATION MAIN DATA

| Certification                | ATEX                                                                     |              |  |  |  |
|------------------------------|--------------------------------------------------------------------------|--------------|--|--|--|
| Protection mode              | Ex II 2/2G Ex h IIC T5, T4 Gb,<br>Ex II 2/2D Ex h IIIC T100°C, T135°C Db |              |  |  |  |
| Type examination certificate | TUV CY 19 ATEX 026182X                                                   |              |  |  |  |
| Pump version                 | (std and /PE)                                                            | /7 /PE       |  |  |  |
| Temperature class            | T6                                                                       | T5           |  |  |  |
| Surface temperature          | ≤ 85 °C                                                                  | ≤ 100 °C     |  |  |  |
| Ambient temperature          | -20 ÷ +60 °C                                                             | -20 ÷ +70 °C |  |  |  |
| Max inlet fluid temperature  | +60 °C                                                                   | +80 °C       |  |  |  |
| Protection degree            | IP 66                                                                    |              |  |  |  |



#### **6.1 EXAMPLE OF PFEA NAMEPLATE MARKING**

At side are resumed the pumps marking according to Atex certification



**Ex** = Equipment for explosive atmospheres

II = Group II for surfaces plants

2/2 = Pump category

**G** = For gas and vapours

**D** = For dust

h = Marking includes one on more of the following types of protection ("c", "b", "k")

**IIC** = Gas group (acetylene, hydrogen)

IIIC = Conduictive dust

T\* = Temperature class (T6, T5)

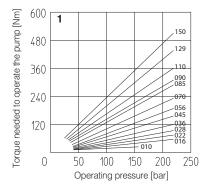
T\*\*°C = Max surface temperature (85, 100)

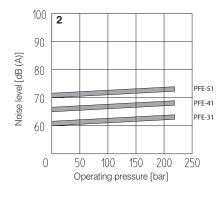
Zone 1 (gas) and 21 (dust) = Possibility of explosive atmosphere during normal functioning Zone 2 (gas) and 22 (dust) = Low probability of explosive atmosphere

501

### 6.2 Related documentation

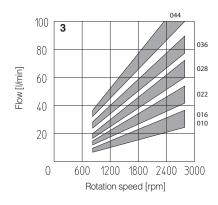
**X010** Basics for electrohydraulics in hazardous environments

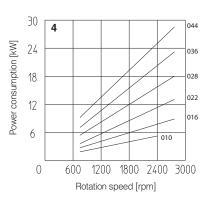

X020 Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO


**AX900** Operating and maintenance information for ex-proof pumps

AX010 CYLINDERS & PUMPS

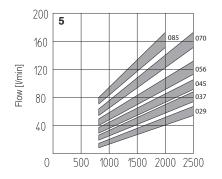
# 7 DIAGRAMS for PFEA -31, 41, 51 (Fbased on mineral oil ISO VG 46 at 50°C)

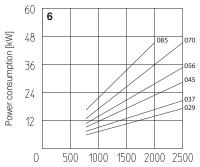

- 1 = Torque versus pressure diagram
- 2 = Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics -Test procedure to define the ambient noise level Pumps Shaft speed: 1450 rpm.





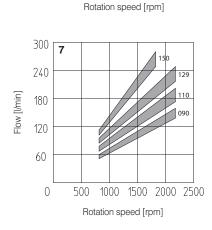

# PFE-31:

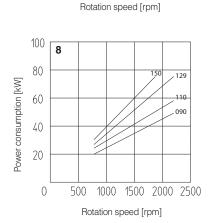

- **3 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- **4 = Power consumption versus speed diagram** at 140 bar. Power consumption is proportional to operating pressure.



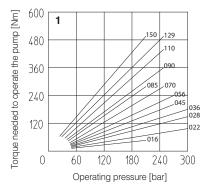


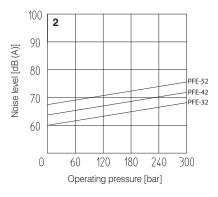

#### PFE-41:


- **5 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- 6 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.



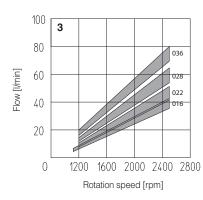


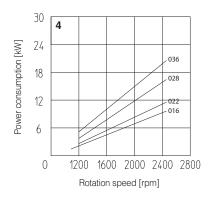


#### PFE-51:


- **7 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- 8 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.



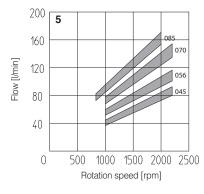


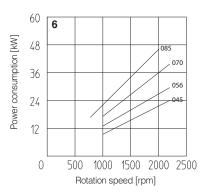

- 8 DIAGRAMS for PFEA -32, 42, 52 (based on mineral oil ISO VG 46 at 50°C)
- 1 = Torque versus pressure diagram
- 2 = Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics -Test procedure to define the ambient noise level Pumps Shaft speed: 1450 rpm.





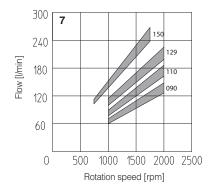

#### PFE-32:

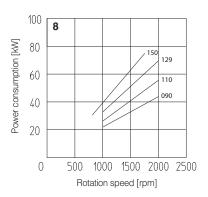

- **3 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- 4 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.






#### PFE-42:


- **5 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- 6 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.



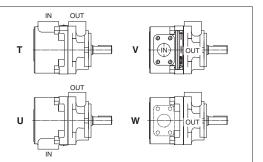



#### PFE-52:

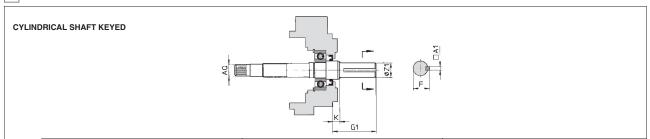
- **7 = Flow versus speed diagram** with pressure variation from 7 bar to 210 bar.
- 8 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.



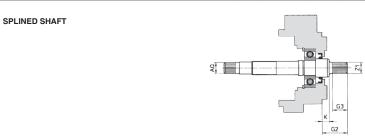



# 9 PORT ORIENTATION

Single pumps can be supplied with oil ports oriented in different configuration in relation to the drive shaft, as follows (wiewed from the shaft end);


- **T** = inlet and outlet ports on the same axis (standard)
- **U** = outlet orientated 180° with respect to the inlet
- **V** = outlet oriented 90° with respect to the inlet
- **W** = outlet oriented 270° with respect to the inlet

In multiple pumps inlet ports and outlet ports are in line.


Ports orientation can be easily changed by rotating the pump body that carries inlet port.



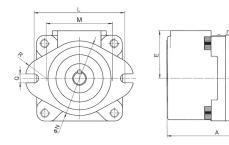
#### 10 DRIVE SHAFT

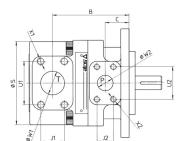


|               |      | PFEA - 31,41,51                           |       |       |       |                                  | PFEA - 41,51                           |       |       |      |       | ALL VERSIONS                     |            |       |       |       |       |                                  |
|---------------|------|-------------------------------------------|-------|-------|-------|----------------------------------|----------------------------------------|-------|-------|------|-------|----------------------------------|------------|-------|-------|-------|-------|----------------------------------|
|               | K    | Keyed shaft type 1 (only PFEA - 31,41,51) |       |       |       | A - 31,41,51)                    | Keyed shaft type 2 (only PFEA - 41,51) |       |       |      |       | Keyed shaft type 3               |            |       |       |       | 3     |                                  |
| PFEA<br>Model |      |                                           |       |       |       | Only for through shaft execution |                                        |       |       |      |       | Only for through shaft execution |            |       |       |       |       | Only for through shaft execution |
|               | A1   | F                                         | G1    | K     | ØZ1   | Ø AQ                             | A1                                     | F     | G1    | K    | ØZ1   | Ø AQ                             | <b>A</b> 1 | F     | G1    | К     | ØZ1   | Ø AQ                             |
| 31.32         | 4,78 | 21,11                                     | 56,00 | 8,00  | 19,05 | SAE 16/32-9T                     | -                                      | -     | -     | -    | -     | -                                | 4,78       | 24,54 | 56,00 | 8,00  | 22,22 | SAE 16/32-9T                     |
| 31,32         | 4,75 | 20,94                                     |       |       | 19,00 |                                  |                                        |       |       |      |       |                                  | 4,75       | 24,41 |       |       | 22,20 |                                  |
| 41.42         | 4,78 | 24,54                                     | 59,00 | 11,40 | 22,22 | SAE 32/64-24T                    | 6,36                                   | 25,03 | 71,00 | 8,00 | 22,22 | SAE 32/64-24T                    | 6,38       | 28,30 | 78,00 | 11,40 | 25,38 | SAE 32/64-24T                    |
| 41,42         | 4,75 | 24,41                                     |       |       | 22,20 |                                  | 6,35                                   | 24,77 |       |      | 22,20 |                                  | 6,35       | 28,10 |       |       | 25,36 |                                  |
| 51.52         | 7,97 | 35,33                                     | 73,00 | 14    | 31,75 | SAE 16/32-13T                    | 7,95                                   | 35,33 | 84,00 | 8,10 | 31,75 | SAE 16/32-13T                    | 7,97       | 38,58 | 84,00 | 14    | 34,90 | SAE 16/32-13T                    |
| 51,52         | 7,94 | 35,07                                     |       |       | 31,70 |                                  | 7,94                                   | 35,07 |       |      | 31,70 |                                  | 7,94       | 38,46 |       |       | 34,88 |                                  |



|               | Splined shaft type 5 |       |      |               |                                     |       |    | Spli | ned shaft type | 6                                   | Splined shaft type 7 |    |      |               |                                     |
|---------------|----------------------|-------|------|---------------|-------------------------------------|-------|----|------|----------------|-------------------------------------|----------------------|----|------|---------------|-------------------------------------|
| PFEA<br>Model |                      |       |      |               | Only for through<br>shaft execution |       |    |      |                | Only for through<br>shaft execution |                      |    |      |               | Only for through<br>shaft execution |
|               | G2                   | G3    | K    | <b>Z</b> 1    | Ø AQ                                | G2    | G3 | K    | Z1             | Ø AQ                                | G2                   | G3 | K    | <b>Z</b> 1    | Ø AQ                                |
| 31,32         | 32,00                | 19,50 | 6,50 | SAE 16/32-9T  | SAE 16/32-9T                        | 41,00 | 28 | 8,00 | SAE 16/32-13T  | SAE 16/32-9T                        | 32,00                | 19 | 8,00 | SAE 16/32-13T | SAE 16/32-9T                        |
| 41,42         | 41,25                | 28    | 8,00 | SAE 16/32-13T | SAE 32/64-24T                       | 55,60 | 42 | 8,00 | SAE 12/24-14T  | SAE 32/64-24T                       | 41,60                | 28 | 8,00 | SAE 12/24-14T | SAE 32/64-24T                       |
| 51,52         | 56,00                | 42    | 8,10 | SAE 12/24-14T | SAE 16/32-13T                       | -     | -  | -    | -              | -                                   | -                    | -  | -    | -             | -                                   |


# 11 LIMITS OF SHAFT TORQUE


| PFEA<br>Model |              |              | Maximum drivi | ng torque [Nm] |              |              | Maximum torque available at the end of the through shaft [Nm] |
|---------------|--------------|--------------|---------------|----------------|--------------|--------------|---------------------------------------------------------------|
|               | Shaft type 1 | Shaft type 2 | Shaft type 3  | Shaft type 5   | Shaft type 6 | Shaft type 7 | Any type of shaft                                             |
| 31,32         | 160          | -            | 240           | 110            | 240          | 240          | 130                                                           |
| 41,42         | 250          | 250          | 400           | 200            | 400          | 400          | 250                                                           |
| -51,52        | 500          | 500          | 850           | 450            | -            | -            | 400                                                           |

The values of torque required to operate the pumps are shown for each type on the "torque versus pressure" diagram at section 4. In multiple pumps the total torque applied to the shaft of the first element (drive shaft) is the sum of the single torque needed for operating each single pump and it is necessary to verify that this total torque applied to the drive shaft is not higher than the values indicated in the table.

# 12 DIMENSIONS OF PFEA - 31, 41, 51 SINGLE PUMPS [mm]







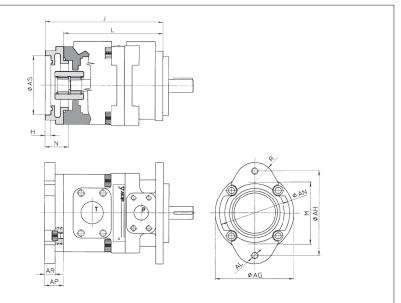
Mass:

PFE-31 = 9 kgPFE-41 = 14 kg PFE-51 = 25,5 kg

#### SAE FLANGES

PFEA-31: port T = 1 1/4"; PFEA-41: port T = 1 1/2"; port **P = 3/4**"

port **P = 1**" **PFEA-51**: port **T = 2**; port **P** = **1 1/4**"


SAE flanges can be supplied with the pump

| Model   | Α     | В    | С    | ØD    | E    | н    | L    | М     | ØN     | Q      | R    |
|---------|-------|------|------|-------|------|------|------|-------|--------|--------|------|
| PFEA-31 | 136   | 100  | 28   | 82,55 | 70   | 6,4  | 106  | 73    | 95     | 11,1   | 28,5 |
| PFEA-41 | 160   | 120  | 38   | 101,6 | 76,2 | 9,7  | 146  | 107   | 120    | 14,3   | 34   |
| PFEA-51 | 186,5 | 125  | 38   | 127   | 82,6 | 12,7 | 181  | 143,5 | 148    | 17,5   | 35   |
| Model   | øs    | U1   | U2   | v     | ØW1  | ØW2  | J1   | J2    | X1     | X2     | ØY   |
| PFEA-31 | 114   | 58,7 | 47,6 | 10    | 32   | 19   | 30,2 | 22,2  | M10X20 | M10X17 | 47   |
| PFEA-41 | 134   | 70   | 52,4 | 13    | 38   | 25   | 35,7 | 26,2  | M12X20 | M10X17 | 76   |
| PFEA-51 | 160   | 77,8 | 58   | 15    | 51   | 32   | 42,9 | 30,2  | M12X20 | M10X20 | 76   |

# 13 DIMENSIONS OF PFEA-31, 41, 51 WITH THROUGH-SHAFT [mm]

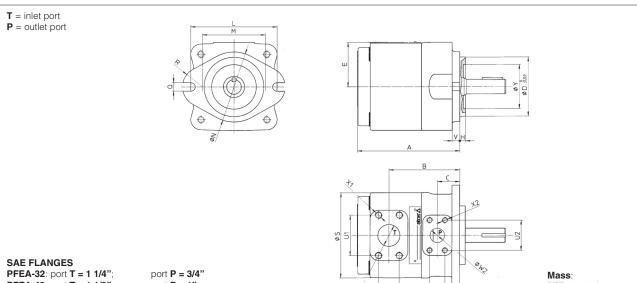
 $\mathbf{T} = \text{inlet port}$ 

**P** = outlet port



#### SAE FLANGES

**PFEAX-31**: port **T = 1 1/4**"; port **P = 3/4**" **PFEAX-41**: port **T = 1 1/2**"; port **P = 1**" port **P** = **1 1/4**" **PFEAX-51**: port **T = 2**;

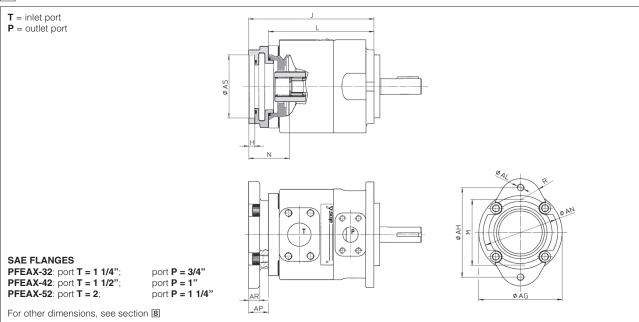

For other dimensions, see section 8

| 1 01 011101 0 |      | , 000 0001 | 1011   |                           |      |      |      |                  |                |       |       |       |    |      |
|---------------|------|------------|--------|---------------------------|------|------|------|------------------|----------------|-------|-------|-------|----|------|
| Model         | Ø AG | Ø AH       | AL     | Tightening torque (Nm)(1) | Ø AN | AP   | AR   | Ø AS             | н              | J     | L     | М     | N  | R    |
| PFEXA-31      | 114  | 106        | M10X17 | 70                        | 95   | 33   | 25   | 82,57<br>82,63   | 6,42<br>6,47   | 165,5 | 132,5 | 79    | 32 | 28,5 |
| PFEXA-41      | 134  | 106        | M10X17 | 70                        | 95   | 23   | 11   | 82,57<br>82,63   | 6,42<br>6,47   | 194   | 171   | 73    | 32 | 28,5 |
| PFEXB-41      | 134  | 146        | M12    | 125                       | 120  | 32   | 18   | 101,62<br>101,68 | 9,73<br>9,78   | 203   | 171   | 107   | 41 | 34   |
| PFEXA-51      | 134  | 106        | M10X17 | 70                        | 95   | 22,7 | 11   | 82,57<br>82,63   | 6,42<br>6,47   | 206,2 | 183,5 | 73    | 32 | 28,5 |
| PFEXB-51      | 134  | 146        | M12    | 125                       | 120  | 32   | 18   | 101,62<br>101,68 | 9,73<br>9,78   | 215,5 | 183,5 | 107   | 41 | 34   |
| PFEXC-51      | 134  | 181        | M16    | 300                       | 148  | 46,5 | 30,7 | 127,02<br>127,02 | 12,73<br>12,78 | 230   | 183,5 | 143,5 | 56 | 35   |

(1) Tightening torque for screw class 12.9

505

#### 14 DIMENSIONS OF PFEA -32, 42, 52 SINGLE PUMPS [mm]

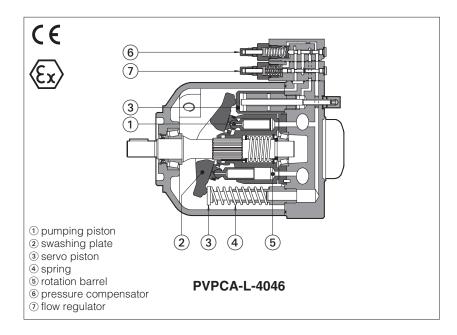



PFEA-32: port I = 1 1/4"; port P = 3/4" PFEA-42: port T = 1 1/2"; port P = 1" PFEA-52: port T = 2; port P = 1 1/4"

PFE-32 = 9 kg PFE-42 = 20,5 kg PFE-52 = 32,1 kg

| Model   | Α     | В    | С    | ØD    | E   | н    | L    | М     | ØN     | Q      | R    |
|---------|-------|------|------|-------|-----|------|------|-------|--------|--------|------|
| PFEA-32 | 136   | 100  | 28   | 82,5  | 70  | 6,4  | 106  | 73    | 95     | 11     | 28,5 |
| PFEA-42 | 175,5 | 121  | 38   | 101,6 | 78  | 9,7  | 146  | 107   | 121    | 14,3   | 34   |
| PFEA-52 | 189   | 125  | 38   | 127   | 89  | 12,7 | 181  | 143,5 | 148    | 17,5   | 35   |
| Model   | øs    | U1   | U2   | v     | ØW1 | ØW2  | J1   | J2    | X1     | X2     | ØY   |
| PFEA-32 | 114   | 58,7 | 47,6 | 10    | 32  | 19   | 30,2 | 22,2  | M10X20 | M10X17 | 47   |
| PFEA-42 | 148   | 70   | 52,4 | 13    | 38  | 25   | 35,7 | 26,2  | M12X20 | M10X17 | 76   |
| PFEA-52 | 174   | 77,8 | 58,7 | 16,3  | 50  | 50   | 42,9 | 30,2  | M12X20 | M10X20 | 76   |

# 15 DIMENSIONS OF PFEA - 32, 42, 52 WITH THROUGH-SHAFT [mm]



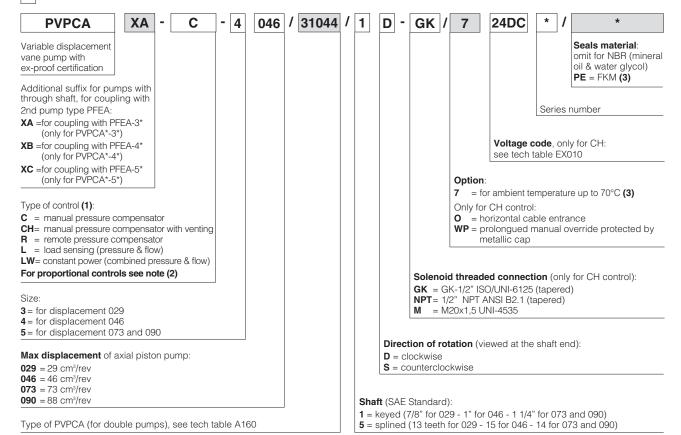

Tightening orque (Nm)(1 Ø AG Ø AH Ø AN Model ΑL ΑP AR Ø AS Н J L M Ν R 82,57 6,42 PFEXA-32 114 106 M10X17 95 33 25 193,7 132,5 79 32 28,5 82,63 6,47 82.57 6.42 171 28,5 PFEXA-42 134 106 M10X17 70 95 22.7 11 194 73 34 82,63 6,47 101,62 9,73 PFEXB-42 134 146 M12 125 120 32 18 203 171 107 43 34 101,68 9,78 82,57 6,42 6,47 PFEXA-52 134 106 M10X17 70 95 22.7 11 206,2 183,5 73 34,5 28,5 82.63 101,62 9,73 PFEXB-52 134 146 M12 125 120 32 18 215,5 183,5 107 43,8 9,78 101,68 127,02 127,02 12,73 12,78 PFEXC-52 134 230,2 183,5



# Ex-proof axial piston pumps type PVPCA

for potentially explosive atmospheres - ATEX




**PVPCA** are variable displacement axial piston pumps for high pressure operation, and low noise level, available in a wide range of hydraulic and proportional controls.

They are certified for application in potentially explosive atmospheres according to ATEX 2014/34/EU, protection mode Ex II 2/2G Ex h IIC T5, T4 Gb, and Ex II 2/2D Ex h IIIC T100°C, T135°C Db (group II for surface plants with gas, vapours and dust environment, category 2, zone 1, 2, 21 and 22).

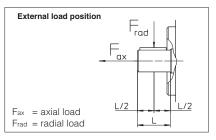
The external surface temperature of the pump is in accordance with the certified class, to avoid the self ignition of the explosive mixture present in the environment.

Displacement: 29-46-73-88 cm³/rev.
Pressure: 280 bar working
350 bar peak

# 1 MODEL CODE



- (1) Pumps CH, CZ, LQZ, PES and PERS are supplied with two certificates, one for the pump, and one for control valve
- (2) Pumps with proportional controls type: CZ, LQZ, PES and PERS are available on request.
  - For the technical characteristics of PVPCA pumps with proportional controls, see tech table AS170
- (3) Pumps with option /7 are always equipped with seals FKM


AX050 CYLINDERS & PUMPS 507

# 2 GENERAL CHARACTERISTICS

| Assembly position         | Any position. The drain port must be on the top of the pump. Drain line must be separated and unrestricted to the reservoir and extended below the oil level as far from the inlet as possible. Suggested maximum line length is 3 m. |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ambient temperature range | -20°C to +70°C                                                                                                                                                                                                                        |  |
| Compliance                | Explosion proof protection "Ex h", see section 6 RoHs Directive 2011/65/EU as last update by 2015/65/EU (only PVPCA-CH) REACH Regulation (EC) n°1907/2006                                                                             |  |

# 3 OPERATING CHARACTERISTICS

| Pump model                                                         |                   | PVPCA         | *-3029        | PVPCA         | \*-4046       | PVPC#         | \*-5073       | PVPC          | \*-5090       |
|--------------------------------------------------------------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Displacement                                                       | [cm³/rev]         | 2             | 9             | 4             | 6             | 7             | 3             | 8             | 8             |
| Theoretical max flow at 1450 rpm                                   | [l/min]           | 4:            | 2             | 66            | 5,7           | 10            | 5,8           | 12            | 7,6           |
| Max working pressure / Peak pres                                   | ssure[bar]        | 280/          | 350           | 280/          | /350          | 280,          | /350          | 250,          | /315          |
| Min/Max inlet pressure                                             | [bar abs.]        | 0,8           | 25            | 0,8           | / 25          | 0,8           | / 25          | 0,8           | / 25          |
| Max pressure on drain port                                         | [bar abs.]        | ,             | 5             | 1,            | 5             | 1             | ,5            | 1,            | ,5            |
| Power consumption at 1450 rpm at maximum pressure and displacement | nd at [kW]<br>ent | 19            | ,9            | 31            | ,6            | 50            | ),1           | 54            | ,1            |
| Max torque on the first shaft                                      | [Nm]              | Type 1<br>210 | Type 5<br>270 | Type 1<br>350 | Type 5<br>440 | Type 1<br>670 | Type 5<br>810 | Type 1<br>670 | Type 5<br>810 |
| Max permissible load on drive shaft                                | [N] Fax           | 10            |               | 15<br>15      |               |               | 00            | 20<br>30      |               |
| Speed rating                                                       | [rpm]             | 500 ÷         |               | 500 ÷         |               |               | 2600          | 500 ÷         |               |



**Notes:** For speeds over 1800 rpm the inlet port must be under oil level with adequate pipes. Maximum pressure for all models with water glycol fluid is 160 bar, with option /PE is 190 bar. Max speed with options /PE and for water glycol fluid is 2000/1900/1600/1500 rpm respectively for the four sizes.

# 4 ELECTRICAL CHARACTERISTICS FOR VERSION CH

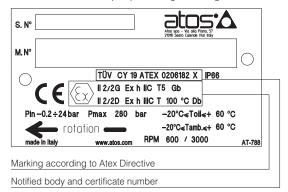
| Valve type          |                          | DHA                                         |
|---------------------|--------------------------|---------------------------------------------|
| Voltage code (1)    | VDC ±10%                 | 12DC, 24DC, 28DC, 48DC, 110DC, 125DC, 220DC |
| \                   | /AC 50/60 Hz ±10%        | 12AC, 24AC, 110AC, 230AC                    |
| Power consumptio    | n at 20°C                | 8W                                          |
| Coil insulation     |                          | class H                                     |
| Protection degree w | ith relevant cable gland | IP66/67 to DIN EN60529                      |
| Duty factor         |                          | 100%                                        |

(1) For alternating current supply a rectifier bridge is provided built-in the solenoid

For power supply frequency 60 Hz, the nominal supply voltage of solenoids 110AC and 230AC must be 115/60 and 240/60 respectively

# 5 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

| Seals, recommended f          | luid temperature | NBR seals (standard) = -20°C $\div$ +60°C, with HFC hydraulic fluids = -20°C $\div$ +50°C FKM seals (/PE option) = -20°C $\div$ +80°C |                            |                   |                          |  |  |  |
|-------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--------------------------|--|--|--|
| Recommended viscosi           | ity              | 15÷100 mm²/s - max start-up viscosity = 1000 mm²/s                                                                                    |                            |                   |                          |  |  |  |
| Max fluid                     | normal operation | ISO4406 class 20/18/15 NA                                                                                                             | AS1638 class 9             | se                | e also filter section at |  |  |  |
| contamination level           | longer life      | ISO4406 class 18/16/13 NA                                                                                                             | ww.atos.com or KTF catalog |                   |                          |  |  |  |
| Hydraulic fluid               |                  | Suitable seals type                                                                                                                   | С                          | lassification     | Ref. Standard            |  |  |  |
| Mineral oils                  |                  | NBR, FKM                                                                                                                              | HL, HLP, I                 | HLPD, HVLP, HVLPD | DIN 51524                |  |  |  |
| Flame resistant without water |                  | FKM                                                                                                                                   | F                          | IFDU, HFDR        | ISO 12922                |  |  |  |
| Flame resistant with water    |                  | NBR                                                                                                                                   |                            | HFC               | 130 12922                |  |  |  |


# 6 CERTIFICATION DATA

| Certification                | ATEX          |                                       |  |  |  |  |
|------------------------------|---------------|---------------------------------------|--|--|--|--|
| Protection mode              |               | n IIC T5, T4 Gb,<br>T100°C, T135°C Db |  |  |  |  |
| Type examination certificate | TUV CY 19 A   | TEX 026182X                           |  |  |  |  |
| Pump version                 | (std and /PE) | /7 /PE                                |  |  |  |  |
| Temperature class            | T5            | T4                                    |  |  |  |  |
| Surface temperature          | ≤ 100 °C      | ≤ 135 °C                              |  |  |  |  |
| Ambient temperature          | -20 ÷ +60 °C  | -20 ÷ +70 °C                          |  |  |  |  |
| Max inlet fluid temperature  | +60 °C        | +80 °C                                |  |  |  |  |
| Protection degree            | IP 66         |                                       |  |  |  |  |



#### **6.1 EXAMPLE OF PVPCA NAMEPLATE MARKING**

At side are resumed the pumps marking according to Atex certification



**Ex** = Equipment for explosive atmospheres

II = Group II for surfaces plants

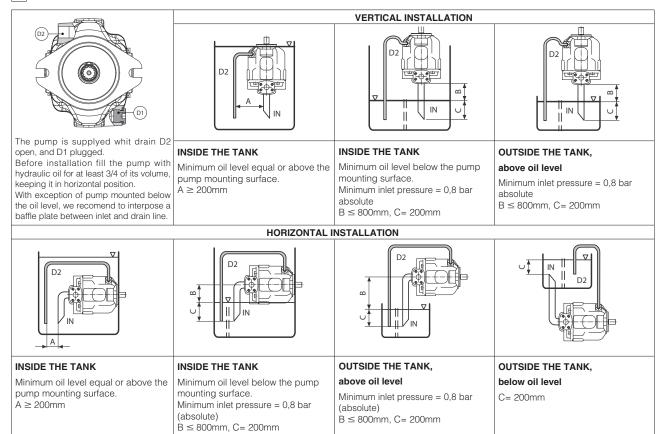
**2/2** = Pump category

**G** = For gas and vapours

**D** = For dust

h = Marking includes one on more of the following types of protection ("c", "b", "k")

**IIC** = Gas group (acetylene, hydrogen)


IIIC = Conduictive dust

T\* = Temperature class (T6, T5, T4)

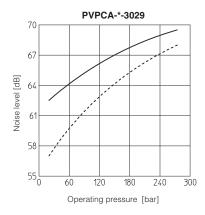
 $T^{**\circ}C$  = Max surface temperature (85, 100, 135) **Zone 1** (gas) **and 21** (dust) = Possibility of

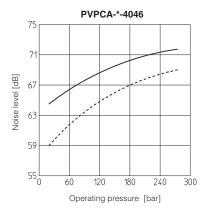
explosive atmosphere during normal functioning **Zone 2** (gas) **and 22** (dust) = Low probability of explosive atmosphere

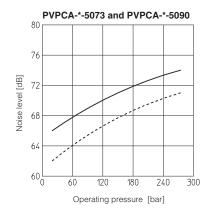
# 7 INSTALLATION POSITION



IN: inlet line - D1: drain line - A: minimum distance between inlet and drain line - B+C: permissible suction height - C: inlet line immersion dept

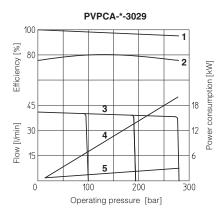

509

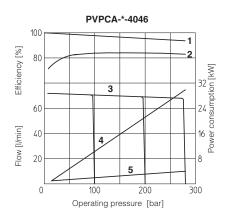

# 8 DIAGRAMS at 1450 rpm (based on mineral oil ISO VG 46 at 50°C)

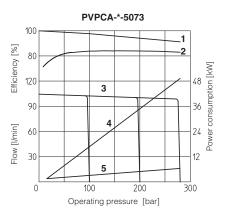

#### 8.1 Noise level curves

Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics -Test procedure to define the ambient noise level - Pumps Shaft speed: 1450 rpm.

\_\_\_\_ = Qmax ----- = Qmir



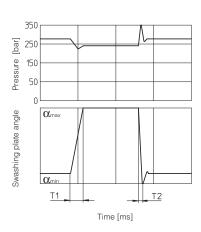



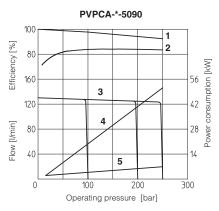




# 8.2 Operating limits

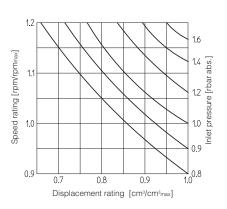
- 1 = Volumetric efficiency
- 2 = Overall efficiency
- 3 = Flow versus pressure curve
- 4 = Power consumption with full flow
- **5** = Power consumption at pressure compensation



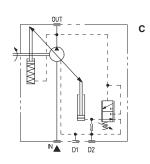



#### 8.3 Response times


8.3.1 Response times and pressure peack due to variation 0% → 100% → 0% of the pump displacement, obtained with an istantaneously opening and shut-off of the delivery line.

| Pump type    | <b>T1</b> (ms) | <b>T2</b> (ms) |
|--------------|----------------|----------------|
| PVPCA-*-3029 | 31             | 19             |
| PVPCA-*-4046 | 44             | 20             |
| PVPCA-*-5073 | 50             | 25             |
| PVPCA-*-5090 | 53             | 28             |

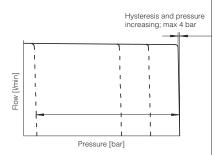


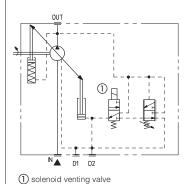



**8.3.2** Variation of inlet pressure and reduction of displacement with increasing speed rating



#### 9 HYDRAULIC AND ELECTROHYDRAULIC CONTROLS



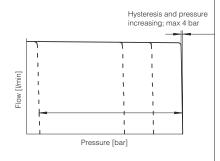


#### Manual pressure compensator

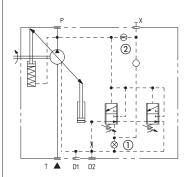
The pump displacement decreases when the line pressure approaches the setting pressure of the compensator. The pump supplies only the fluid required by the system. Pressure may be steplessly adjusted at the pilot valve.

Compensator setting range: 20 ÷ 350 bar (315 bar for 090)

Compensator standard setting: 280 bar (250 bar for 090)





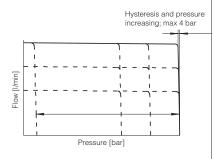


#### CH Manual pressure compensator with venting

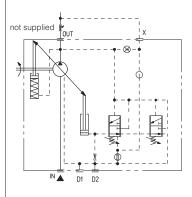
As C plus venting function, when a long unloading time is required and heat generation and noise have to be kept at lowest level

Venting valve solenoid voltage, see section 
Venting valve OFF = null displacement
Venting valve ON = max displacement
Compensator setting range: 20 ÷ 350 bar

(315 bar for 090) Compensator standard setting: 280 bar (250 bar for 090)







#### Remote pressure compensator

As C, but with remote setting of the compensator by means of a pressure relief valve on the piloting line X.

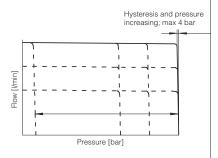
This version can be obtained from version L using a blind plug UNI 5923 M4x12 in pos. ① and a restrictor M4 drilled ø 0,75 mm in pos. ②. Compensator setting range: 20 ÷ 350 bar (315 bar for 090)

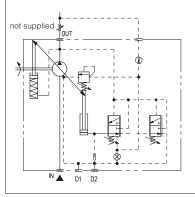
Compensator standard setting: 280 bar (250 bar for 090)





#### Load sensing


The pump displacement is automatically adjusted to maintain a constant (load indipendent) pressure drop across an external throttle. Changing the throttle regulation, the pump flow is consequently adjusted.

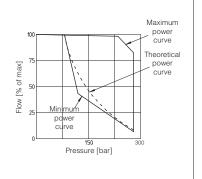

Load sensing control always incorporates an hydraulic compensator to limit the maximum pressure.

Compensator setting range: 20 ÷ 350 bar (315 bar for 090)

Compensator standard setting: 280 bar (250 bar for 090)

Differential pressure setting range: 10 ÷ 40 bar Differential pressure standard setting: 14 bar



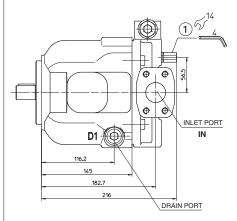


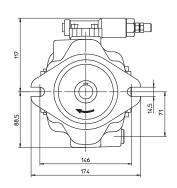

#### LW Constant power

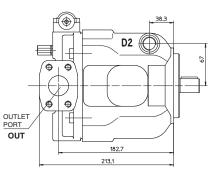
In order to achieve a constant drive torque with varying operating pressure. The swashing angle and therefore the outlet flow is varied so that the product of flow and pressure remains constant.

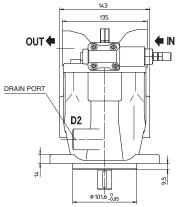
For the best regulation, minimum working pressure is 80 bar.

While selecting LW control, the required value of power must be communicated with the order (ex. 10 kW at 1450 rpm).





#### PORTS DIMENSION

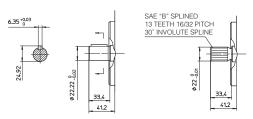

IN = Flange SAE 3000 1 1/4" OUT = Flange SAE 6000 3/4"


**D1, D2** = 1/2" BSPP

Regulation screw for max displacement 1,5 cm³/rev per turn. Adjustable range 20 to 29 cm³/rev.
 In case of double pump the regulation screw is not always available, please contact our technical office.

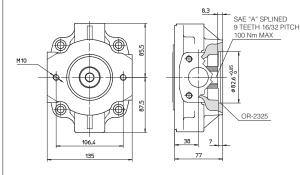


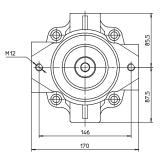


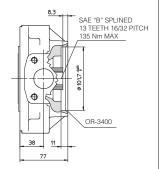





**Mass**: 18 kg


#### SHAFT TYPE "1"

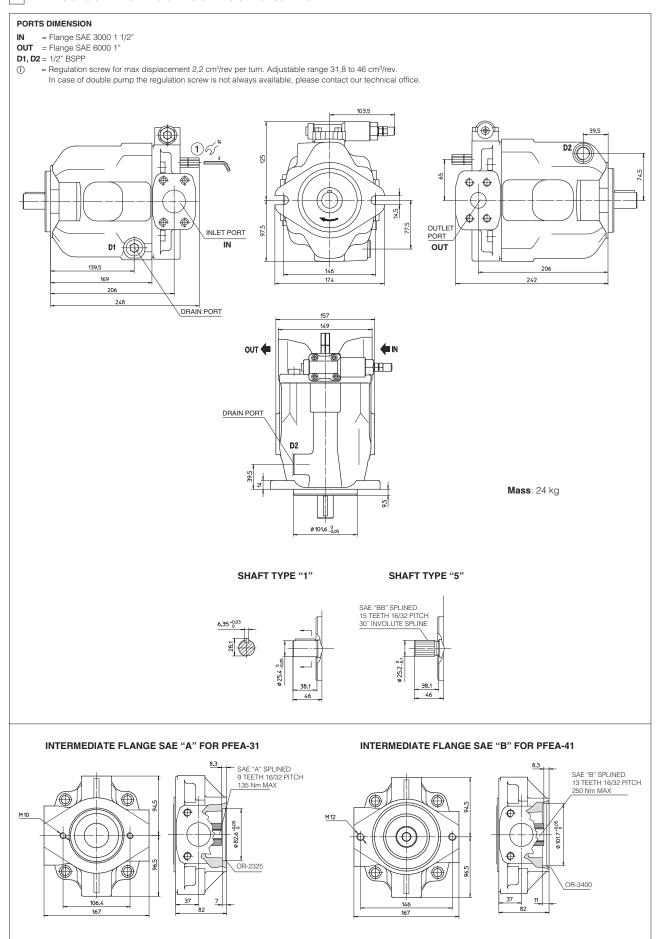

#### **SHAFT TYPE "5"**




#### **INTERMEDIATE FLANGE SAE "A" FOR PFEA-31**

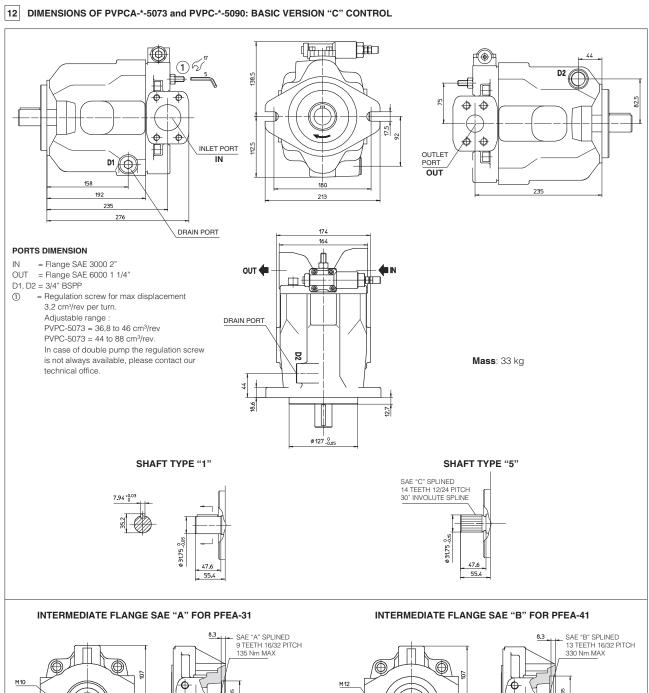
#### **INTERMEDIATE FLANGE SAE "B" FOR PFEA-41**

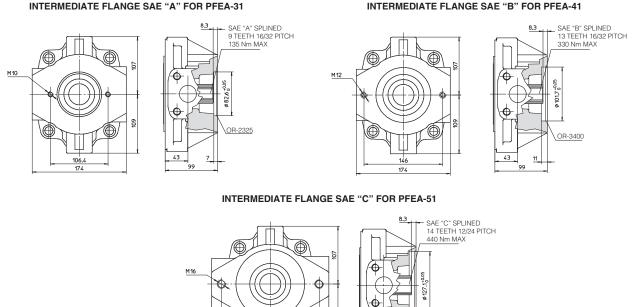







Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted


OR-2325


#### 11 DIMENSIONS OF PVPCA-\*-4046: BASIC VERSION "C" CONTROL



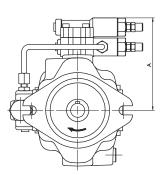
Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted

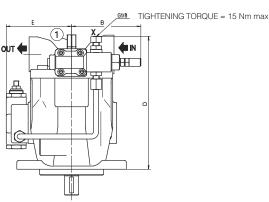
AX050





OR-3400


43


13

Drawing show pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted

# **VERSION CH** VERSIONS L, R G 1/8 OUT 🛑

#### **VERSION LW**





① = Regulation screw for max displacement. Adjustable range 50% to 100% of max displacement). In case of double pump the regulation screw is not always available, please contact our technical office.

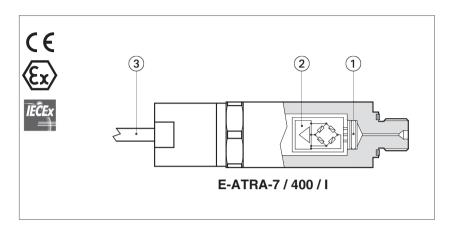
Drawing shows pumps with clockwise rotation (option D): pumps with counterclockwise rotation (option S) will have inlet and outlet ports inverted and also the consequently position of the control groups

| Pump type    | Version | Α   | В   | С   | D   | E   | Mass (kg) |
|--------------|---------|-----|-----|-----|-----|-----|-----------|
|              | СН      | 144 | 111 | -   | -   | 92  | 22        |
| PVPCA-*-3029 | L-R     | 144 | 111 | 100 | -   | -   | 19,2      |
|              | LW      | 144 | 111 | -   | 211 | 104 | 20        |
|              | CH      | 153 | 111 | -   | -   | 92  | 28        |
| PVPCA-*-4046 | L-R     | 153 | 111 | 109 | -   | -   | 25,2      |
|              | LW      | 153 | 111 | -   | 235 | 111 | 26        |
| PVPCA-*-5073 | CH      | 166 | 111 | -   | -   | 92  | 36,9      |
|              | L-R     | 166 | 111 | 122 | -   | -   | 34,2      |
| PVPCA-*-5090 | LW      | 166 | 111 | -   | 258 | 120 | 35        |

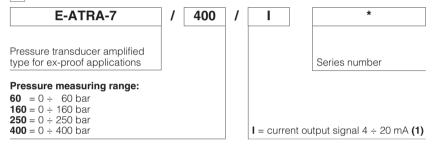
### 14 RELATED DOCUMENTATION

Basics for electrohydraulics in hazardous environments Summary of Atos ex-proof components certified to ATEX, IECEx, EAC, PESO Operating and maintenance information for ex-proof pumps X010 X020

AX900




|                |                                                                    | Size          | Pmax [bar] | Table | Pag |
|----------------|--------------------------------------------------------------------|---------------|------------|-------|-----|
| SENSORS        |                                                                    |               |            |       |     |
| E-ATRA-7       | pressure transducer with amplified analog output signal            |               | 400        | GX800 | 521 |
| SUBPLATES      |                                                                    |               |            |       |     |
| BA             | single station, mounting surfaces ISO 4401, 6264 and 5781          | 06 ÷ 32       | 350        | K280  | 523 |
| BA-214         |                                                                    |               |            |       |     |
| BA-314         | multi-station, mounting surface ISO 4401                           | 06 ÷ 10       | 350        | K290  | 527 |
| BA-244         |                                                                    |               |            |       |     |
| BA-214/AL      | multi-station, mounting surface ISO 4401                           | 06            | 250        | K295  | 531 |
| HAND LEVER     | S                                                                  |               |            |       |     |
| Auxiliary hand | l levers for on-off and proportional valves                        |               |            | E138  | 533 |
| CABLE GLAN     | DS                                                                 |               |            |       |     |
| Cable glands   | and plugs for proportional and on-off ex-proof valves, standard or | armoured cabl | es         | KX800 | 535 |
| ATTACHMEN1     | rs                                                                 |               |            |       |     |
| Standard rod   | attachments and brackets for hydraulic cylinders                   |               |            | B800  | 539 |




## Ex-proof pressure transducers type E-ATRA-7

analog, for open and closed loop systems - ATEX and IECEx



#### 1 MODEL CODE



Ex-proof E-ATRA-7 are pressure transducers used to measure the static and dynamic

The sensor is composed by a thin-film circuit a, with high resistance to overloads and pressure peaks.

The integrated electronic circuit b supplies an amplified voltage or current output signal, proportional to the hydraulic pressure, with thermal drift compensation.

The transducer housing and electronics housing are designed to contain the possible explosion which could be caused by the presence of the gas mixture inside the housing, thus avoiding dangerous propagation in the external environment.

E-ATRA-7 equip ex-proof proportional pressure control valves, RES execution.

They are also used in association with directional proportionals with option SP, SF to perform closed loop pressure controls:

#### Features:

- · Factory preset and calibrated
- 5 m cable connection c 1/4" GAS DIN 3852 hydraulic connection (pressure port orifice Ø 0,6 mm) IP67 protection degree
- CE mark according to EMC directive

(1) Available only with current output signal 4 ÷ 20 mA

#### **EXPLOSION PROOF CERTIFICATION MAIN DATA**

| ATEX certification IECEx certification | II 2G Ex db IIC T6T1 Gb<br>Ex db IIC T6T1 Gb                                                                                              |              |               |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--|
| Temperature class (only for Group II)  | Т6                                                                                                                                        | Т5           | T4            |  |
| Surface temperature                    | ≤ 85 °C                                                                                                                                   | ≤ 100 °C     | ≤ 135 °C      |  |
| Ambient temperature                    | -40 ÷ +60 °C                                                                                                                              | -40 ÷ +75 °C | -40 ÷ +102 °C |  |
| Mechanical construction                | Flame proof housing classified Ex d, according to EN 60079-0: EN 60079-1                                                                  |              |               |  |
| Electrical connection                  | Type: 5 m cable 2 wires + shield                                                                                                          |              |               |  |
| Special features                       | Available on request with FM, CSA, EAC, INMETRO and KAZINMETR certification For further details, please contact Atos technical department |              |               |  |

#### 3 MAIN CHARACTERISTICS OF EX-PROOF PRESSURE TRANSDUCER

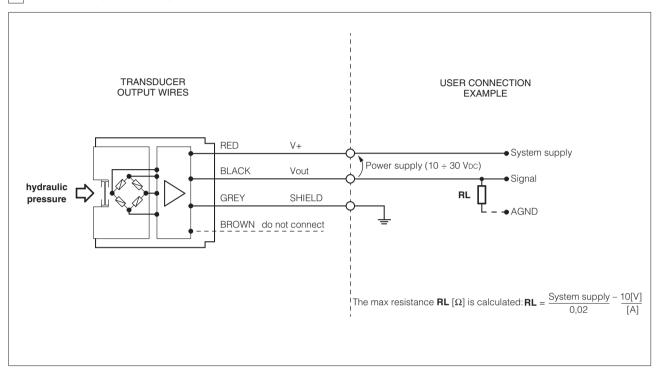
| Pressure measuring range            | 0 ÷ 60/160/250/400 bar; other values availables on request Note: negative pressure can damage the pressure transducer |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Overload pressure                   | 2 x FS without exceeding 600 bar                                                                                      |
| Burst pressure                      | 5 x FS without exceeding 1700 bar                                                                                     |
| Response time                       | ≤ 1 ms                                                                                                                |
| Temperature compensated             | 0 ÷ +80 °C                                                                                                            |
| Thermal drift                       | @ zero: ≤ ±0,025 % FS/°C max; @ FS: ≤ ±0,025 % FS/°C max                                                              |
| Accuracy                            | ≤ ±0,5 % FS                                                                                                           |
| Non-Linearity                       | ≤ ±0,2 % of FS (BFSL) as per IEC 61298-2                                                                              |
| Fluid Compatibility                 | Hydraulic oil as per DIN51524535 for other fluid please contact Atos technical department                             |
| Power supply                        | 24 VDC nominal; maximum range 10 ÷ 30 Vpc                                                                             |
| Output signal                       | Current output signal 4 ÷ 20 mA (2 wire); for max load see section 5                                                  |
| Wiring protections                  | Against reverse polarity on power supply and short-circuit on output signal                                           |
| Materials                           | Wetted parts: stainless steel and Elgiloy®; seals: FPM                                                                |
| Mass                                | Approx. 240 g                                                                                                         |
| Electromagnetic compatibility (EMC) | EN 61326 emission (group 1, class B) and immunity (industrial application)                                            |
| Vibration resistance                | 20 g according to DIN EN 60068-2-6                                                                                    |
| Shock resistance                    | 1000 g according to DIN EN 60068-2-27                                                                                 |
| Protection class                    | IP67                                                                                                                  |

Notes: FS = Full Scale; BFSL = Best Fit Straight Line

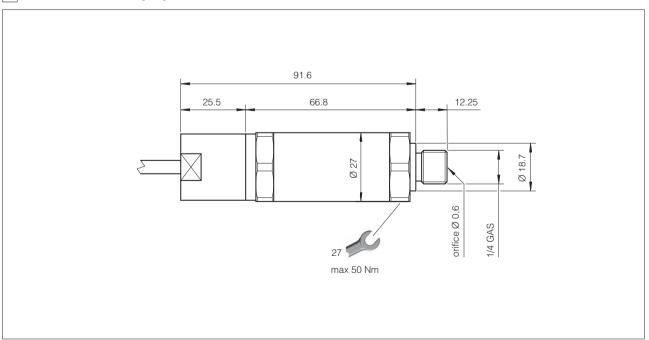
GX800 **ACCESSORIES** 521

#### 4 INSTALLATION AND COMMISSIONING

## 4.1 Warning


E-ATRA-7 transducers have to be installed as near as possible to the point where the pressure have to be measured, taking care that the oil flow is not turbulent.

#### 4.2 Commissioning


Install the transducer in the hydraulic circuit.

Switch-off the power supply before connecting and disconnecting the transducer cable as shown in scheme 5.

#### 5 ELECTRONIC CONNECTIONS



#### 6 OVERALL DIMENSIONS [mm]

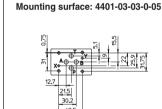




## Mounting subplates type BA

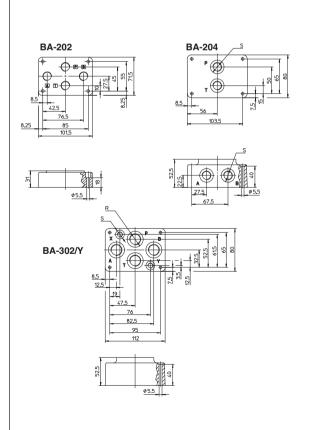
single, for ISO valves size 06 to 32

**BA-\*** are single subplates with ISO mounting surface for installation of Atos valves and they are provided with threaded ports for connectios to pressure, tank and users lines. They are characterized by low pressure drops and they are specific for directional, flow and pressure control valves ISO size 06, 10, 16, 20, 25 and 32;


Special subplates or manifolds for customized applications are available upon request.

The set of screws for the valve installation on the BA subplate must be ordered separately, see the code SET SC-\* specified in the following sections.

#### 1 TECHNICAL CHARACTERISTICS


| Installation position     | Any position                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------|
| Operating pressure        | Ports P, T, A, B = <b>350 bar</b> see the technical table of the valves to be assembled   |
| Ambient temperature       | From -20°C to +70°C                                                                       |
| Fluid                     | Hydraulic oil as per DIN 51524535, for other fluids contact our technical office          |
| Recommended viscosity     | 15 ÷ 100 mm²/s - max allowed range: see the technical table of the valves to be assembled |
| Fluid contamination class | See the technical table of the valves to be assembled                                     |
| Fluid temperature         | See the technical table of the valves to be assembled                                     |

#### 2 SINGLE STATION SUBPLATES FOR VALVES SIZE 06



ISO 4401:2005

| Matching valves | Set of screw<br>(to be ordered<br>separately) |
|-----------------|-----------------------------------------------|
| DH-00           | SET SC-DHZ                                    |
| DH-01           | SET SC-DHZ                                    |
| DH-02           | SET SC-DHZ                                    |
| DH-04           | SET SC-DHZ                                    |
| DH-05           | SET SC-DHZ                                    |
| DH-08           | SET SC-DHZ                                    |
| DH-09           | SET SC-DHZ                                    |
| DHI, DHE        | SET SC-DHZ                                    |
| DHA, DHW        | SET SC-DHZ                                    |
| DHQ             | SET SC-DHZ                                    |
| DLEH, DLEHM     | SET SC-DHZ                                    |
| DLAH, DLAHM     | SET SC-DHZ                                    |
| DLWH            | SET SC-DHZ                                    |
| QV-06           | SET SC-QV                                     |
| RZMO, RZMA      | SET SC-DHZ                                    |
| RZGO, RZGA      | SET SC-DHZ                                    |
| DHZO, DHZA      | SET SC-DHZ                                    |
| DLHZO, DLHZA    | SET SC-DHZ                                    |
| QVHZO-*-06      | SET SC-DHZ                                    |
| QVHZA           | SET SC-DHZ                                    |



#### VERSIONS

**BA-202**: basic version without ports X and Y; ports P, A, B, T (3/8") on the base.

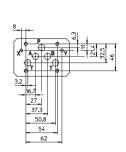
**BA-204**: basic version without ports X and Y; ports P and T (3/8") on the base; ports A and B (3/8") on the side.

**BA-302**: basic version without ports X and Y; ports P, A, B, T (1/2") on the base

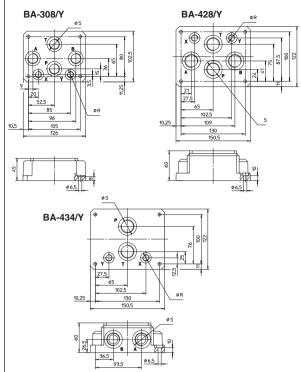
**BA-302/Y**: version dimensionally identical to the corresponding basic version with the addition of X and Y ports (1/8") on the base (see figure on the left). The /Y version is always used for DHZO

and DLHZO valves when drain from port Y is required.

BA-\*\*\*/N: versions identical to the corresponding basic versions, but supplied without fixing bolts for type QVZO-\*-06 valves (already equipped with fixing bolts).


X and Y ports are only present in the /Y versions.

| Code        | Ports (<br>A,B,P,T |        | Ø Coun<br>S [mm] |      |     |
|-------------|--------------------|--------|------------------|------|-----|
| BA-202      | 3/8"               | -      | _                | -    | 1,2 |
| BA-204      | 3/8"               | -      | 25,5             | 16,5 | 1,8 |
| BA-302 (/Y) | 1/2"               | (1/8") | 30               | 16,5 | 1,8 |


K280 ACCESSORIES 523

#### 3 SINGLE STATION SUBPLATES FOR VALVES SIZE 10





| Matching<br>valves | Set of screw<br>(to be ordered<br>separately) |
|--------------------|-----------------------------------------------|
| DK-11              | SET SC-DK/DP-1                                |
| DK-12              | SET SC-DK/DP-1                                |
| DKE                | SET SC-DK/DP-1                                |
| DKQ                | SET SC-DK/DP-1                                |
| DKZOR              | SET SC-DK/DP-1                                |
| DKZA               | SET SC-DK/DP-1                                |
| DLKZOR             | SET SC-DK/DP-1                                |
| DLKZA              | SET SC-DK/DP-1                                |
|                    |                                               |



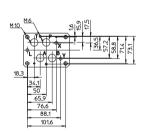
#### VERSIONS

**BA-308**: basic version without ports X and Y; ports P, A, B, T (1/2") on the base.

**BA-428**: basic version without ports X and Y; ports P, A, B, T (3/4") on the base

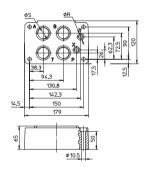
**BA-434:** basic version without ports X and Y; ports P and T (3/4") on the base; ports A and B (3/4") on the side.

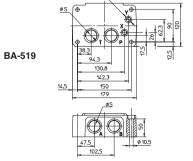
**BA-\*\*\*/Y**: versions dimensionally analogous to the corresponding basic versions with the addition of X and Y ports (1/4") on the base (see figure on the left).


The /Y versions are always used for valves type DKZOR, DLKZO, when drainage from port Y is required.

X and Y ports are only present in the /Y versions.

| Code         |      |        | Ø Coun<br>S [mm] |      |     |
|--------------|------|--------|------------------|------|-----|
| BA- 308 (/Y) | 1/2" | (1/4") | 30               | 21,5 | 2,5 |
| BA- 428 (/Y) | 3/4" | (1/4") | 36,5             | 21,5 | 5,5 |
| BA- 434 (/Y) | 3/4" | (1/4") | 36,5             | 21,5 | 8,5 |


#### 4 SINGLE STATION SUBPLATES FOR VALVES SIZE 16


#### ISO 4401:2005 Mounting surface: 4401-07-07-0-05

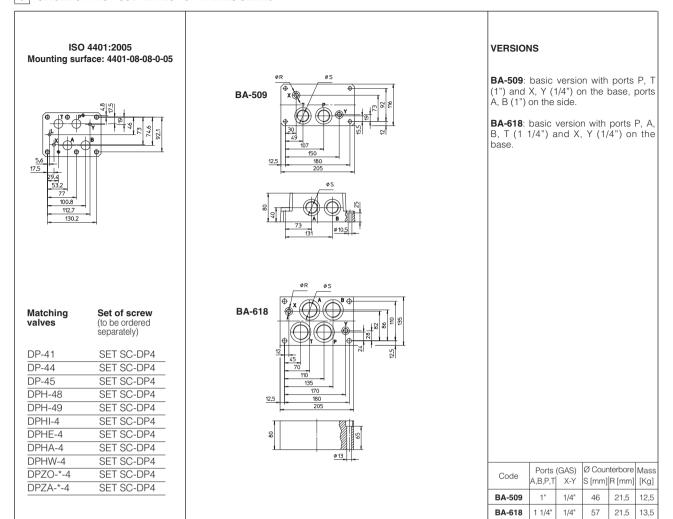


| Matching valves | Set of screw<br>(to be ordered<br>separately) |
|-----------------|-----------------------------------------------|
| DP-21           | SET SC-DP2                                    |
| DP-24           | SET SC-DP2                                    |
| DP-25           | SET SC-DP2                                    |
| DPH-28          | SET SC-DP2                                    |
| DPH-29          | SET SC-DP2                                    |
| DPHI-2          | SET SC-DP2                                    |
| DPHE-2          | SET SC-DP2                                    |
| DPHA-2          | SET SC-DP2                                    |
| DPHW-2          | SET SC-DP2                                    |
| DPZO-*-2        | SET SC-DP2                                    |
| DPZA-*-2        | SET SC-DP2                                    |

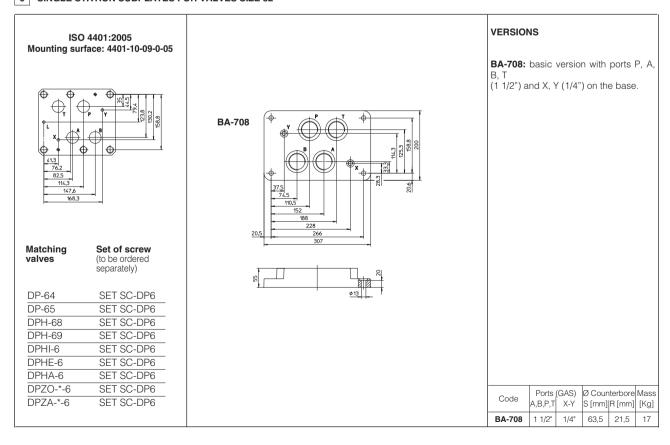
### BA-518

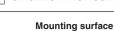


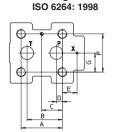



#### VERSIONS

**BA-518**: basic version with ports P, A, B, T (1") and X, Y (1/4") on the base.


**BA-519**: basic version with ports P, T (1") and X, Y (1/4") on the base; ports A, B (1") on the side.


| Code   |    |      | Ø Coun<br>S [mm] |      |   |
|--------|----|------|------------------|------|---|
| BA-518 | 1" | 1/4" | 46               | 21,5 | 8 |
| BA-519 | 1" | 1/4" | 46               | 21,5 | 8 |


#### 5 SINGLE STATION SUBPLATES FOR VALVES SIZE 25



#### 6 SINGLE STATION SUBPLATES FOR VALVES SIZE 32







#### Matching valves Set of screw

to be ordered separately

| AGAM-10  | SET SC-AGA-10 |
|----------|---------------|
| AGMZO-10 | SET SC-AGA-10 |
| AGMZA-10 | SET SC-AGA-10 |
| AGAM-20  | SET SC-AGA-20 |
| AGMZO-20 | SET SC-AGA-20 |
| AGMZA-20 | SET SC-AGA-20 |
| AGAM-32  | SET SC-AGA-32 |
| AGMZO-32 | SET SC-AGA-32 |
| AGMZA-32 | SET SC-AGA-32 |

| size | А    | В    | С    | D    | Е    | F    | G    |
|------|------|------|------|------|------|------|------|
| 10   | 53,8 | 47,5 | 22,1 | 22,1 | -    | 53,8 | 26,9 |
| 20   | 66,7 | 55,6 | 33,4 | 11,1 | 23,8 | 70   | 35   |
| 32   | 88,9 | 76,2 | 44,5 | 12,7 | 31,8 | 82,6 | 41,3 |

#### BA-306 Mounting surface ISO 6264-06-09-0-97

matching valves: AGAM-10 AGMZO-\*-10 AGMZA-\*-10

BA-506 Mounting surface ISO 6264-08-13-0-97

matching valves: AGAM-20 AGMZO-\*-20 AGMZA-\*-20

BA-706 Mounting surface ISO 6264-10-17-0-97

matching valves: AGAM-32 AGMZO-\*-32 AGMZA-\*-32

Code

BA - 506

b С d е

104

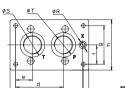
**BA - 706** 204 175 173,5123,5 43,5 50

130

97 64,5 19,5

180 150 133,25 92,25 37,25 37,5

g


75 105 40 8,4

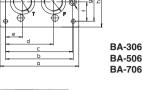
50 10,5 13

80

100 130,5 60

27 54



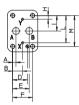


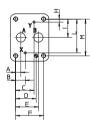

Ø Blade

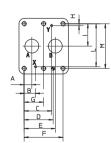
S|R|T

15 36,5 21,5

10,5 13 63,5 21,5 63,5





#### VERSIONS


BA-306, BA-506, BA-706: basic version, see figure on left and dimensional tables.

| Code     | size | Po<br>P | orts (GA<br>  T | S)<br>X | Mass<br>[Kg] |
|----------|------|---------|-----------------|---------|--------------|
| BA - 306 | 10   | 1/2"    | 3/4"            | 1/4"    | 1,5          |
| BA - 506 | 20   | 1"      | 1"              | 1/4"    | 3,5          |
| BA - 706 | 32   | 1 1/2"  | 1 1/2"          | 1/4"    | 6            |
|          |      |         |                 |         |              |

#### Mounting surface ISO 5781: 2000





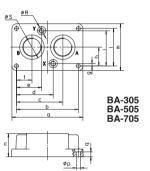


#### Matching valves Set of screw

to be ordered separately AGI\*-10(20) SET SC-AGI AGRL(E)-10(20) SET SC-AGI AGRCZO-10(20) SET SC-AGI AGRCZA-10(20) SET SC-AGI AGI\*-32 SET SC-AGI-32 SET SC-AGRL-32 AGRL(E)-32

#### Mounting surface ISO 5781-06-07-0-00

matching valves AGI\*-10 AGRL-10 AGRLE-10 AGRZO-\*-10

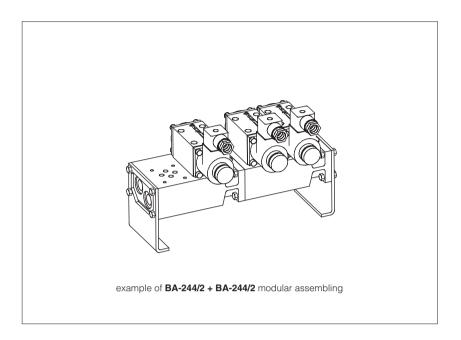

Mounting surface ISO 5781-08-10-0-00 matching valves: AGI\*-20 AGRL-20 AGRLE-20

AGRZO-\*-20

Mounting surface ISO 5781-10-13-0-00 matching valves: AGI\*-32 AGRL-32 AGRLE-32

## VERSIONS

BA-305, BA-506 and BA-705:see figure on left and dimensional tables.




| Code     | а   | b   | С    | d    | е    | f    | g   | h    | i    | I    | m     | n  | р    | q  | Ø B<br>S | lade<br>R | Code     | size | A Po   | orts (GA<br>B | S)<br>X-Y | Mass<br>[Kg] |
|----------|-----|-----|------|------|------|------|-----|------|------|------|-------|----|------|----|----------|-----------|----------|------|--------|---------------|-----------|--------------|
| BA - 305 | 113 | 90  | 67   | 45   | 45   | 23   | 8   | 33,3 | 58,7 | 66,7 | 90    | 30 | 10,5 | 10 | 30       | 21,5      | BA - 305 | 10   | 1/2"   | 1/2"          | 1/4"      | 1            |
| BA - 505 | 133 | 110 | 82,5 | 64,5 | 45,5 | 27,5 | 6,4 | 39,7 | 73   | 79,4 | 102,5 | 42 | 10,5 | 10 | 46       | 21,5      | BA - 505 | 20   | 1"     | 1"            | 1/4"      | 2            |
| BA - 705 | 184 | 160 | 120  | 95   | 65   | 40   | 6   | 48,5 | 91   | 97   | 121   | 60 | 10,5 | 13 | 63,5     | 21,5      | BA - 705 | 32   | 1 1/2" | 1 1/2"        | 1/4"      | 7,5          |
|          |     |     |      |      |      |      |     |      |      |      |       |    |      |    |          |           |          |      |        |               |           |              |



## Mounting subplates type BA-214, 314 and 244

Multi-station, for valves ISO 4401 size 06 and 10



**BA-214**, **BA-314** and **BA-244** are multistation subplates for assembling of directional and modular valves with mounting surface ISO 4401, size 06 and 10.

They are made in cast iron with high corrosion protection black zinc surface treatment, and they are provided with P, T passing through lines and A, B user ports connections.

**BA-214** are **multistaion subplates** with 1 to 10 stations for valves ISO size 06.

**BA-314** are **multistaion subplates** with 1 to 6 stations for valves ISO size 10.

**BA-244** are **modular subplates** with 1 to 4 stations for valves ISO 4401 size 06.

They are designed for installation on power units cover and they can be easily assembled together by means of n° 4 screws M6 class 12.9 (included in the supply), combining up to max 12 stations.

#### 1 MODEL CODE OF SUBPLATES TYPE BA-214 and BA-314

BA-214 / 5

Type of subplate:

**BA-214** = for valves ISO size 06 **BA-314** = for valves ISO size 10

Number of stations (see section 4 5 6):

**1** = one station

6 = six stations

2 = two stations 3 = three stations **7** = seven stations (only for BA-214) **8** = eight stations (only for BA-214)

**4** = four stations

9 = nine stations (only for BA-214)

**5** = five stations

10 = ten stations (only for BA-214)

/P

Series number

= with A and B lateral ports

/P = with A and B rear ports (not for **BA-214/1** and all **BA-314**)

| Model      | Port P | Port T | Ports A, B     | Qmax      | Qmax ports A, B | Pmax    |
|------------|--------|--------|----------------|-----------|-----------------|---------|
| BA-214     | G 1/2" | G 1/2" | G 3/8" lateral | 80 l/min  | 60 l/min        | 350 bar |
| BA-214/*/P | G 1/2" | G 1/2" | G 3/8" rear    | 80 l/min  | 60 l/min        | 350 bar |
| BA-314     | G 3/4" | G 1"   | G 3/4" lateral | 150 l/min | 100 l/min       | 300 bar |

#### 2 MODEL CODE OF SUBPLATES TYPE BA-244

BA-244

/

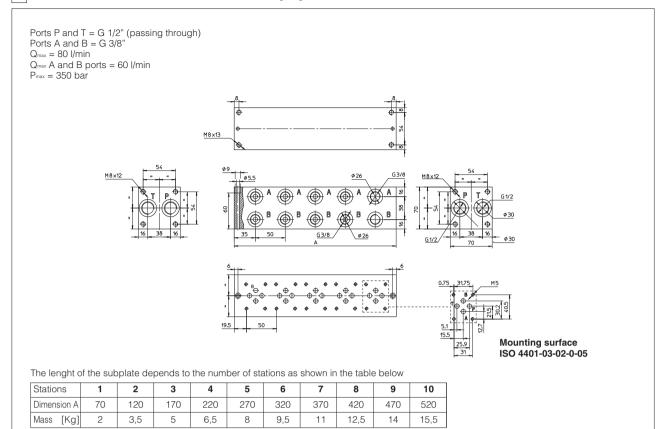
.

Series number

Type of subplate:

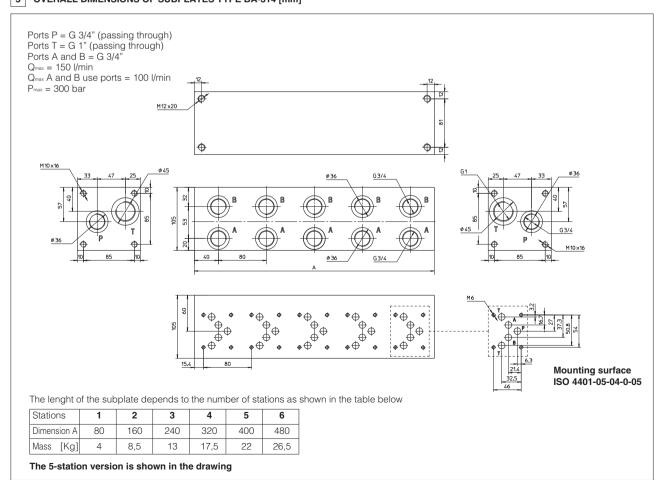
**BA-244** = modular subplate for valves ISO size 06

Number of stations:

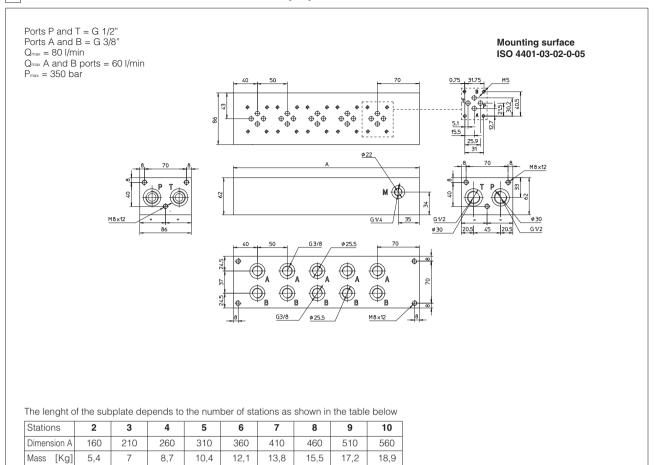

1 = one station 2 = two stations

**3** = three stations **4** = four stations

#### 3 TECHNICAL CHARACTERISTICS

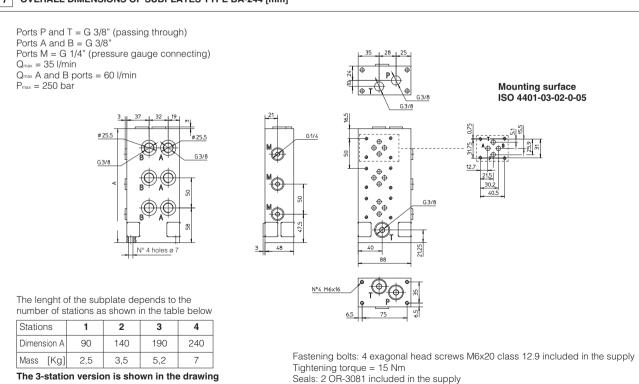

| Installation positions    | Any position.  For BA-244, a maximum of 12 stations can be combined; in case of horizontal mounting proper brackets are recommended.               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating pressure        | Ports P, T, A, B = <b>350 bar</b> (BA-214), <b>300 bar</b> (BA-314), <b>250 bar</b> (BA-244) see the technical table of the valves to be assembled |
| Ambient temperature       | From -20°C to +70°C                                                                                                                                |
| Fluid                     | Hydraulic oil as per DIN 51524535, for other fluids contact our technical office                                                                   |
| Recommended viscosity     | 15 ÷ 100 mm²/s - max allowed range: see the technical table of the valves to be assembled                                                          |
| Fluid contamination class | See the technical table of the valves to be assembled                                                                                              |
| Fluid temperature         | See the technical table of the valves to be assembled                                                                                              |

K290 ACCESSORIES 527




#### 5 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-314 [mm]

The 5-station version is shown in the drawing




#### 6 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-214/\*/P [mm]



#### 7 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-244 [mm]

The 5-station version is shown in the drawing



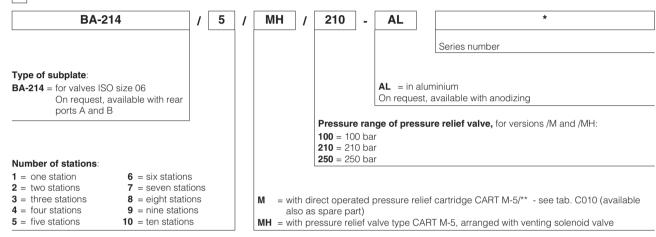


## Mounting subplates type BA-214/\*-AL

multi-station, for valves ISO 4401 size 06, in aluminium

The multi-stations subplates type BA-214/\*-AL for directional control valves are in aluminium and their mounting surface are in accordance with the international standards ISO 4401.

They perform limited pressure drop and are made by a **single subplate** from 1 to 10 stations for directional valves and modular elements ISO 4401 size 06.

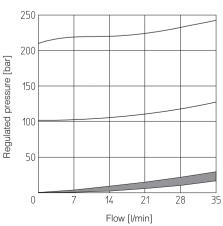

Main characteristics:

P and T ports = G 1/2; A and B lateral use ports G 3/8; M pressure gauge connection G1/4; Q<sub>max</sub> = 80 l/min; Q<sub>max</sub> use ports = 60 l/min; Pmax = 250 bar

Note: for versions /M and /MH Q<sub>max</sub> = 35 l/min;

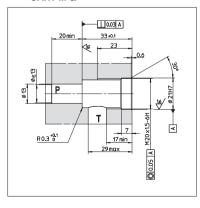
For other technical characteristics, see section 2 and 3.

#### 1 MODEL CODE OF SUBPLATES TYPE BA-214/\*-AL



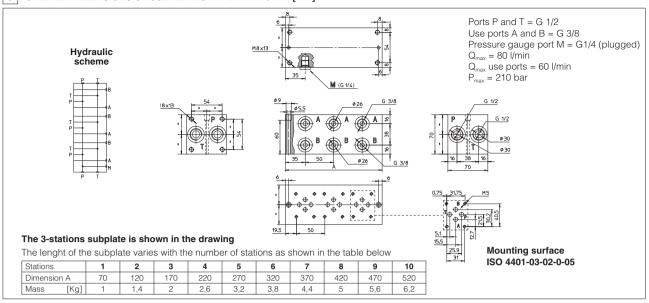

#### 2 TECHNICAL CHARACTERISTICS

| Installation position     | Horizontal or vertical position                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| Ambient temperature       | From - 20°C to + 70°C                                                                                               |
| Fluid                     | Hydraulic oil as per DIN 51524 535, for other fluids contact our technical office                                   |
| Recommended viscosity     | 15 ÷ 100 mm 2 /s at 40°C (ISO VG 15 ÷ 100)                                                                          |
| Fluid contamination class | ISO 19/16 achieved with in line filters at 25µm and $β$ <sub>25</sub> 75 (recommended only for versions /M and /MH) |
| Fluid temperature         | -20°C +60°C (standard and /WG seals) -20°C +80°C (/PE seals)                                                        |

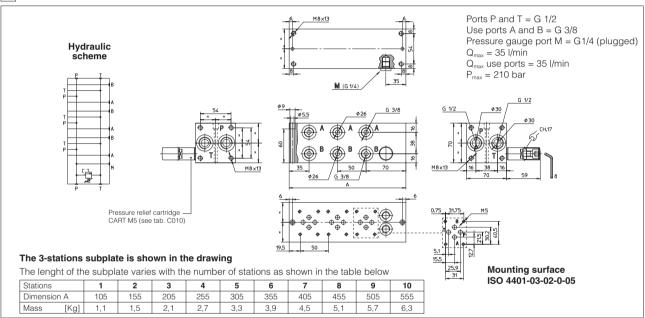

#### 3 REGULATED PRESSURE/FLOW DIAGRAM FOR VERSIONS /M and /MH

| MAIN CHARACTERISTICS OF ENCLOSED PRESSURE RELIEF VALVE |                  |  |  |  |
|--------------------------------------------------------|------------------|--|--|--|
| Model code                                             | Regulation range |  |  |  |
| CART M-5/100                                           | 3 ÷ 100 bar      |  |  |  |
| CART M-5/210                                           | 5 ÷ 210 bar      |  |  |  |
| CART M-5/250                                           | 7 ÷ 250 bar      |  |  |  |
| $Q_{max} = 3$                                          | 35 I/min         |  |  |  |

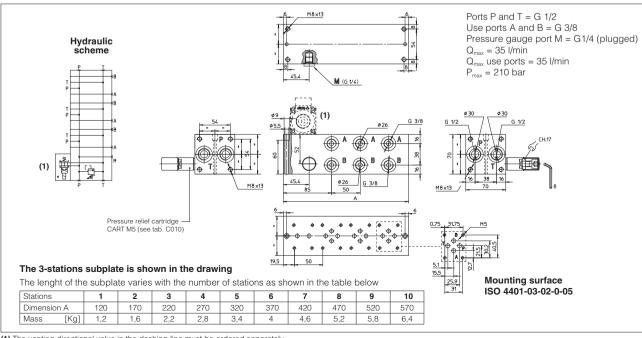



K295





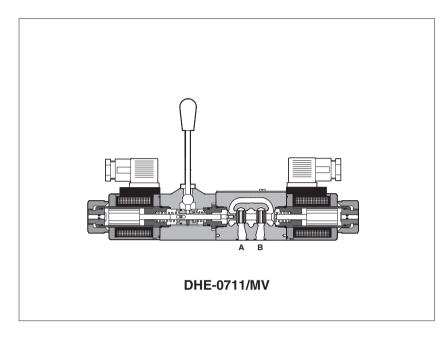

ACCESSORIES 531


#### 5 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-214/\*-AL [mm]



#### 6 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-214/\*/M/\*-AL [mm]




#### 7 OVERALL DIMENSIONS OF SUBPLATES TYPE BA-214/\*/MH/\*-AL [mm]





## **Auxiliary hand levers for solenoid valves**

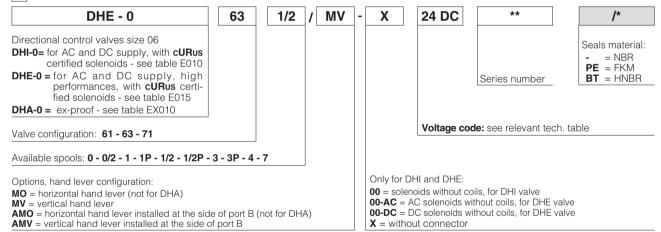
direct operated on-off and proportional, ISO 4401 size 06



Auxiliary hand levers for direct operated on-off solenoid valves size 06, type DHI, DHE, DHA and proportional valves size 06, type DHZO, DHZE, DHZA and QVHZO.

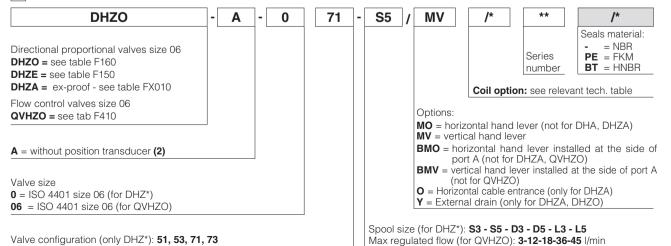
This option allows to operate the valves in absence of electrical power supply, i.e. during commissioning, maintenance or in case of emergency.

It is available with two different configurations depending to the installation requirements:


**MV** = lever positioned vertically (perpendicular to the valve axis)

**MO** = lever positioned horizontally (parallel to the valve axis)

When the valve is electrically operated the hand lever remains stopped in its rest position

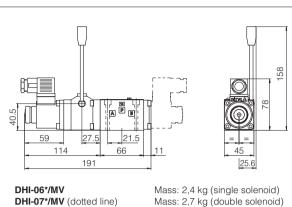

The hand lever execution does not affect the performances of the original valves

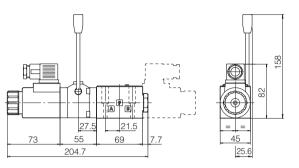
1 MODEL CODE FOR ON-OFF DIRECTIONAL VALVES (for the details, see indicated tech. table)



(1) For DHA model code see table E120 (Multicertification) or E125 (UL)

2 MODEL CODE FOR PROPORTIONAL DIRECTIONAL VALVES AND FLOW CONTROL VALVES (for the details, see indicated tech.table)

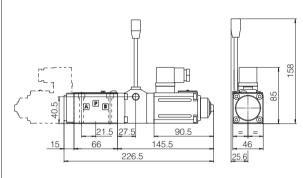


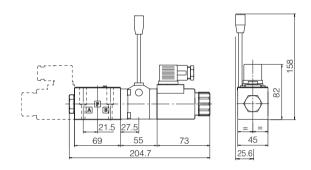


E138 ACCESSORIES 533

#### 3 LEVER CHARACTERISTICS

| Total angle stroke   | [°deg] | ± 28° | Lever actuating force | [N] | 1 ÷ 8 |
|----------------------|--------|-------|-----------------------|-----|-------|
| Working angle stroke | [°deg] | ± 15° | Lever device weight   | [g] | 880   |

#### 4 INSTALLATION DIMENSIONS [mm]



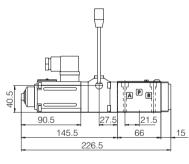



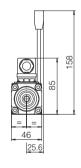

Mass: 2,7 kg (double solenoid)

DHE-06\*/MV DHE-07\*/MV (dotted line)

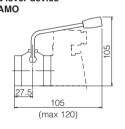
Mass: 2,7 kg (single solenoid) Mass: 3,0 kg (double solenoid)





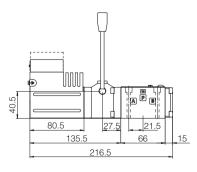


DHZO-A-05\*/MV DHZO-A-07\*/MV (dotted line)

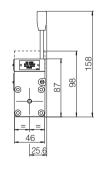
Mass: 2,8 kg (single solenoid) Mass: 3,5 kg (double solenoid)


DHZE-05\*/MV DHZE-07\*/MV (dotted line)

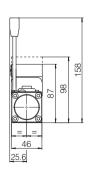
Mass: 2,7 kg (single solenoid) Mass: 3,0 kg (double solenoid)







Horizontal hand lever device /MO, /AMO 105 (max 120)




QVHZO-A-06\*/MV

Mass: 3,2 kg





21.5 80.5 27.5 135.5 66 216.5



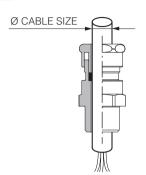
Mass: 3,4 kg

DHA/\*-06\*/MV DHA/UL-\*-06\*/MV (dotted line)

Mass: 3,4 kg

DHZA/\*-06\*/MV DHZA/UL-\*-06\*/MV (dotted line)

Note: see tech. table FX100 for DHZA/MV models


Note: see tech. table FX010 for DHA/MV models



# Cable glands and plugs for ex-proof valves

Multicertified ATEX, IECEx, EAC

#### 1 MULTICERTIFIED CABLE GLAND FOR NON-ARMOURED CABLES - Group II (surface plants)



Cable glands for use with non-armoured plastic insulated cables

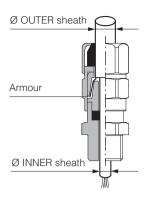
Flameproof **Exd IIC Gb**, Increased Safety **Exe IIC Gb** and Dust **Extb IIIC Db II 2 GD**, suitable for use in Zone 1, Zone 2, Zone 21, Zone 22.

Construction and Test Standards: IEC/EN 60079-0, IEC/EN60079-1, IEC/EN 60079-7 and IEC/EN 60079-31

Ingress Protection: IP66, IP67 and IP 68 (30 meters for 7 days) to IEC/EN 60529 and NEMA 4X Deluge Protection to DTS01

Operating Temperature Range: -60 °C to +100 °C

Material: Nickel Plated Brass or AISI 316 Cable glands are marked ATEX, IECEx and EAC


The electric cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of Atos ex-proof valves.

See section 4 for cable gland assembly.

| CABLE GLAND CODE AND DIMENSIONS                                             | MULTICERTIFICATION                                                                                                      | CHARACTERISTICS                                                                                                      | VALVE TYPE                                                                                                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| PAMC/GK  24  Tightening                                                     | Referred to certificates: - Baseefa 06 ATEX0056X - IECEX BAS 06.0013X  Item type: 501-421                               | Material: Nickel plated brass  Threaded connection: GK-1/2" ISO/UNI-6125 (tapered)  Cable size: 6,5 to 11,9 mm       | On-off and proportional ex-proof valves with "GK" threaded connection (solenoid and LVDT transducer)  Approved only for the Italian market |
| torque: 20 Nm  1/2"GK (1/2"BSPT)  PAMC/M  Tightening torque: 20 Nm  M20x1.5 | ATEX: EN 60079-0, EN 60079-1, EN 60079-7 and EN 60079-31  IECEX: IEC 60079-0, IEC 60079-1, IEC 60079-7 and IEC 60079-31 | Material: Nickel plated brass  Threaded connection: M20x1,5 UNI-4535  Cable size: 6,5 to 11,9 mm                     | On-off and proportional<br>ex-proof valves<br>with "M"<br>threaded connection<br>(solenoid,<br>LVDT transducer<br>and on-board driver)     |
| PAMC/NPT  Tightening torque: 20 Nm  1/2"NPT                                 | <b>EAC:</b> EN60079-0 and EN60079-1                                                                                     | Material: Nickel plated brass  Threaded connection: 1/2" NPT ANSI/ASME B1.20.1 (tapered)  Cable size: 6,5 to 11,9 mm | On-off and proportional<br>ex-proof valves<br>with "NPT"<br>threaded connection<br>(solenoid and<br>LVDT transducer)                       |
| PAXMC/M  Tightening torque: 20 Nm  PAXMC/M                                  |                                                                                                                         | Material: Stainless steel AISI 316  Threaded connection: M20x1,5 UNI-4535  Cable size: 6,5 to 11,9 mm                | On-off ex-proof<br>stainless steel valves<br>type "X" and "XS"                                                                             |

KX800 ACCESSORIES 535

#### 2 MULTICERTIFIED CABLE GLAND FOR ARMOURED CABLES - Group II (surface plants)



Cable glands for use with single wire armour 'W', wire braid 'X', steel tape armour 'Z', plastic insulated cables.

Flameproof Exd IIC Gb, Increased Safety Exe IIC Gb, Dust Extb IIIC Db and ExnR IIC Gc II 2 / 3GD, suitable for use in Zone 1, Zone 2, Zone 21, Zone 22.

Construction and Test Standards: IEC/EN 60079-0, IEC/EN 60079-1, IEC/EN 60079-7, IEC/EN 60079-15 and IEC/EN 60079-31.

Ingress Protection: IP66, IP67 and IP 68 (30 meters for 7 days) to IEC/EN 60529 and NEMA 4X Deluge Protection to DTS01.

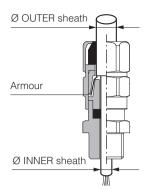
Operating Temperature Range: -60 °C to +80 °C

Seal on the cable inner sheath

Outer deluge seal to prevent moisture ingress to the cable armour / braid

Cable retention, low smoke

Material: Nickel Plated Brass or AISI 316


Cable glands are marked ATEX, IECEx and EAC

The electric cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of Atos ex-proof valves.

See section 4 for cable gland assembly.

| CABLE GLAND CODE AND DIMENSIONS                          | MULTICERTIFICATION                                                                                                      | CHARACTERISTICS                                                                                                                                                    | VALVE TYPE                                                                                                                                 |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| PAAMC/GK  24  Tightening torque: 1/2"GK 20 Nm (1/2"BSPT) | Referred to certificates: - Baseefa 06 ATEX0056X - IECEX BAS 06.0013X  Item type: 501-453RAC                            | Material: Nickel plated brass  Threaded connection: GK-1/2" ISO/UNI-6125 (tapered)  Cable size: INNER sheath size 3,2 to 8 mm OUTER sheath size 5,5 to 12 mm       | On-off and proportional ex-proof valves with "GK" threaded connection (solenoid and LVDT transducer)  Approved only for the Italian market |
| PAAMC/M  24  Tightening torque: 20 Nm  PAAMC/M  24       | ATEX: EN 60079-0, EN 60079-1, EN 60079-7 and EN 60079-31  IECEX: IEC 60079-0, IEC 60079-1, IEC 60079-7 and IEC 60079-31 | Material: Nickel plated brass  Threaded connection: M20x1,5 UNI-4535  Cable size: INNER sheath size 3,2 to 8 mm OUTER sheath size 5,5 to 12 mm                     | On-off and proportio-<br>nal ex-proof valves<br>with "M"<br>threaded connection<br>(solenoid,<br>LVDT transducer<br>and on-board driver)   |
| PAAMC/NPT  24  Tightening torque: 20 Nm  1/2'NPT         | <b>EAC:</b> EN60079-0 and EN60079-1                                                                                     | Material: Nickel plated brass  Threaded connection: 1/2" NPT ANSI/ASME B1.20.1 (tapered)  Cable size: INNER sheath size 3,2 to 8 mm OUTER sheath size 5,5 to 12 mm | On-off and proportional ex-proof valves with "NPT" threaded connection (solenoid and LVDT transducer)                                      |
| PAAXMC/M  24  Tightening torque: 20 Nm  M20x1.5          |                                                                                                                         | Material: Stainless steel AISI 316  Threaded connection: M20x1,5 UNI-4535 (6H/6g)  Cable size: INNER sheath size 3,2 to 8 mm OUTER sheath size 5,5 to 12 mm        | On-off ex-proof<br>stainless steel valves<br>type "X" and "XS"                                                                             |

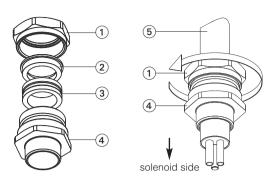
#### 3 MULTICERTIFIED CABLE GLAND FOR ARMOURED CABLES - Group I (Mining)



Cable glands for use with single wire armour 'W', wire braid 'X', steel tape armour 'Z', plastic insulated cables.

Flameproof **Exd I M2** and Increased Safety **Exe I M2**, suitable for use in Mines Construction and Test Standards: IEC/EN 60079-0, IEC/EN 60079-1 and IEC/EN 60079-7 Ingress Protection: IP66, IP67 and IP 68 (30 meters for 7 days) to IEC/EN 60529 Operating Temperature Range: -60 °C to +80 °C

Seal on the cables inner sheath Cable retention, low smoke Material: Nickel Plated Brass Cable glands are marked ATEX, IECEx and EAC


The electric cable must be suitable for the working temperature as specified in the "safety instructions" delivered with the first supply of Atos ex-proof valves.

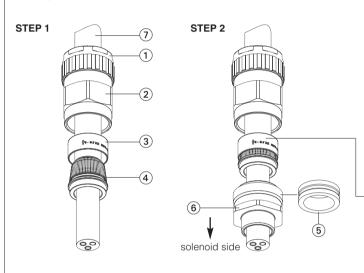
See section 4 for cable gland assembly.

| CABLE GLAND CODE AND DIMENSIONS                                | MULTICERTIFICATION                                                                                                                   | CHARACTERISTICS                                                                                                                                                  | VALVE TYPE                                                                                                                                                       |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAAMMC/GK  24  24  Tightening torque: 20 Nm  1/2"GK (1/2"BSPT) | Referred to certificates: - Baseefa 08 ATEX0331X - IECEX BAS 08.0112X  Item type: 453RAC                                             | Material: Nickel plated brass  Threaded connection: GK-1/2" ISO/UNI-6125 (tapered)  Cable size: INNER sheath size 3 to 8 mm OUTER sheath size 5,5 to 12 mm       | On-off and proportio-<br>nal ex-proof valves<br>with "GK"<br>threaded connection<br>(solenoid and<br>LVDT transducer)<br>Approved only for<br>the Italian market |
| PAAMMC/M  24  Tightening torque: 20 Nm  M20x1.5                | IECEX: IEC 60079-7 and EN 60079-31  IECEX: IEC 60079-0, IEC 60079-1, IEC 60079-7 and IEC 60079-31  EHE  EAC: EN60079-0 and EN60079-1 | Material: Nickel plated brass  Threaded connection: M20x1,5 UNI-4535  Cable size: INNER sheath size 3 to 8 mm OUTER sheath size 5,5 to 12 mm                     | On-off and proportio-<br>nal ex-proof valves<br>with "M"<br>threaded connection<br>(solenoid,<br>LVDT transducer<br>and on-board driver)                         |
| PAAMMC/NPT  24  Tightening torque: 20 Nm 1/2"NPT               |                                                                                                                                      | Material: Nickel plated brass  Threaded connection: 1/2" NPT ANSI/ASME B1.20.1 (tapered)  Cable size: INNER sheath size 3 to 8 mm OUTER sheath size 5,5 to 12 mm | On-off and proportional ex-proof valves with "NPT" threaded connection (solenoid and LVDT transducer)                                                            |

KX800 ACCESSORIES 537

#### Cable glands PAMC/\* and PAXMC/M for non-armoured cables




#### Assembling procedure

Unscrew the Back-nut (1) from Entry (4) Push the electric cable (5) though the cable gland Connect the cable wires to the solenoid terminal board Screw-in the Entry (4) into the solenoid cable entrance lock it at relevant tightening torque specified in section 1 Lock the Back-nut (1) using a wrench until a resistance is felt between internal seal (3) and the cable

Turn the Back-nut (1) through a further half turn to ensure the complete inner sealing

- 1 Back-nut
- (2) Compression Spigot
- 3 Seal
- (4) Entry
- (5) Electric cable (non-armoured)

#### Cable glands PAAMC/\*, PAAXMC/M and PAAMMC/\* for armoured cables



(1) Back-nut

- (2) Middle-nut
- (3) Reversible Armour Clamping Ring (RAC)
- (4) Armour Spigot
- (5) Inner Seal
- (6) Entry (with captive deluge seal), if required
- (7) Electric cable (armour type SWA, Braid X, Flat Steel wire Y, Steel type Z)

#### Reversible Armour Clamping ring (RAC) orientation



Note: the arrow corresponding to the correct armour type (SWA or X, Y, Z) must be orinted towards the ex-proof

#### Assembling procedure

Unscrew Back-nut (1) from Middle-nut (2) and Entry (6), push the cable through the Armour Spigot (4)

Spread the armour over the Armour spigot (4) until the end of the armour is up against the shoulder of the armour cone

Position the Armour clamping ring (3) paying attention to its correct orientation depending to the armour type (see above)

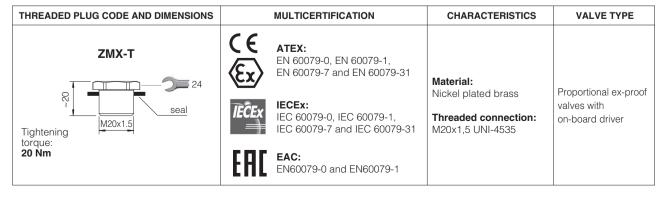
Remove the Inner seal (5) from the Entry (6), place the Entry (6) over the Armour Spigot (4)

Move the sub-assembly (1) + (2) to meet the Entry (6), connect the cable wires to the solenoid terminal board

Screw-in the Entry (6) into the solenoid cable entrance and lock it at relevant tightening torque specified in section 2 and 3

Hand tighten the Middle-nut ② to the Entry ⑥ and turn a further half turn with a wrench

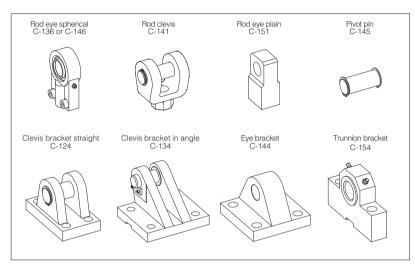
Unscrew the Middle-nut (2) and visually inspect that the armour has been successfully clamped between the armour spigot (4) and the armour clamping ring 3. If the armour is not correctly clamped, repeat the assembly


Re-assemble Middle-nut (2) onto the components (3) + (4) + (5) + (6) paying attention to the correct orientation of the reversible armour Clamping ring ③, tighten up the Middle-nut ② by hand first and then using a wrench a further 1 to 2 turns until fully tight

Hand tighten the Back-nut (1) then tighten a further full turn using a wrench

Ensure that the Middle-nut (2) does not rotate when tightening the Back-nut (1)

Ensure that the deluge seal is compressed into correct position

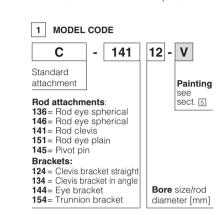

#### 5 THREADED PLUG





## **Attachments for hydraulic cylinders**

to ISO 6982, ISO 8132 and ISO 8133




#### **SWC Cylinders Designer**

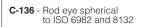
Software for assisted selection of Atos cylinders & servocylinders codes, including cylinder's sizing, full technical information, 2D & 3D drawings in several CAD formats.

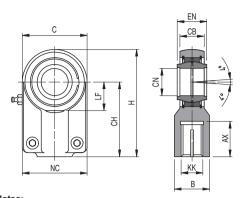
Available for download at www.atos.com

The table at side shows the Atos range of standard rod attachments and brackets: they are available for each cylinder bore. See section 2 for possible combinations. Stainless steel attachments are available on request.



#### POSSIBLE COMBINATIONS


|                                                                     |         | Rod a   | attachments o | codes   |         |        |                             | Bracket  | s codes  |          |
|---------------------------------------------------------------------|---------|---------|---------------|---------|---------|--------|-----------------------------|----------|----------|----------|
| Ø Rod                                                               | (b)     |         | 0             |         | 00      | Ø Bore |                             |          |          |          |
| 12<br>18 opt. <b>H</b> (a)                                          | NA      | C-14612 | C-14112       | C-15112 | C-14512 | 25     | NA                          | C-13425  | C-14425  | C-15425  |
| 14<br>22 opt. <b>H</b> (a)                                          | C-13616 | C-14614 | C-14114       | C-15114 | C-14514 | 32     | NA                          | C-13432  | C-14432  | C-15432  |
| 18<br>22 opt. <b>H</b> (a)<br>28 opt. <b>H</b>                      | C-13618 | C-14618 | C-14118       | C-15118 | C-14518 | 40     | C-12422 (c)                 | C-13440  | C-14440  | C-15440  |
| 22<br>28 opt. <b>H</b> (a)<br>36 opt. <b>H</b>                      | C-13622 | C-14622 | C-14122       | C-15122 | C-14522 | 50     | C-12428 (c)<br>C-12436 (d)  | C-13450  | C-14450  | C-15450  |
| 28<br>36 opt. <b>H</b> (a)<br>45 opt. <b>H</b>                      | C-13628 | C-14628 | C-14128       | C-15128 | C-14522 | 63     | C-12436 (c)<br>C-12445 (d)  | C-13463  | C-14463  | C-15463  |
| <b>36</b><br><b>45</b> opt. <b>H</b> (a)<br><b>56</b> opt. <b>H</b> | C-13636 | C-14636 | C-14136       | C-15136 | C-14536 | 80     | C-12445 (c)<br>C-12456 (d)  | C-13480  | C-14480  | C-15480  |
| <b>45</b><br><b>56</b> opt. <b>H</b> (a)<br><b>70</b> opt. <b>H</b> | C-13645 | C-14645 | C-14145       | C-15145 | C-14545 | 100    | C-12456 (c)<br>C-12470 (d)  | C-134100 | C-144100 | C-154100 |
| <b>56</b><br><b>70</b> opt. <b>H</b> (a)<br><b>90</b> opt. <b>H</b> | C-13656 | C-14656 | C-14156       | C-15156 | C-14556 | 125    | C-12470 (c)<br>C-12490 (d)  | C-134125 | C-144125 | C-154125 |
| 70<br>90 opt. <b>H</b> (a)<br>110 opt. <b>H</b>                     | C-13670 | C-14670 | C-14170       | C-15170 | C-14570 | 160    | C-12490 (c)<br>C-124100 (d) | C-134160 | C-144160 | C-154160 |
| 90<br>110 opt. <b>H</b> (a)<br>140 opt. <b>H</b>                    | C-13690 | C-14690 | C-14190       | C-15190 | C-14590 | 200    | C-124100 (c)                | C-134200 | C-144200 | C-154200 |


Notes:
(a) Option H: light male thread, for details see table B137 or B140

<sup>(</sup>b) C-136 is also available for rods 110, 140, 180 and 220. See section 3

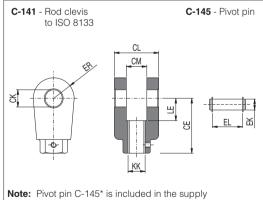
<sup>(</sup>c) For S mounting styles in CN cylinder (d) For S mounting styles in CC cylinder

#### 3 DIMENSIONS [mm]

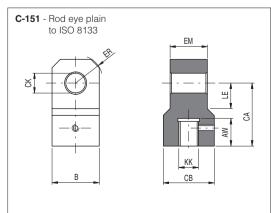




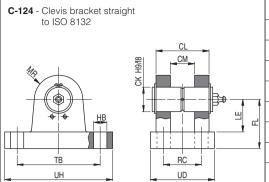
| Notes:              |      |     |         |     |         |         |    |    |
|---------------------|------|-----|---------|-----|---------|---------|----|----|
| (1) This attachment | does | not | include | the | greaser | because | it | is |
| selflubricated      |      |     |         |     |         |         |    |    |


(2) Dynamic loads has to be considered when the cylinders work with oscillatory motions or push-pull loads in high frequencies
 (3) Attachment not compliant with ISO standard

| Code          | KK       | <b>AX</b><br>min | <b>B</b><br>max | <b>C</b><br>max | <b>CB</b><br>max | CH<br>js13 | CN<br>H7 | <b>EN</b><br>h12 | Н   | <b>LF</b><br>min | NC  | Mass<br>[kg] | Max load<br>Dynamic |       | Screws<br>torque |
|---------------|----------|------------------|-----------------|-----------------|------------------|------------|----------|------------------|-----|------------------|-----|--------------|---------------------|-------|------------------|
| C-13616 (1)   | M12x1,25 | 17               | 19              | 33              | 11               | 38         | 12       | 12               | 54  | 13               | 32  | 0,11         | 10,8                | 24,5  | 6 Nm             |
| C-13618       | M14x1,5  | 19               | 22              | 41              | 14               | 44         | 16       | 16               | 64  | 16,5             | 40  | 0,2          | 17,6                | 36,5  | 10 Nm            |
| C-13622       | M16x1,5  | 23               | 28              | 50              | 17,5             | 52         | 20       | 20               | 75  | 20,5             | 47  | 0,35         | 30                  | 48    | 25 Nm            |
| C-13628       | M20x1,5  | 29               | 31              | 64              | 22               | 65         | 25       | 25               | 96  | 25,5             | 54  | 0,62         | 48                  | 78    | 25 Nm            |
| C-13636       | M27x2    | 37               | 38              | 80              | 28               | 80         | 32       | 32               | 118 | 30               | 66  | 1,15         | 67                  | 114   | 49 Nm            |
| C-13645       | M33x2    | 46               | 47              | 100             | 34               | 97         | 40       | 40               | 146 | 39               | 80  | 2,18         | 100                 | 204   | 49 Nm            |
| C-13656       | M42x2    | 57               | 58              | 126             | 42               | 120        | 50       | 50               | 179 | 47               | 96  | 3,96         | 156                 | 310   | 86 Nm            |
| C-13670       | M48x2    | 64               | 70              | 145             | 53,5             | 140        | 63       | 63               | 211 | 58               | 114 | 6,8          | 255                 | 430   | 210 Nm           |
| C-13690       | M64x3    | 86               | 91              | 184             | 68               | 180        | 80       | 80               | 270 | 74               | 148 | 13           | 400                 | 695   | 410 Nm           |
| C-13690A (3)  | M72x3    | 91               | 100             | 185             | 72               | 195        | 90       | 90               | 296 | 91               | 160 | 19,1         | 490                 | 750   | 410 Nm           |
| C-136110      | M80x3    | 96               | 110             | 228             | 85,5             | 210        | 100      | 100              | 322 | 94               | 178 | 25           | 610                 | 1.060 | 710 Nm           |
| C-136110A (3) | M90x3    | 106              | 125             | 235             | 88               | 235        | 110      | 110              | 364 | 106              | 190 | 32           | 655                 | 1.200 | 710 Nm           |
| C-136140      | M100x3   | 113              | 135             | 320             | 105              | 260        | 125      | 125              | 405 | 116              | 200 | 46           | 950                 | 1.430 | 710 Nm           |
| C-136180      | M125x4   | 126              | 165             | 400             | 133              | 310        | 160      | 160              | 488 | 145              | 250 | 82,5         | 1.370               | 2.200 | 710 Nm           |
| C-136220      | M160x4   | 161              | 215             | 500             | 165              | 390        | 200      | 200              | 620 | 190              | 320 | 168          | 2.120               | 3.650 | 1500Nm           |
|               |          |                  |                 |                 |                  |            |          |                  |     |                  |     |              |                     |       |                  |

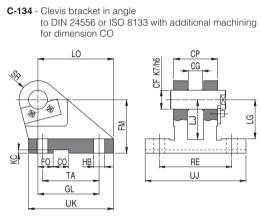

| C-146 - Rod eye spherical to ISO 8133   | EN EU                   |
|-----------------------------------------|-------------------------|
|                                         | X X                     |
|                                         |                         |
| Notes: (1) This attachment does not inc | lude the greaser becaus |

(1) This attachment does not include the greaser because it is selflubricated(2) Dynamic loads has to be considered when the cylinders work with oscillatory motions or push-pull loads in high frequencies(3) Not compliant with ISO 8133


|   | Code        | кк       | <b>AX</b><br>min | CH<br>js13 | сх          | <b>EF</b> max | EN                               | <b>EU</b><br>max | <b>LF</b><br>min | <b>N</b><br>max |      | Max load<br>Dynamic |      | Screws<br>torque |
|---|-------------|----------|------------------|------------|-------------|---------------|----------------------------------|------------------|------------------|-----------------|------|---------------------|------|------------------|
|   | C-14612 (1) | M10x1,25 | 15               | 42         | 12 0,008    | 18            | 10 0 (3)                         | 8,5              | 16               | 19              | 0,12 | 10,8                | 17   | 10 Nm            |
|   | C-14614 (1) | M12x1,25 | 17               | 48         | 16 -0,008   | 23            | 14 .0,12 (3)                     | 11,5             | 20               | 22              | 0,22 | 21,1                | 28,5 | 10 Nm            |
|   | C-14618 (1) | M14x1,5  | 19               | 58         | 20 .0,01    | 28            | 16 .0,12 (3)                     | 13,5             | 25               | 28              | 0,43 | 30                  | 42,5 | 25 Nm            |
|   | C-14622     | M16x1,5  | 23               | 68         | 25 .0,01    | 33            | 20 0 (3)                         | 18               | 30               | 31              | 0,67 | 48                  | 67   | 25 Nm            |
|   | C-14628     | M20x1,5  | 29               | 85         | 30 .0,01    | 41            | 22 0 (3)                         | 20               | 35               | 37              | 1,25 | 62                  | 108  | 49 Nm            |
|   | C-14636     | M27x2    | 37               | 105        | 40 0 -0,012 | 51            | 28 0 (3)                         | 24               | 45               | 47              | 2,16 | 100                 | 156  | 49 Nm            |
|   | C-14645     | M33x2    | 46               | 130        | 50 -0,012   | 61            | 35 .0,12 (3)                     | 31               | 58               | 57              | 3,9  | 156                 | 245  | 86 Nm            |
| S | C-14656     | M42x2    | 57               | 150        | 60 -0,015   | 80            | 44 -0,15                         | 39               | 68               | 69              | 7,15 | 245                 | 380  | 210 Nm           |
| K | C-14670     | M48x2    | 64               | 185        | 80 -0,015   | 102,5         | 55 <sup>0</sup> <sub>-0,15</sub> | 48               | 92               | 91              | 15   | 400                 | 585  | 410 Nm           |
| 3 | C-14690     | M64x3    | 86               | 240        | 100 0       | 120           | 70 0                             | 57               | 116              | 110             | 27,3 | 610                 | 865  | 710 Nm           |

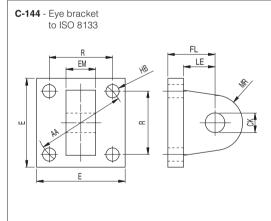


| Code               | кк       | CE<br>JS13 | CK<br>H9 | <b>CL</b><br>max | CM<br>A13 | <b>EK</b><br>f8 | <b>EL</b><br>min | <b>ER</b><br>max | <b>LE</b><br>min | Mass<br>[kg] | Max load<br>static [kN] |
|--------------------|----------|------------|----------|------------------|-----------|-----------------|------------------|------------------|------------------|--------------|-------------------------|
| C-14112<br>C-14512 | M10x1,25 | 32         | 10       | 26               | 12        | 10              | 29               | 12               | 13               | 0,1          | 8                       |
| C-14112<br>C-14512 | M12x1,25 | 36         | 12       | 34               | 16        | 12              | 37               | 17               | 19               | 0,18         | 12,5                    |
| C-14118<br>C-14518 | M14x1,5  | 38         | 14       | 42               | 20        | 14              | 45               | 17               | 19               | 0,23         | 20                      |
| C-14122<br>C-14522 | M16x1,5  | 54         | 20       | 62               | 30        | 20              | 66               | 29               | 32               | 0,9          | 32                      |
| C-14128<br>C-14522 | M20x1,5  | 60         | 20       | 62               | 30        | 20              | 66               | 29               | 32               | 0,91         | 50                      |
| C-14136<br>C-14536 | M27x2    | 75         | 28       | 83               | 40        | 28              | 87               | 34               | 39               | 1,92         | 80                      |
| C-14145<br>C-14545 | M33x2    | 99         | 36       | 103              | 50        | 36              | 107              | 50               | 54               | 4,92         | 125                     |
| C-14156<br>C-14556 | M42x2    | 113        | 45       | 123              | 60        | 45              | 129              | 53               | 57               | 6,53         | 200                     |
| C-14170<br>C-14570 | M48x2    | 126        | 56       | 143              | 70        | 56              | 149              | 59               | 63               | 10,11        | 320                     |
| C-14190<br>C-14590 | M64x3    | 168        | 70       | 163              | 80        | 70              | 169              | 78               | 83               | 19,2         | 500                     |

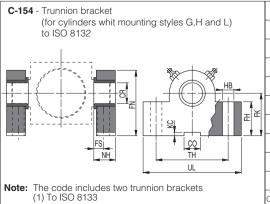



| Code    | KK       | <b>AW</b><br>min | В   | CA<br>JS13 | <b>CB</b><br>max | CK<br>H9 | <b>EM</b><br>h13 | <b>ER</b><br>max | <b>LE</b><br>min | Mass<br>[kg] | Max load<br>static [kN] |
|---------|----------|------------------|-----|------------|------------------|----------|------------------|------------------|------------------|--------------|-------------------------|
| C-15112 | M10x1,25 | 14               | 18  | 32         | 18               | 10       | 12               | 12               | 13               | 0,08         | 8                       |
| C-15114 | M12x1,25 | 16               | 22  | 36         | 22               | 12       | 16               | 17               | 19               | 0,15         | 12,5                    |
| C-15118 | M14x1,5  | 18               | 25  | 38         | 20               | 14       | 20               | 17               | 19               | 0,22         | 20                      |
| C-15122 | M16x1,5  | 22               | 35  | 54         | 30               | 20       | 30               | 29               | 32               | 0,5          | 32                      |
| C-15128 | M20x1,5  | 28               | 40  | 60         | 30               | 20       | 30               | 29               | 32               | 1,1          | 50                      |
| C-15136 | M27x2    | 36               | 50  | 75         | 40               | 28       | 40               | 34               | 39               | 1,5          | 80                      |
| C-15145 | M33x2    | 45               | 70  | 99         | 50               | 36       | 50               | 50               | 54               | 2,5          | 125                     |
| C-15156 | M42x2    | 56               | 100 | 113        | 65               | 45       | 60               | 53               | 57               | 4,2          | 200                     |
| C-15170 | M48x2    | 63               | 116 | 126        | 90               | 56       | 70               | 59               | 63               | 11,8         | 320                     |
| C-15190 | M64x3    | 85               | 160 | 168        | 110              | 70       | 80               | 78               | 83               | 17           | 500                     |




|  | Pivot pin and seeger are included in the supply    |
|--|----------------------------------------------------|
|  | Supplied with threaded holes for pivot pin locking |
|  | plate (not included)                               |

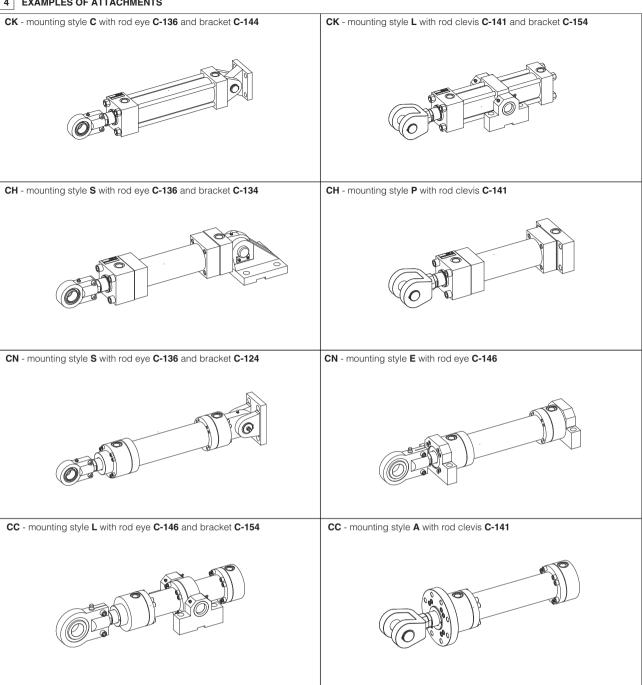
|   | Code     | CK<br>H9 | CL<br>h16 | CM<br>A13 | FL<br>JS12 | <b>HB</b><br>H13 | <b>LE</b><br>min | MR<br>max | RC<br>JS14 | TB<br>JS14 | <b>UD</b><br>max | <b>UH</b><br>max | Mass<br>[kg] | Max load<br>static [kN] |
|---|----------|----------|-----------|-----------|------------|------------------|------------------|-----------|------------|------------|------------------|------------------|--------------|-------------------------|
|   | C-12414  | 12       | 28        | 12        | 34         | 9                | 22               | 12        | 20         | 50         | 40               | 70               | 0,31         | 8                       |
|   | C-12418  | 16       | 36        | 16        | 40         | 11               | 27               | 16        | 26         | 65         | 50               | 90               | 0,59         | 12,5                    |
|   | C-12422  | 20       | 45        | 20        | 45         | 11               | 30               | 20        | 32         | 75         | 58               | 98               | 0,9          | 20                      |
| _ | C-12428  | 25       | 56        | 25        | 55         | 13,5             | 37               | 25        | 40         | 85         | 70               | 113              | 1,6          | 32                      |
| ١ | C-12436  | 32       | 70        | 32        | 65         | 17,5             | 43               | 32        | 50         | 110        | 85               | 143              | 2,8          | 50                      |
|   | C-12445  | 40       | 90        | 40        | 76         | 22               | 52               | 40        | 65         | 130        | 108              | 170              | 5            | 80                      |
| 1 | C-12456  | 50       | 110       | 50        | 95         | 26               | 65               | 50        | 80         | 170        | 130              | 220              | 10,1         | 125                     |
|   | C-12470  | 63       | 140       | 63        | 112        | 33               | 75               | 63        | 100        | 210        | 160              | 270              | 15,4         | 200                     |
| у | C-12490  | 80       | 170       | 80        | 140        | 39               | 95               | 80        | 125        | 250        | 210              | 320              | 30           | 320                     |
| g | C-124100 | 100      | 210       | 100       | 180        | 45               | 120              | 100       | 160        | 315        | 260              | 400              | 60,2         | 500                     |




**Notes:** Pivot pin with locking plate is included in the supply (1) Not compliant with ISO 8133

| Code     | <b>CF</b><br>H9 (1) | <b>CG</b><br>+0,1/+0,3 | <b>CO</b><br>H9 | CP<br>h14 | <b>FM</b><br>js13 | FO | <b>GL</b><br>JS13 | <b>HB</b><br>H13 | кс   | LG  | <b>LJ</b><br>min | LO<br>max | <b>RE</b><br>js13 | <b>SR</b><br>max | <b>TA</b><br>js13 | <b>UJ</b><br>max |     | Mass<br>[kg] | Max load<br>static [kN] |
|----------|---------------------|------------------------|-----------------|-----------|-------------------|----|-------------------|------------------|------|-----|------------------|-----------|-------------------|------------------|-------------------|------------------|-----|--------------|-------------------------|
| C-13425  | 12                  | 10                     | 10              | 30        | 40                | 16 | 46                | 9                | 3,3  | 28  | 29               | 56        | 55                | 12               | 40                | 75               | 60  | 0,52         | 8                       |
| C-13432  | 16                  | 14                     | 16              | 40        | 50                | 18 | 61                | 11               | 4,3  | 37  | 38               | 74        | 70                | 16               | 55                | 95               | 80  | 1,05         | 12,5                    |
| C-13440  | 20                  | 16                     | 16              | 50        | 55                | 20 | 64                | 13,5             | 4,3  | 39  | 40               | 80        | 85                | 20               | 58                | 120              | 90  | 1,72         | 20                      |
| C-13450  | 25                  | 20                     | 25              | 60        | 65                | 22 | 78                | 15,5<br>(1)      | 5,4  | 48  | 49               | 98        | 100               | 25               | 70                | 140              | 110 | 2,72         | 32                      |
| C-13463  | 30                  | 22                     | 25              | 70        | 85                | 24 | 97                | 17,5<br>(1)      | 5,4  | 62  | 63               | 120       | 115               | 30               | 90                | 160              | 135 | 5,15         | 50                      |
| C-13480  | 40                  | 28                     | 36              | 80        | 100               | 24 | 123               | 22               | 8,4  | 72  | 73               | 148       | 135               | 40               | 120               | 190              | 170 | 9,3          | 80                      |
| C-134100 | 50                  | 35                     | 36              | 100       | 125               | 35 | 155               | 30               | 8,4  | 90  | 92               | 190       | 170               | 50               | 145               | 240              | 215 | 18,3         | 125                     |
| C-134125 | 60                  | 44                     | 50              | 120       | 150               | 35 | 187               | 39               | 11,4 | 108 | 110              | 225       | 200               | 60               | 185               | 270              | 260 | 35           | 200                     |
| C-134160 | 80                  | 55                     | 50              | 160       | 190               | 35 | 255               | 45               | 11,4 | 140 | 142              | 295       | 240               | 80               | 260               | 320              | 340 | 63           | 320                     |
| C-134200 | 100                 | 70                     | 63              | 200       | 210               | 35 | 285               | 48               | 12,4 | 150 | 152              | 335       | 300               | 100              | 300               | 400              | 400 | 109          | 500                     |




| Code     | <b>CK</b><br>H9 | AA  | <b>E</b><br>max | <b>EM</b><br>h13 | FL<br>js13 | <b>HB</b><br>H13 | <b>LE</b><br>min | MR<br>max | <b>R</b><br>js13 | Mass<br>[kg] | Max load<br>static [kN] |
|----------|-----------------|-----|-----------------|------------------|------------|------------------|------------------|-----------|------------------|--------------|-------------------------|
| C-14425  | 10              | 40  | 40              | 12               | 23         | 5,5              | 13               | 12        | 28,3             | 0,3          | 8                       |
| C-14432  | 12              | 47  | 46              | 16               | 29         | 6,6              | 19               | 17        | 33,2             | 0,45         | 12                      |
| C-14440  | 14              | 59  | 65              | 20               | 29         | 9                | 19               | 17        | 41,7             | 0,9          | 20                      |
| C-14450  | 20              | 74  | 79              | 30               | 48         | 13,5             | 32               | 29        | 52,3             | 1,3          | 32                      |
| C-14463  | 20              | 91  | 91              | 30               | 48         | 13,5             | 32               | 29        | 64,3             | 1,9          | 50                      |
| C-14480  | 28              | 117 | 118             | 40               | 59         | 17,5             | 39               | 34        | 82,7             | 4            | 80                      |
| C-144100 | 36              | 137 | 132             | 50               | 79         | 17,5             | 54               | 50        | 96,9             | 6,25         | 125                     |
| C-144125 | 45              | 178 | 174             | 60               | 87         | 24               | 57               | 53        | 125,9            | 11,4         | 200                     |
| C-144160 | 56              | 219 | 215             | 70               | 103        | 30               | 63               | 59        | 154,9            | 20,8         | 320                     |
| C-144200 | 70              | 269 | 256             | 80               | 132        | 33               | 82               | 78        | 190,2            | 38,8         | 500                     |



| Code         | CR<br>H7 | CO<br>N9 | FH<br>max | FK<br>JS12 | FN<br>max | <b>FS</b> js13 | <b>HB</b><br>H13 | <b>KC</b> 0/+0,3 | NH<br>max | TH<br>js13 | UL<br>max | Mass<br>[kg] | Max load<br>static [kN] |
|--------------|----------|----------|-----------|------------|-----------|----------------|------------------|------------------|-----------|------------|-----------|--------------|-------------------------|
| C-15425      | 12       | 10       | 25        | 34         | 50        | 8              | 9                | 3,3              | 17        | 40         | 63        | 0,46         | 8                       |
| C-15432      | 16       | 16       | 30        | 40         | 60        | 10             | 11               | 4,3              | 21        | 50         | 80        | 0,83         | 12,5                    |
| C-15440      | 20       | 16       | 38        | 45         | 70        | 10             | 11               | 4,3              | 21        | 60         | 90        | 1,21         | 20                      |
| C-15450      | 25       | 25       | 45        | 55         | 80        | 12             | 13,5             | 5,4              | 26        | 80         | 110       | 2,15         | 32                      |
| C-15463      | 32       | 25       | 52        | 65         | 100       | 15             | 17,5             | 5,4              | 33        | 110        | 150       | 4,63         | 50                      |
| C-15480      | 40       | 36       | 60        | 76         | 120       | 16             | 22               | 8,4              | 41        | 125        | 170       | 7,78         | 80                      |
| C-154100     | 50       | 36       | 75        | 95         | 140       | 20             | 26               | 8,4              | 51        | 160        | 210       | 14,3         | 125                     |
| C-154125     | 63       | 50       | 85        | 112        | 180       | 25             | 33               | 11,4             | 61        | 200        | 265       | 23,4         | 200                     |
| C-154160     | 80       | 50       | 112       | 140        | 220       | 31             | 39               | 11,4             | 81        | 250        | 325       | 53,1         | 320                     |
| C-154200 (1) | 100      | 63       | 150       | 200        | 300       | 42             | 52               | 12,4             | 101       | 320        | 410       | 112          | 500                     |

B800 ACCESSORIES 541

#### 4 EXAMPLES OF ATTACHMENTS



#### 5 SURFACE TREATMENT

Some attachments are provided with additional surface treatment to increase the corrosion resistance (24h in neutral salt spray), see table below for details. All the attachments, except pivot pin C-145, can be supplied with standard painting RAL 9007 (200h in neutral salt spray) selecting option **-V**, special painting are available on request.

| Code           | Surface treatment | Code  | Surface treatment |
|----------------|-------------------|-------|-------------------|
| C-136 or C-146 | No treatment      | C-124 | No treatment      |
| 0 C-141        | No treatment      | C-134 | No treatment      |
| C-151          | Black phosphate   | C-144 | Black phosphate   |
| C-145          | Black phosphate   | C-154 | No treatment      |





| TECHNICAL INFORMATION                                                         | Table | Pag |
|-------------------------------------------------------------------------------|-------|-----|
| Basics for electrohydraulics in hazardous environments                        | X010  | 547 |
| Summary of Atos ex-proof components multicertified to ATEX, IECEx, EAC, PESO  | X020  | 557 |
| Summary of Atos ex-proof components certified to cULus                        | X030  | 565 |
| Summary of Atos ex-proof components certified to MA                           | X040  | 569 |
| Summary of Atos intrinsically safe components certified to ATEX, IECEx        | X050  | 571 |
| Programming tools for digital electronics                                     | GS500 | 577 |
| Fieldbus features                                                             | GS510 | 585 |
| Mounting surface for electrohydraulic valves                                  | P005  | 593 |
| Mounting surface and cavities for cartridge valves                            | P006  | 597 |
| OPERATING INFORMATION                                                         |       |     |
| Operating and maintenance information for ex-proof proportional valves        | FX900 | 603 |
| Operating and maintenance information for ex-proof on-off valves              | EX900 | 613 |
| Operating and maintenance information for intrinsically safe on-off valves    | EX950 | 621 |
| Operating and maintenance information for ex-proof cylinders & servocylinders | BX900 | 627 |
| Operating and maintenance information for ex-proof pumps                      | AX900 | 633 |



## Basics for electrohydraulics in hazardous environments

#### 1 HAZARDOUS ENVIRONMENTS

"Hazardous Environments" are areas where flammable liquids, gases, vapors or combustible dust exist in sufficient quantities to produce explosions or fire.

Oil & gas, chemical, mining and power plants are highly-sensitive environments where the presence of a potentially explosive atmosphere can accidentally or permanently occur.

In these environments an accidental failure or a wrong operation could cause the ignition of the surrounding explosive atmosphere with fatal consequences for human and goods safety, therefore all electrohydraulic equipment operating in these areas must be suitable for hazardous environments and must be certified according to international standards.

## The purpose of this document is to provide general information about worldwide certifications for hazardous environments and relevant classifications

Typical hazardous environments can be found in the following sectors:

| Presence of Gas and Vapors |                                                        | Presence of Combustible Dust |                                          |  |  |  |
|----------------------------|--------------------------------------------------------|------------------------------|------------------------------------------|--|--|--|
| ÄÀ                         | Oil & Gas<br>Offshore drilling                         | 本業本                          |                                          |  |  |  |
| her                        | Oil refineries Chemical plants Power plants LNG plants |                              | Chemical & fertilizers<br>Pharmaceutical |  |  |  |
|                            | Petroleum & LNG vessels                                | 0 ==<br>0 ==<br>0 0 ==       | Wood & paper                             |  |  |  |
| 7                          | Aerospace industry                                     |                              | Metal processing                         |  |  |  |
|                            | Coal mines                                             | 0                            | Recycling operations                     |  |  |  |

#### 2 CERTIFICATIONS

Equipment with electrical parts designed for hazardous environments must be certified by third parties (notified bodies) in compliance with international standards for explosion protection.

There are several certifications concerning explosive environments and they are governed by local laws of the countries where they are applied.

In all certifications the basic principles for explosion protection are strictly regulated by severe international standards for explosion protection, as European norms EN60079 or North American NEC500 and 505.

These norms impose specific construction criteria and protection methods for the machinery and components to be used in potentially explosive areas.



X010

#### 3 CERTIFICATIONS FOR ATOS EX PROOF AND INTRINSICALLY SAFE COMPONENTS

Atos ex-proof and Intrinsically safe components are certified with major international certifications, as listed in the following.

Note: see technical table of each specific Atos component to verifiy the available certifications

#### MULTICERTIFICATION

Multicertifications is a great plus offered by Atos, where the same component is provided with the following certifications:



ATEX Directive 2014/34/EU, equipment and protective system intended for use in potentially explosive atmosphere It defines the manufacturing criteria and the safety requirements of the equipment used in potentially explosive environments for presence of gas or flammable dusts, within the European Union.

The Directive provides the classification and marking of components to EN 60079 harmonized norms.



#### **IECEx International Electrotechnical Commission Explosive**

International program for the safety of the equipment installed in a potentially explosive atmosphere, required to access international markets. IECEx provides certification of conformity for electrical equipment and machinery to be used in potential explosive environments and it is based on IEC 60079 standards. The objective of the IECEx is to facilitate international trade of equipment for use in explosive atmospheres.



#### **EAC Eurasian Certification**

It is applicable to the Customs Union Territory Including Russia, Kazakhstan, Belarus, Armenia and Kyrgyzstan It indicates the compliance with the Customs Union Technical Regulation TP TC 012/2011 "safety of equipment intended for use in explosive atmospheres" and it acknowledges the whole ATEX Directive 2014/34/EU.



#### PESO Petroleum and Explosive Safety Organization (earlier known as CCoE)

It approves products distributed within Indian territory for suitability in usage at petroleum or in any place with potentially explosive atmosphere. It is based on harmonized norms and international standards under ATEX and IECEx. Atos multicertified ex-proof valves for gas group II are also certified Peso.



#### **cULus North American Certification**

It is a widely recognized certification across North America (US and Canada).

It provides certification of conformity for equipment and machinery installed in locations where explosion or fire hazards exist due to the presence of flammable gases, combustible dust, or ignitable fibers. It is based on NEC standards



#### MA safety certificate of approval for mining products

Chinese authority for certification of components operating in chinese coal mines. It acknowledges the harmonized norms and international standards under ATEX and IECEx.

The following sections describe the various classifications related to hazardous environments according to certifications available for Atos

The classification is marked on the nameplate of each certified component to state its conformity to the specific hazardous environment and explosive atmosphere.

See section 4 for classifications to ATEX, IECEX, EAC, PESO









See section I for classifications to cULus CULus CULus











#### 4 CLASSIFICATIONS TO ATEX, IECEx, EAC, PESO

The classifications reported in the following sections are those established by the EN and IEC standards related to ATEX and IECEx.

EAC and PESO certifications acknowledge the same classification system of ATEX and IECEx.

An example of classification present on the component nameplate iso shown in the following:

| envi          | ronment       |                      |                      | atmosphere    |                      | environment                            |
|---------------|---------------|----------------------|----------------------|---------------|----------------------|----------------------------------------|
| II            | 2 G           | Ex d                 |                      | IIC           | T6/T5/T4             | Gb                                     |
| Group         | Category      | Mark of<br>Explosion | Protection<br>Method | Gas Group     | Temperature<br>Class | Equipment<br>Protection<br>Level (EPL) |
| see sect. 4.1 | see sect. 4.3 | Proof                | see sect. 4.7        | see sect. 4.4 | see sect. 4.6        | see sect. 4.3                          |

Once the user has classified the area in which the component is intended to be placed, he will be able to define the level of protection of the component.

The evaluation of the risk and consequentially the level of protection required by the equipment passes through two main classifications:

- **A- Environment**: the classification is referred to the location in which the product is intended to be placed Environment is further classified in **Group** and **Zone**.
- **B- Atmosphere**: the classification is referred to the type of explosive substance present in the atmosphere Atmosphere is further classified in **Gas Group**, **Dust Group** and **Temperature**.

#### A- ENVIRONMENT

#### 4.1 Group classification

Explosive environments are classified into Group I for underground mines, and Group II for surface areas

4.2 Zone classification - The Zone classification is not reported on the component nameplate

Explosive environments are classified into **Zone**, identified **0, 1, 2** for **Gas**, and **20, 21, 22** for **Dust**, depending on the time and frequency the explosive substance is present: Zone 2 and 22 are less dangerous than 0, 1 or 20, 21.

Components certified for Zone 0 (or 20) may also be used in Zone 1, 2 (or 21, 22).

#### 4.3 Safety level required: Category and EPL

The Zone is directly linked with the safety level required; a zone with higher risk requires a higher safety level. There are two different classifications: **Category** and **EPL** 

Category: ATEX classifies the safety required level into Category 1, 2, 3 accompanied with letter G for gas and letter D for Dust: Category 1G (or 1D) are safer than 2G, 3G (or 2D, 3D).

Components certified for Category 1 may also be used where Category 2 or 3 is needed.

For Group I the classification is Category M1 or M2 with M1 safer than M2.

**EPL:** IECEx classifies the safety level required into **Equipment Protection Level (EPL) a, b, c** anticipated by letter **G** for gas and **D** for dust depending on the safety level required: Category Ga (or Da) are safer than Gb, Gc (or Db, Dc).

Components certified for EPL Ga (or Da) may also be used where EPL Gb, Gc (or Db, Dc) is needed.

#### **Environment classification**

| Explosive        | Group   | Zone    | Safety level required see 4.3 |     |                |        |
|------------------|---------|---------|-------------------------------|-----|----------------|--------|
| Atmosphere       | see 4.1 | see 4.2 | Category                      | EPL | Atos component |        |
| Gas              | I       | -       | M1                            |     |                | HER    |
| (mining)         | I       | -       | Category EPL Ato              | 1)3 | HIGHER         |        |
|                  |         | 0       | 1G                            | Ga  | 4              |        |
| Gas<br>(surface) | П       | 1       | 2G                            | Gb  | 25             | HIGHER |
|                  |         | 2       | 3G                            | Gc  | 25             | PROTI  |
|                  | II      | 20      | 1D                            | Da  |                |        |
| Dust             | П       | 21      | 2D                            | Db  | 25             | HIGHER |
|                  | II II   | 22      | 3D                            | Dc  | 25             | PROTE  |

1) Atos ex-proof (mining) 2) Atos ex-proof (gas & dust) 3) Atos intrinsically safe (mining) 4) Atos intrinsically safe (gas)

X010

(5) Pumps and cylinders

549

# Ex IECEX EAL @

HIGHER PROTECTION

#### 4.4 Gas Group classification

The classification is based on the minimum ignition energy of the explosive atmosphere in which a component may be installed. The **Gas Groups** are identified **IIA, IIB, IIC** depending on the dangerousness of the substances: group IIA is less dangerous than group IIB and IIC. Components certified for Gas Group IIC may also be used in less dangerous Groups IIB and IIA

#### 4.5 Dust group classification

The classification is based on nominal dimensions and electrical resistivity of particles.

The **Dust Groups** are identified **IIIA**, **IIIB** and **IIIC**, depending on the dangerousness of the substances: group IIIC contains smaller and less electrically resistive substances than group IIIB and IIIA. Components certified for Dust Group IIIC may also be used in less dangerous Groups IIIB and IIIA.

#### 4.6 Temperature class

Based on their maximum surface temperature, the components are classified into **Temperature Classes T1** to **T6** for Gas, whereas for Dust the max surface temperature is directly reported in °C. The maximum surface temperature of the component must be lower than the ignition temperature of the surrounding explosive atmosphere.

Components certified with Temperature Class T6 may also be used in lower Classes T5 to T1

#### **Atmosphere and Temperature class**

| Gas Group         |                                         | Gas type            |                                               |                   |                   |                   |  |  |  |
|-------------------|-----------------------------------------|---------------------|-----------------------------------------------|-------------------|-------------------|-------------------|--|--|--|
| IIC               | Hydrogen                                | Acetylene           |                                               |                   |                   | Carbon disulphide |  |  |  |
| IIB               | City gas<br>Acrylic<br>Nitrile          | Ethylene            | Ethyl glycol<br>Carbon hydrogen               | Ethyl ether       |                   |                   |  |  |  |
| IIA               | Ammonia<br>Methane<br>Ethane<br>Propane | Ethanol<br>n-Butane | Petrol<br>Diesel fuel<br>Fuel oil<br>n-Hexane | Acetal-dehyde     |                   |                   |  |  |  |
| Temperature class | <b>T1</b> < 450°C                       | <b>T2</b> < 300°C   | <b>T3</b> < 200°C                             | <b>T4</b> < 135°C | <b>T5</b> < 100°C | <b>T6</b> < 85°C  |  |  |  |

#### HIGHER PROTECTION

Note: the Temperature class may change depending on the max ambient temperature where the component is installed. In this case two or three different T are reported on the components nameplate (i.e. T6/T5/T4). See technical table of each specific Atos component for Temperature class.

| Dust Group | Dust type           |  |  |  |  |
|------------|---------------------|--|--|--|--|
| IIIC       | Conductive<br>dust  |  |  |  |  |
| IIIB       | Non conductive dust |  |  |  |  |
| IIIA       | Flammable fibers    |  |  |  |  |

HIGHER PROTECTION

For dust explosion proof, the max surface temperature is directly shown (e.g. T85°C)



#### 4.7 Protection method

The ignition of the surrounding explosive atmosphere can be prevented adopting for the component a proper protection method. The protection method is directly linked to the design and manufacturing characteristics of the component.

The table below reports the **Code** related to the protection method adopted along with the relative **Zone** of application.

HIGHER PROTECTION HIGHER PROTECTION

|                                                |                                                                                 |           |             | _ |     |    | 1   |      |                |          |  |
|------------------------------------------------|---------------------------------------------------------------------------------|-----------|-------------|---|-----|----|-----|------|----------------|----------|--|
|                                                |                                                                                 |           |             |   |     | Z  | one |      |                |          |  |
| Protection principle                           | Protection method                                                               |           | Code        |   | Gas |    |     | Dust | Atos component |          |  |
|                                                |                                                                                 |           |             | 0 | 1   | 2  | 20  | 21   | 22             |          |  |
|                                                |                                                                                 |           | da          | Х | Χ   | Χ  | Х   | Х    | Χ              |          |  |
| Prevents transmission of the explosion outside | Flameproof enclosure                                                            | Ex d      | db          |   | Χ   | Х  |     |      |                |          |  |
|                                                |                                                                                 | dc X ta X |             |   |     | 12 |     |      |                |          |  |
|                                                | Protection by enclosure                                                         |           | ta          |   |     |    | Х   | Х    | Χ              |          |  |
| Dust explosion proof                           |                                                                                 | Ex t      | tb          |   |     |    |     | Χ    | Χ              | <u> </u> |  |
|                                                |                                                                                 |           | tc          |   |     |    |     |      | Χ              | 2        |  |
|                                                |                                                                                 |           | ia          | Χ | Χ   | Χ  |     |      |                |          |  |
| Low current / voltage supply                   | Intrinsically safe                                                              | Exi       | ib          |   | Χ   | Х  |     |      |                | 34       |  |
|                                                |                                                                                 |           | tc          |   |     | Χ  |     |      |                |          |  |
| Non-electrical                                 | Construction safety Control of igniction sources Protection by liquid immersion | Ex h      | c<br>b<br>k |   | X   | X  |     | Х    | X              | 5        |  |

1 Atos ex-proof (mining)

2 Atos ex-proof (gas & dust)

3 Atos intrinsically safe (mining)

4 Atos intrinsically safe (gas)

⑤ Pumps and cylinders

#### 4.8 Painting

According to EN60079-0 the valves can be coated with a non-metallic material (i.e. painting), observing the maximum thickness:

Group IIC < 0,2 mm max

**Group IIB** < 0,3 mm max

Group IIA < 0,3 mm max

### 5 CLASSIFICATIONS TO cULus



The classification of explosive environments in cULus certification is regulated by NEC Standards (National Electric Code) and it is based on NEC 500 and NEC 505 articles.

NEC 500 covers the requirements for the classification system in Classes I, II, II and Divisions 1 and 2.

NEC 505 covers the requirements for the classification system in Zones (Zone 0, 1, and 2) as alternative to the NEC 500.

An example of classification present on the component nameplate is shown in the following:

#### **NEC 500**

| Class I       | Division I    | Groups C & D  | T6/T5             |  |
|---------------|---------------|---------------|-------------------|--|
|               |               |               |                   |  |
|               |               | Gas Groups    | Temperature Class |  |
| see sect. 5.1 | see sect. 5.3 | see sect. 5.2 | see sect. 5.5     |  |

#### **NEC 505**

| Class I       | Zone I        | Groups IIA & IIB | T6/T5             |  |
|---------------|---------------|------------------|-------------------|--|
|               |               |                  |                   |  |
|               |               | Gas Groups       | Temperature Class |  |
| see sect. 5.1 | see sect. 5.4 | see sect. 5.2    | see sect. 5.5     |  |

### 5.1 Class classification - NEC 500 and NEC 505

Location where explosive substances are present in the atmosphere are classified as:

Class I where flammable vapors and gases may be present

Class II and Class III where combustible dust and easily ignitable fibers may be present

### 5.2 Group classification

**NEC 500:** based on the ignition temperatures and explosion pressure, NEC 500 classifies gases and dust into Groups, identifying **Group A, B, C, D** for **Gases** and **Group E, F, G** for **Dusts**. Group D (or G) is less dangerous than Groups A, B, C (or E, F). Components certified with Group A (or E) may also be used in lower Group B to D (or F to G).

NEC 505: the Gas Groups have the same classifications as per IECEx, as reported in the following table for comparison with NEC 500.

| Explosive                               |                                                                                                        |           | Gro     | up               | Atos      |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|---------|------------------|-----------|--|
| atmosphere Typical hazard material      |                                                                                                        | Class     | NEC 500 | NEC 505          | component |  |
|                                         | Acetylene                                                                                              | Class I   | А       | IIC              |           |  |
| Gases,                                  | Hydrogen, Butadiene, Ethylene Oxide, Propylene Oxide                                                   | Class I   | В       | IIC or<br>IIB+H2 |           |  |
| vapors<br>and liquids                   | Ethylene, Formaldehyde, Cyclopropane, Ethyl Ether, etc                                                 |           | С       | IIB              |           |  |
|                                         | Methane, Butane, Petrol, Natural gas, Propane, Gasoline                                                | Class I   | D       | IIA              |           |  |
|                                         | Metallic dusts (conductive and explosive)                                                              | Class II  | E       | IIIC             |           |  |
| Dusts                                   | Coal dusts (some are conductive and all are explosive)                                                 | Class II  | F       | IIIC             |           |  |
|                                         | Grain dust                                                                                             | Class II  | G       | IIIB             |           |  |
| Solid combustible, fibres and particles | Textile products, wood, paper, cotton processing (easily flammable, but does not risk to be explosive) | Class III | -       | IIIA             |           |  |

#### 5.3 Division classification - only for NEC 500 Standard



Each of the three Classes described in section 5.1 is further subdivided into two Divisions:

Division 1 includes explosive substances that are continuously, intermittently or periodically present in the atmosphere.

The ignitable concentrations of above substances exist under normal conditions or it is caused by frequent maintenance or by equipment failure.

Division 2 includes explosive substances present under "unusual" circumstances.

Above substances are normally contained into sealed containers or into closed systems from which they can only escape through accidental rupture or breakdowns of such containers.

The installation and requirements for **Division 1** are more restrictive than for **Division 2**. Components certified with Division 1 may also be used when Division 2 is required.

#### 5.4 Zone classification - only for NEC 505 Standard

NEC 505 Standard introduces the Zone classification:

Zone 0 defines locations in which an explosive gas is present continuously or for long periods during normal operation.

Zone 1 defines locations in which ignitable concentrations of gas exist under normal operation or it is caused by frequent maintenance or equipment failure.

Zone 2 defines the area in which an explosive gas is not likely to occur or it will exist only for a short time

Component certified with Zone 0 may be used when Zone 1 is required.

The following table reports a comparison between Division classification to NEC 500 and Zone classification to NEC 505 Standards.

|         | Continuous Hazard     | Intermittent hazard     | Hazard under abnormal conditions |
|---------|-----------------------|-------------------------|----------------------------------|
| NEC 500 | Divis                 | Division 2              |                                  |
| NEC 505 | Zone 0 (Zone 20 dust) | Zone 1 (Zone 21 dust) 1 | Zone 2 (Zone 22 dust)            |

1 Atos ex-proof /UL

### 5.5 Temperature classes

The temperature classes designate the maximum operating temperatures of the equipment surface which must not exceed the ignition temperature of the surrounding atmosphere.

X010

The temperature class is marked on the component nameplate.

### Products certified with temperature class T6 may also be used in lower classes T5 to T1

| 0-4- | Max surface | Max surface Temperature |           |  |  |  |  |
|------|-------------|-------------------------|-----------|--|--|--|--|
| Code | [°C]        | [°F]                    | component |  |  |  |  |
| T6   | 85          | 185                     | 1)        |  |  |  |  |
| T5   | 100         | 212                     | 2         |  |  |  |  |
| T4A  | 120         | 248                     |           |  |  |  |  |
| T4   | 135         | 275                     | 3         |  |  |  |  |
| T3C  | 160         | 320                     |           |  |  |  |  |
| T3B  | 165         | 329                     |           |  |  |  |  |
| ТЗА  | 180         | 356                     |           |  |  |  |  |
| Т3   | 200         | 392                     | 4         |  |  |  |  |
| T2D  | 215         | 419                     |           |  |  |  |  |
| T2C  | 230         | 446                     |           |  |  |  |  |
| T2B  | 260         | 500                     |           |  |  |  |  |
| T2A  | 280         | 536                     |           |  |  |  |  |
| T2   | 300         | 572                     |           |  |  |  |  |
| T1   | 450         | 842                     |           |  |  |  |  |

HIGHER PROTECTION

#### Note:

the Temperature class may change depending on the max ambient temperature where the component is installed. In this case two different T are reported on the components nameplate (i.e. T6/T5).

See technical table of each specific Atos component for Temperature Class.

- 1 Atos ex-proof ON-OFF Tamb up to +55°C
- (2) Atos ex-proof ON-OFF Tamb from +55°C to +70°C
- 3 Atos ex-proof proportionals Tamb up to +55°C
- 4 Atos ex-proof proportionals Tamb from +55°C to +70°C

### 6 ATEX vs. cULus (NEC)

The following tables report a comparison between ATEX and cULus (NEC) classification systems.

**Note:** due to the different nature Atex and cULus systems, the direct comparison is not fully applicable. The comparison is just to be used as a general reference for transition from one system to the other.

### 6.1 Comparison concerning the classification of hazardous environments due to the presence of Gas or Dust

#### Gas

| ATEX            | Zone 0 Zone 1               |            | Zone 2              |
|-----------------|-----------------------------|------------|---------------------|
| cULus (NEC 505) | <b>Lus (NEC 505)</b> Zone 0 |            | Zone 2              |
| cULus (NEC 500) | Class I, I                  | Division I | Class I, Division 2 |

#### Dust

| ATEX            | ATEX Zone 20 |            | Zone 22              |
|-----------------|--------------|------------|----------------------|
| cULus (NEC 505) | Zone 20      | Zone 21    | Zone 22              |
| cULus (NEC 500) | Class II,    | Division I | Class II, Division 2 |

### 6.2 Comparison concerning the classification of Gas Groups

|                 | Gas type |          |          |           |  |  |  |  |
|-----------------|----------|----------|----------|-----------|--|--|--|--|
|                 | Propane  | Ethylene | Hydrogen | Acetylene |  |  |  |  |
| ATEX            | IIA      | IIB      | IIC      | IIC       |  |  |  |  |
| cULus (NEC 505) | IIA      | IIB      | IIC      | IIC       |  |  |  |  |
| cULus (NEC 500) | D        | С        | В        | А         |  |  |  |  |

Note: the direct comparison concerning Dust Group is not possible since the classification criteria between ATEX and cULus are consistently different

### 6.3 Comparison concerning the Temperature Classes for Gas Group II

| ATEX | cULus (NEC 505) | cULus (NEC 500) | Max surface temperature [°C] | Max surface temperature [°F] |
|------|-----------------|-----------------|------------------------------|------------------------------|
| T6   | T6              | Т6              | 85                           | 185                          |
| T5   | T5              | T5              | 100                          | 212                          |
|      |                 | T4A             | 120                          | 248                          |
| T4   | T4              | T4              | 135                          | 275                          |
|      |                 | T3C             | 160                          | 320                          |
|      |                 | T3B             | 165                          | 329                          |
|      |                 | ТЗА             | 180                          | 356                          |
| T3   | Т3              | Т3              | 200                          | 392                          |
|      |                 | T2D             | 215                          | 419                          |
|      |                 | T2C             | 230                          | 446                          |
|      |                 | T2B             | 260                          | 500                          |
|      |                 | T2A             | 280                          | 536                          |
| T2   | T2              | T2              | 300                          | 572                          |
| T1   | T1              | T1              | 450                          | 842                          |

### 7 ATOS COMPONENTS EXEMPTED FROM CERTIFICATION AND MARKING

Atos hydraulic components made only by mechanical parts and not equipped with electrical functions are exempted from certification because their functioning does not generate dangerous conditions for the explosive environment.

The safe application of these components in hazardous environments is justified by following analysis:

- All the internal parts of the components are separated and insulated from the external environment by means of pressure-proof seals.

  The internal volumes are filled by the hydraulic fluid, thus there are no volumes which can be saturated by the external explosive atmosphere.
- The operation of mechanical parts does not produce potential sources of ignition of the explosive gas mixture.
- The functioning of the mechanical parts does not create conditions as overheating which may cause the explosion of the surrounding atmosphere.

The following components are included in this range:

- On-off pressure control valves (without solenoid pilot) type CART-\*, ARE, ARAM, AGAM, AGIR, AGIS, AGIU, REM
- Flow control valves type QV, AQFR
- Check valves type DB, DR, ADR, ADRL, AGRL, AGRLE
- Modular valves type HMP, HM, KM, HS, KS, HG, KG, JPG, HC, KC, JPC, HQ, KQ, JPQ, HR, KR, JPR (modular fast/slow valves type DHQ and pressure switch type MAP, cannot be used in potentially explosive atmosphere)
- On off Mechanical, Hydraulic, Pneumatic operated valves
- On-off ISO cartridges, type SC LI and ISO functional covers without solenoid pilot valve.

### 8 INGRESS PROTECTION (IP)

The "Ingress Protection" identifies the environmental protection of a device defined in IEC Standard 60529.

The IP classification system designates, by means of two digits, the degree of protection provided by a device against ingress of dust and water.

| FIRST | DEGREE OF PROTECTION<br>AGAINST SOLID OBJECTS                      | SECOND | DEGREE OF PROTECTION<br>AGAINST WATER                                                         | Atos<br>component |
|-------|--------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|-------------------|
| 0     | Non-protected                                                      | 0      | Non-protected                                                                                 |                   |
| 1     | Protected against a solid object with diameter greater than 50 mm  | 1      | Protected against water dripping vertically, such as condensation                             |                   |
| 2     | Protected against a solid object with diameter greater than 12 mm  | 2      | Protected against dripping water when tilted up to 15°                                        |                   |
| 3     | Protected against a solid object with diameter greater than 2.5 mm | 3      | Protected against water spraying at an angle of up to 60°                                     |                   |
| 4     | Protected against a solid object with diameter greater than 1.0 mm | 4      | Protected against water splashing from any direction                                          |                   |
| 5     | Dust-protected. Prevents ingress of dust sufficient to cause harm  | 5      | Protected against jets of water from any direction                                            |                   |
| 6     | Dust tight. No dust ingress                                        | 6      | Protection against heavy seas or powerful jets of water                                       | 1)2               |
|       |                                                                    | 7      | Protected against harmful ingress of water when immersed between a depth of 150 mm to 1 meter | 1)                |
|       |                                                                    | 8      | Protected against submersion. Suitable for continuous immersion in water                      |                   |

1 Atos ex-proof multicertification (mining / surface) = IP66/67

2 Atos intrinsically safe = IP66

The ingress protection of cULus certified components is "Raintight enclosure, UL approved"

### 8.1 Comparison between IEC and NEMA standards

An equivalent classification of the enclosures degrees of protection, for the USA market, is defined according to NEMA Standard. **Note:** the direct comparison is not possible since the classification criteria are consistently different between IEC and NEMA. The comparison is just to be used as a general reference for transition from one system to another.

| NEMA     | 1  | 2  | 3 | ЗХ | 3R | 3RX | 3S | 3SX | 4 | 4X | 5  | 6  | 6P | 12 | 12K | 13 |
|----------|----|----|---|----|----|-----|----|-----|---|----|----|----|----|----|-----|----|
| IEC (IP) | 20 | 22 | 5 | 5  | 2  | 4   | 5  |     | 6 | 6  | 53 | 67 | 68 | 54 |     |    |



# **Summary of Atos ex-proof components**









Atos ex-proof components are electrohydraulic equipment for industrial and mobile applications, designed to operate in hazardous environments in presence of flammable liquids, gases, vapors or combustible dust.

They are certified by independent notified bodies in conformity to ATEX, IECEx, EAC and PESO standards.

### 1 PRODUCTS RANGE

#### 1.1 PROPORTIONAL and ON-OFF VALVES

multicertified to ATEX, IECEx, EAC, PESO

The certification for proportional and on-off valves is relevant to solenoids, on-board electronic drivers and transducers.

These components are engineered and manufactured according to protection method **Ex-d** (code **Ex-t** for dust environements), where internal parts are sealed inside a ruggedized **flameproof enclosure**, granting high protection to the risk of explosion, see section 2

The mechanical parts likes body, spools, etc, are strictly derived from highly engineered standard components.

They are not involved in the certification since their functioning does not represent a potential risk for the explosive environment.

| Product             | Component                                                           | Driver    | Environment | Multicertification |       |     |                 | Marking     |
|---------------------|---------------------------------------------------------------------|-----------|-------------|--------------------|-------|-----|-----------------|-------------|
| Category            | Component                                                           | Driver    | Environment | ATEX               | IECEx | EAC | PESO            | Marking     |
|                     | Servoproportional directionals High preformance directionals        | on-board  | Gas & Dust  | Χ                  | Х     |     |                 | see sect. 4 |
| Proportional valves | Directional valves High performance pressure valves Pressure valves | off-board | Gas & Dust  | Χ                  | X     | X   | X<br>(only Gas) | see sect. 5 |
|                     | Flow valves                                                         |           | Mining      | Χ                  | X     |     |                 | see sect. 7 |
| Axis<br>controls    | Servoproportional directionals                                      | on-board  | Gas & Dust  | Χ                  | Х     |     |                 | see sect. 4 |
| On-off<br>valves    | Directional valves Pressure relief valves                           | -         | Gas & Dust  | Χ                  | X     | X   | X<br>(only Gas) | see sect. 6 |
|                     |                                                                     |           | Mining      | Χ                  | Х     |     |                 | see sect. 8 |

### 1.2 PUMPS and CYLINDERS

Hydraulic components without electrical parts are also subject to the requirements of ATEX Directive 2014/34/EU, but the certification is not mandatory (it can be performed on voluntary basis).

PVPCA variable displacement axial piston pumps, PFEA fixed displacement vane pumps and CKA hydraulic cylinders, are ATEX certified to **Ex-h** protection. The protection method Ex-h combines the characteristics of construction safety (Ex-c), control of ignition source (Ex-b) and protection by liquid immersion (Ex-k)

| Product<br>Category | Component                                                                          | Environment | Certification | Marking      |
|---------------------|------------------------------------------------------------------------------------|-------------|---------------|--------------|
| Pumps               | PVPCA - variable displacement piston pumps<br>PFEA - fixed displacement vane pumps | Gas & Dust  | ATEX          | see sect. 9  |
| Cylinder            | CKA - hydraulic cylinders<br>CKAM - hydraulic servocylinders                       | Gas & Dust  | ATEX          | see sect. 10 |

### 2 FLAMEPROOF ENCLOSURE - Ex-d

#### **Technical characteristics**

It is characterized by a strong mechanical construction, capable of withstanding the overpressure caused by a potential internal explosion and preventing the spread of flames to the external environment. It permits to dissipate the heat generated by the solenoid and driver power, in order to limit the surface temperature within certified classes (T6, T5, etc), to avoid the self-ignition of the surrounding flammable atmosphere. The rugged design of the flameproof enclosure, combined with IP66/67 ingress protection, makes the ex-proof valves suited for application in harsh environments.

#### **Electrical wiring**

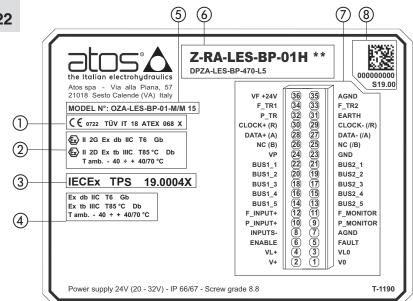
The electrical wiring to the terminal board of ex-proof solenoids, on-board digital drivers and transducers must be performed using ex-proof certified cable glands, see tech. table KX600.

Electric cables must be approved for the specific temperature class reported on the ex-proof component's nameplate, refer to specific tech. table of ex-proof valves for cable temperature.

### 3 NAMEPLATE MARKING

The ex-proof certified components are provided with a specific nameplate reporting the certificate number, the notified body and the classification according to the relevant certification.

The classification identifies the protection method and the compatibility of the ex-proof component for a specific hazardous environment.


The following sections provide a detailed description of the nameplate marking for component categories.

### 4 PROPORTIONAL VALVES WITH ON-BOARD DIGITAL DRIVER / AXIS CONTROLLER

Driver nameplate marking to ATEX and IECEx



- 1 ATEX notified body and certificate number
- (2) Marking according to ATEX Directive
- 3 IECEx notified body and certificate number
- (4) Marking according to IECEx Scheme
- **(5)** Code of solenoid
- 6 Code of on-board driver and related proportional valve
- (7) Electronic connections
- 8 Qr code and driver serial number



### ATEX / IECEX classification - for Gas group II

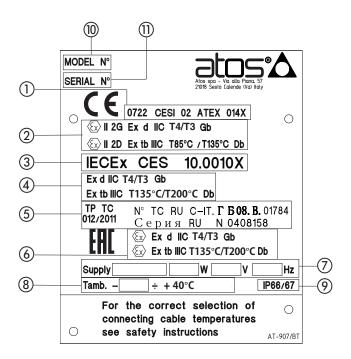
| II 2 G                               | Ex                         | d                             | IIC                      | T6/T5/T4                               | Gb                                     |
|--------------------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------------|----------------------------------------|
|                                      |                            |                               |                          |                                        |                                        |
| Equipment Group II industrial        |                            |                               |                          |                                        |                                        |
| Equipment Category 2 High Protection |                            | Protection Method             | Gas Group                | Temperature Class<br>T6 ≤ 85°C         | Equipment<br>Protection Level          |
| Suitable for use<br>G Gas            | Mark of<br>Explosion Proof | <b>d</b> Flameproof enclosure | IIC Hydrogen & Acetylene | <b>T5</b> ≤ 100°C<br><b>T4</b> ≤ 135°C | <b>Gb</b> High protection (Gas, Zone1) |

#### ATEX / IECEX classification - for Dust

| II 2 D                        | Ex                         | tb                                | IIIC                    | T85/T100/T135                              | Db                                       |
|-------------------------------|----------------------------|-----------------------------------|-------------------------|--------------------------------------------|------------------------------------------|
|                               |                            |                                   |                         |                                            |                                          |
| Equipment Group II industrial |                            |                                   |                         |                                            |                                          |
| Equipment Category            |                            |                                   |                         | Temperature Class                          | Equipment                                |
| 2 High Protection             |                            | Protection Method                 | Dust Group              | <b>T85</b> ≤ 85°C                          | Protection Level                         |
| Suitable for use<br>D Dust    | Mark of<br>Explosion Proof | <b>tb</b> Protection by enclosure | IIIC Conductive<br>Dust | <b>T100</b> ≤ 100°C<br><b>T135</b> ≤ 135°C | <b>Db</b> High protection (Dust, Zone21) |

#### RELATED DOCUMENTATION

FX320 LIMZA-RES, LIRZA-RES, LICZA-RES - relief, reducing, compensator


| Servop    | roportional directional - zero overlap with LVDT transducer    | Pressu  | re valves - without transducer                   |
|-----------|----------------------------------------------------------------|---------|--------------------------------------------------|
| FX150     | DLHZA-TES, DLKZA-TES - direct, sleeve execution                | FX020   | RZMA-AES, AGMZA-AES - relief                     |
| FX135     | DHZA-TES, DKZA-TES - direct                                    | FX050   | RZGA-AES, AGRCZA-AES - reducing                  |
| FX235     | DPZA-LES, piloted                                              | FX080   | DHRZA-AES - reducing                             |
| FX380     | LIQZA-LES, 3-way cartridge                                     | FX310   | LIMZA-AES - relief                               |
|           |                                                                |         | LIRZA-AES - reducing                             |
| High pe   | erformance directional - positive overlap with LVDT transducer |         | LICZA-AES - compensator                          |
| FX130     | DHZA-TES, DKZA-TES - direct                                    |         | '                                                |
| FX230     | DPZA-LES - piloted                                             | Flow va | alves, pressure compensated                      |
| FX360     | LIQZA-LES, 2-way cartridge                                     | FX430   | QVHZA-TES, QVKZA-TES - with LVDT transducer      |
|           |                                                                | FX410   | QVHZA-AES, QVKZA-AES - without transducer        |
| Direction | onal valves - positive overlap without transducer              |         |                                                  |
| FX110     | DHZA-AES, DKZA-AES - direct                                    | Servop  | roportional valves with on-board axis controller |
| FX210     | DPZA-AES - piloted                                             | FX610   | DLHZA-TEZ, DLKZA-TEZ – direct, sleeve execution  |
|           | '                                                              | FX620   | DHZA-TEZ, DKZA-TEZ - direct                      |
| High pe   | erformance pressure valves - with pressure transducer          | FX630   | DPZA-LEZ - piloted                               |
| FX030     | RZMA-RES, AGMZA-RES - relieft                                  |         | F                                                |
| FX060     | RZGA-RES, AGRCZA-RES - reducing                                |         |                                                  |

### 5 PROPORTIONAL VALVES WITH OFF-BOARD DIGITAL DRIVER

Solenoid nameplate marking to ATEX, IECEx, EAC and PESO

# Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22

- ATEX notified body and certificate number
- (2) Marking according to ATEX Directive
- (3) IECEx notified body and certificate number
- Marking according to IECEx Scheme
- (5) EAC notified body and certificate number
- (6) Marking according to EAC
- 7 Power supply characteristics
- 8 Ambient temperature
- 9 Ingress protection:
  - -IP66 = no dust ingress, protection against heaving seas or powerful jets of water
  - -IP67 = no dust ingress, protection to water immersion
- (10) Solenoid model code
- (11) Solenoid serial number



Note: PESO certificate number is not reported on the component nameplate, it is reported in the components technical table. The certificate can be downloaded from www.atos.com

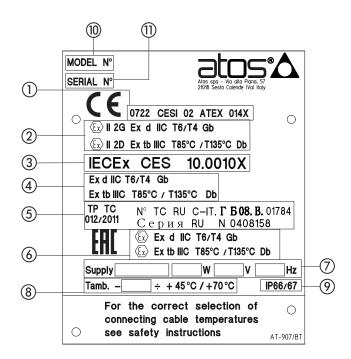
#### ATEX / IECEX / EAC / PESO classification - for Gas group II

| II 2 G                               | Ex                         | d                      | IIC                      | T4 / T3                                | Gb                                     |
|--------------------------------------|----------------------------|------------------------|--------------------------|----------------------------------------|----------------------------------------|
| Equipment Group II industrial        |                            |                        |                          |                                        |                                        |
| Equipment Category 2 High Protection |                            | Protection Method      | Gas Group                | Temperature Class                      | Equipment<br>Protection Level          |
| Suitable for use<br>G Gas            | Mark of<br>Explosion Proof | d Flameproof enclosure | IIC Hydrogen & Acetylene | <b>T4</b> ≤ 135°C<br><b>T3</b> ≤ 200°C | <b>Gb</b> High protection (Gas, Zone1) |

### ATEX / IECEx / EAC classification - for Dust

| II 2 D                               | Ex                         | tb                                | IIIC                    | T135 / T200                               | Db                                       |
|--------------------------------------|----------------------------|-----------------------------------|-------------------------|-------------------------------------------|------------------------------------------|
| Equipment Group II industrial        |                            |                                   |                         |                                           |                                          |
| Equipment Category 2 High Protection |                            | Protection Method                 | Dust Group              | Temperature Class                         | Equipment<br>Protection Level            |
| Suitable for use D Dust              | Mark of<br>Explosion Proof | <b>tb</b> Protection by enclosure | IIIC Conductive<br>Dust | <b>T85</b> ≤ 135°C<br><b>T135</b> ≤ 200°C | <b>Db</b> High protection (Dust, Zone21) |

#### RELATED DOCUMENTATION


| Servop                  | roportional directional - zero overlap with LVDT transducer         | Pressu                            | re valves - without pressure transducer                                         |  |
|-------------------------|---------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------|--|
| FX140<br>FX370          | DLHZA-T DLKZA-T - direct, sleeve execution LIQZA-L, 3-way cartridge | FX010<br>FX040                    | RZMA-A, HZMA-A, AGMZA-A - relief<br>RZGA-A, AGRCZA-A, HZGA-A, KZGA-A - reducing |  |
| High pe                 | rformance directional - positive overlap with LVDT transducer       | FX070<br>FX300                    | DHRZA-A - reducing<br>LIMZA-A - relief                                          |  |
| FX120<br>FX220<br>FX350 | DHZA-T, DKZA-T - direct DPZA-T - piloted LIQZA-L, 2-way cartridge   |                                   | LIRZA-A - reducing<br>LICZA-A - compensator                                     |  |
| Direction               | onal valves - positive overlap without transducer                   | Flow valves, pressure compensated |                                                                                 |  |
| FX100<br>FX200          | DHZA-A, DKZA-A - direct<br>DPZA-A - piloted                         | FX420<br>FX400                    | QVHZA-T, QVKZA-T - with LVDT transducer QVHZA-A, QVKZA-A - without transducer   |  |

### 6 ON-OFF VALVES

Nameplate marking to ATEX, IECEx, EAC and PESO

# Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22

- 1 ATEX notified body and certificate number
- Marking according to ATEX Directive
- (3) IECEx notified body and certificate number
- Marking according to IECEx Scheme
- EAC notified body and certificate number
- 6 Marking according to EAC
- 7 Power supply characteristics
- 8 Ambient temperature
- (9) Ingress protection:
  - -IP66 = no dust ingress, protection against heaving seas or powerful jets of water
  - -IP67 = no dust ingress, protection to water immersion
- (10) Solenoid model code
- (11) Solenoid serial number



Note: PESO certificate number is not reported on the component nameplate, it is reported in the components technical table. The certificate can be downloaded from www.atos.com

#### ATEX / IECEX / EAC / PESO classification - for Gas group II

| II 2 G                               | Ex                         | d                      | IIC                      | T6 / T4                               | Gb                                     |
|--------------------------------------|----------------------------|------------------------|--------------------------|---------------------------------------|----------------------------------------|
| Equipment Group II industrial        |                            |                        |                          |                                       |                                        |
| Equipment Category 2 High Protection |                            | Protection Method      | Gas Group                | Temperature Class                     | Equipment<br>Protection Level          |
| Suitable for use<br>G Gas            | Mark of<br>Explosion Proof | d Flameproof enclosure | IIC Hydrogen & Acetylene | <b>T6</b> ≤ 85°C<br><b>T4</b> ≤ 135°C | <b>Gb</b> High protection (Gas, Zone1) |

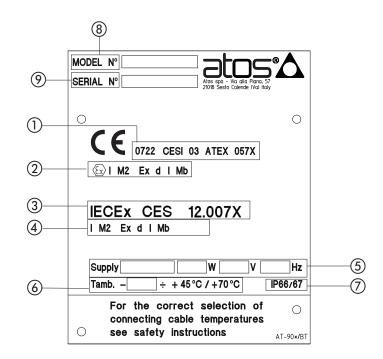
### ATEX / IECEx / EAC classification - for Dust

| II 2 D                               | Ex                         | tb                                | IIIC                    | T85 / T135                               | Db                                       |
|--------------------------------------|----------------------------|-----------------------------------|-------------------------|------------------------------------------|------------------------------------------|
| Equipment Group II industrial        |                            |                                   |                         |                                          |                                          |
| Equipment Category 2 High Protection |                            | Protection Method                 | Dust Group              | Temperature Class                        | Equipment<br>Protection Level            |
| Suitable for use D Dust              | Mark of<br>Explosion Proof | <b>tb</b> Protection by enclosure | IIIC Conductive<br>Dust | <b>T85</b> ≤ 85°C<br><b>T135</b> ≤ 135°C | <b>Db</b> High protection (Dust, Zone21) |

### RELATED DOCUMENTATION

#### 

### Pressure relief valves


CX070 AGAM-AO, ARAM-AO - piloted, with solenoid valve for venting

### 7 PROPORTIONAL VALVES WITH OFF-BOARD DIGITAL DRIVER

Nameplate marking to ATEX and IECEx

### Gas - group I M2 - Mining

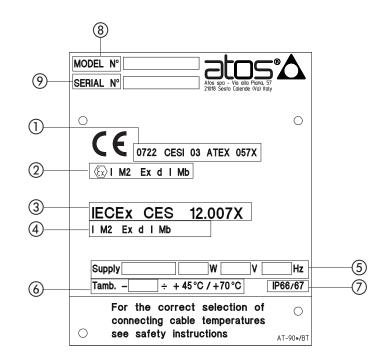
- 1 ATEX notified body and certificate number
- (2) Marking according to ATEX Directive
- (3) IECEx notified body and certificate number
- 4 Marking according to IECEx Scheme
- 5 Power supply characteristics
- 6 Ambient temperature
- (7) Ingress protection:
  - -IP66 = no dust ingress, protection against heaving seas or powerful jets of water
  - -IP67 = no dust ingress, protection to water immersion
- 8 Solenoid model code
- Solenoid serial number



### ATEX, IECEx classification - for Gas group I - Mining

| I M2                                  | Ex                      | d                             | I                    | Mb                                             |
|---------------------------------------|-------------------------|-------------------------------|----------------------|------------------------------------------------|
| Equipment Group                       |                         | Protection Method             |                      | Equipment Protection Level  Mb High protection |
| Equipment Category M2 High Protection | Mark of Explosion Proof | <b>d</b> Flameproof enclosure | Gas Group  I Methane | (de-energized with gas presence)               |

### RELATED DOCUMENTATION


| Servop         | roportional directional - zero overlap with LVDT transducer   | Pressu         | re valves - without pressure transducer                                               |
|----------------|---------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| FX140          | DLHZA/M-T DLKZA/M-T – direct, sleeve execution                | FX010<br>FX040 | RZMA/M-A, HZMA/M-A, AGMZA/M-A - relief<br>RZGA/M-A, AGRCZA/M-A, HZGA/M-A, KZGA/M-A    |
| High pe        | rformance directional - positive overlap with LVDT transducer |                | - reducing                                                                            |
| FX120          | DHZA/M-T, DKZA/M-T – direct                                   | FX070<br>FX300 | DHRZA/M-A - reducing<br>LIMZA/M-A - relief                                            |
| Direction      | onal valves - positive overlap without transducer             |                | LIRZA/M-A - reducing                                                                  |
| FX100<br>FX200 | DHZA/M-A, DKZA/M-A - direct<br>DPZA/M-A - piloted             |                | LICZA/M-A - compensator                                                               |
| FAZUU          | DPZA/WI-A - piloted                                           | Flow va        | alves, pressure compensated                                                           |
|                |                                                               | FX420<br>FX400 | QVHZA/M-T, QVKZA/M-T - with LVDT transducer QVHZA/M-A, QVKZA/M-A - without transducer |

### 8 ON-OFF VALVES

### Nameplate marking to ATEX and IECEx

### Gas - group I M2 - Mining

- 1 ATEX notified body and certificate number
- 2 Marking according to ATEX Directive
- (3) IECEx notified body and certificate number
- (4) Marking according to IECEx Scheme
- 5 Power supply characteristics
- 6 Ambient temperature
- 7 Ingress protection:
  - -IP66 = no dust ingress, protection against heaving seas or powerful jets of water
  - -IP67 = no dust ingress, protection to water immersion
- 8) Solenoid model code
- Solenoid serial number



### ATEX, IECEx classification - for Gas group I - Mining

| I M2                                  | Ех                         | d                      |         | I | Mb                                                  |
|---------------------------------------|----------------------------|------------------------|---------|---|-----------------------------------------------------|
| Equipment Group                       |                            | Protection Method      |         |   | Equipment Protection Level                          |
| Equipment Category M2 High Protection | Mark of<br>Explosion Proof | d Flameproof enclosure | Gas Gro | • | Mb High protection (de-energized with gas presence) |

### RELATED DOCUMENTATION

### **Directional valves**

**EX010** DHA/M - direct, spool type

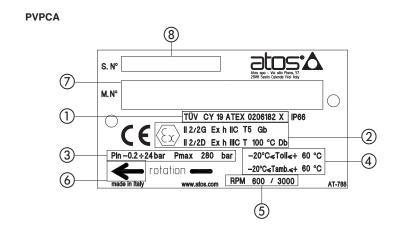
**EX020** DLAH/M, DLAHM/M - direct, poppet type

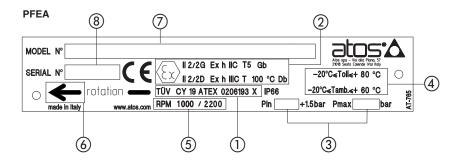
CART-LAH/M, CART-LAHM/M - cartridge screw-in, direct, poppet type

**EX030** DPHA/M - piloted, spool type

**EX050** LIDEW-AO/M, LIDBH-AO/M - piloted ISO cartridges and functional covers

### Pressure relief valves


CX070 AGAM-AO/M, ARAM-AO/M - piloted, with solenoid valve for venting


9 VARIABLE PISTON PUMPS PVPCA and FIXED VANE PUMPS PFEA

Nameplate marking to ATEX and IECEx

# Gas - group II 2/2G - Zone 1, 2 Dust - group II 2/2D - Zone 21, 22

- 1 ATEX notified body and certificate number
- Marking according to ATEX Directive
- (3) Inlet pressure and max delivery pressure
- (4) Oil and Ambient temperature range
- Rotation speed referred to function with mineral oil for other fluid consult Atos technical office
- (6) Direction of rotation
- 7 Pump model code
- 8 Pump serial number





### ATEX classification - for Gas group II

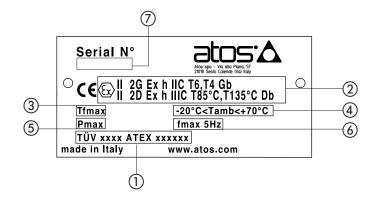
| II 2/2 G                      | Ex                         | h                                                                | IIC                      | <b>T</b> 5                      | Gb                                      |
|-------------------------------|----------------------------|------------------------------------------------------------------|--------------------------|---------------------------------|-----------------------------------------|
| Equipment Group II industrial |                            | Protection Method h Protection including c=constructional safety |                          |                                 |                                         |
| Equipment Category 2/2 (1)    |                            | b=control of ignition source                                     | Gas Group                |                                 | Equipment<br>Protection Level           |
| Suitable for use<br>G Gas     | Mark of<br>Explosion Proof | k=protection by liquid immersion                                 | IIC Hydrogen & Acetylene | Temperature Class<br>T5 ≤ 100°C | <b>Gb</b> High protection (Gas, Zone 1) |

### ATEX classification - for Dust

| II 2/2 D                                 | Ex                         | h                                                          | IIIC                    | T100                           | Db                                        |
|------------------------------------------|----------------------------|------------------------------------------------------------|-------------------------|--------------------------------|-------------------------------------------|
| Equipment Group                          |                            | Protection Method  h Protection including                  |                         |                                |                                           |
| II industrial Equipment Category 2/2 (1) |                            | c=constructional safety<br>b=control of ignition<br>source | Dust Group              |                                | Equipment<br>Protection Level             |
| Suitable for use  D Dust                 | Mark of<br>Explosion Proof | k=protection by liquid immersion                           | IIIC Conductive<br>Dust | Temperature Class T100 ≤ 100°C | <b>Db</b> High protection (Dust, Zone 21) |

(1) Equipment of category 2 to be associated with a device (electric motor) of category 2

### RELATED DOCUMENTATION


AX010 PVPCA - variable displacement axial piston pumps
PFEA - fixed displacement vane pumps

X020

Nameplate marking to ATEX and IECEx

# Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22

- 1 ATEX notified body and certificate number
- 2 Marking according to ATEX Directive
- 3 Max fluid temperature
- 4 Ambient temperature range
- Max working pressure
- 6 Max working frequency
- 7 Cylinder serial number



### ATEX - for Gas group II

| II 2 G                            | Ex                         | h                                                | IIC                      | T6 / T4                               | Gb                                      |
|-----------------------------------|----------------------------|--------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| Equipment Group                   |                            | Protection Method h Protection including         |                          |                                       |                                         |
| II industrial  Equipment Category |                            | c=constructional safety<br>b=control of ignition |                          |                                       | Equipment                               |
| 2 High protection                 |                            | source                                           | Gas Group                | Temperature Class                     | Protection Level                        |
| Suitable for use<br>G Gas         | Mark of<br>Explosion Proof | k=protection by liquid immersion                 | IIC Hydrogen & Acetylene | <b>T6</b> ≤ 85°C<br><b>T4</b> ≤ 135°C | <b>Gb</b> High protection (Gas, Zone 1) |

### ATEX - for Dust

| II 2 D                               | Ex                         | h                                        | IIIC                    | T85 / T135                               | Db                                        |
|--------------------------------------|----------------------------|------------------------------------------|-------------------------|------------------------------------------|-------------------------------------------|
| Equipment Group                      |                            | Protection Method h Protection including |                         |                                          |                                           |
| II industrial                        |                            | c=constructional safety                  |                         |                                          |                                           |
| Equipment Category 2 High protection |                            | b=control of ignition source             | Dust Group              | Temperature Class                        | Equipment<br>Protection Level             |
| Suitable for use  D Dust             | Mark of<br>Explosion Proof | k=protection by liquid immersion         | IIIC Conductive<br>Dust | <b>T85</b> ≤ 85°C<br><b>T135</b> ≤ 135°C | <b>Db</b> High protection (Dust, Zone 21) |

### RELATED DOCUMENTATION

BX500 CKA - cylinders
CKAM - servocylinders with ex-proof digital position transducer



# Summary of Atos ex-proof components certified to cULus



Atos cULus ex-proof components are electrohydraulic equipment for industrial and mobile applications, designed to operate in hazardous environments in presence of flammable liquids, gases, vapors or combustible dust.

They are certified by UL Underwriters Laboratories in conformity to UL 1203, UL429, CSA C22.2 and relevant NEC standards.

### 1 PRODUCTS RANGE

Atos cULus certified ex-proof components range includes proportional valves and on-off valves.

The **UL** certification covers all electrical parts of solenoids and LVDT transducers.

These components are engineered and manufactured according to protection method **Ex d**, where internal parts are sealed inside a ruggedized **flameproof enclosure**, granting high protection to the risk of explosion, see section **2** 

The mechanical parts likes body, spools, etc, are strictly derived from highly engineered standard components.

They are not involved in the certification since their functioning does not represent a potential risk for the explosive environment.

| Product             | C                                                                                                                                            | Driver    | Environment | cULus ce                              | Maukina                               |             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------------------------------------|---------------------------------------|-------------|
| Category            | Component                                                                                                                                    | Driver    | Environment | NEC 500                               | NEC 505                               | Marking     |
| Proportional valves | Servoproportional directionals High preformance directionals Directional valves High performance pressure valves Pressure valves Flow valves | off-board | Gas         | Class I<br>Division I<br>Groups C & D | Class I<br>Zone 1<br>Groups IIA & IIB | see sect. 4 |
| On-off valves       | Directional valves Pressure relief valves                                                                                                    | -         | Gas         | ·                                     |                                       | see sect. 5 |

### 2 FLAMEPROOF ENCLOSURE - Ex d

#### **Technical characteristics**

It is characterized by a strong mechanical construction, capable of withstanding the overpressure caused by a potential internal explosion and preventing the spread of flames to the external environment. It permits to dissipate the heat generated by the solenoid in order to limit the surface temperature within certified classes (T6, T5, etc), to avoid the self-ignition of the surrounding flammable atmosphere. The rugged design of the flameproof enclosure makes the ex-proof valves suited for application in harsh environments.

#### **Electrical wiring**

The electrical wiring to the terminal board of ex-proof solenoids and LVDT transducers must be performed using **UL** certified cable glands, or conduit pipe.

Electric cables must be **UL** approved for the specific temperature class reported on the ex-proof component's nameplate, refer to specific tech. table of ex-proof valves for cable temperature.

### 3 NAMEPLATE MARKING

Atos cULus certified ex-proof components are provided with a specific nameplate reporting the **UL** certificate number and the classification according to the relevant **NEC 500** and **NEC 505** standards.

The classification identifies the compatibility of the ex-proof component for a specific hazardous environment.

The following sections provide a detailed description of the nameplate marking for proportional and on-off valves.

#### 3.1 cULus Listed logo

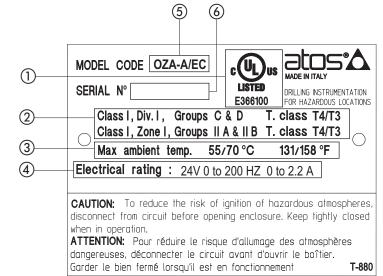


This type of UL logo indicates compliance with both Canadian and U.S. requirements.

Atos ex-proof components are marked with **cULus Listed** logo stating that they have been investigated by UL Underwriters laboratory in accordance with following standards:

-UL 1203 Standard for Explosion-Proof and Dust-Ignition-Proof Electrical Equipment for use in Hazardous (classified) locations

X030


-UL 429 Standard for Electrically Operated valves

-CSA C22.2 No. 139-13 Electrically Operated Valves

### 4 PROPORTIONAL VALVES WITH OFF-BOARD DIGITAL DRIVER

Solenoid nameplate marking to NEC 500 and NEC 505

# Class I, Division I, Groups C & D Class I, Zone 1, Groups IIA & IIB



1 cULus marking and certificate number

(2) Marking according to NEC 500 and NEC 505 standards

3 Ambient temperature

4 Power supply characteristics

(5) Solenoid model code

6 Solenoid serial number

#### **NEC 500 classification**

| Class I                                       | Division I                                                                              | Groups C & D                                                                              | T4/T3                                   |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|
| Class I Equipment for flamable Gas and Vapors | Division I Explosive substances continuosly or intermittently present in the atmosphere | Gas Group  C Methane, Butane, Petrol, etc.  D Ethylene, Formaldehyde, Cloruprophane, etc. | Temperature Class T4 ≤ 135°C T3 ≤ 200°C |

#### **NEC 505 classification**

| Class I                                             | Zone 1                                                            | Groups IIA & IIB                                                                              | T4/T3                                   |
|-----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|
| Class I<br>Equipment for flamable<br>Gas and Vapors | Zone 1 Location where explosive substance are continuosly present | Gas Group  IIA Methane, Butane, Petrol, etc.  IIB Ethylene, Formaldehyde, Cloruprophane, etc. | Temperature Class T4 ≤ 135°C T3 ≤ 200°C |

### RELATED DOCUMENTATION

| Servoproportional directional - zero overlap with LVDT transducer                            | Pressure valves - without pressure transducer                                                                       |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| FX140 DLHZA/UL-T DLKZA/UL-T - direct, sleeve execution                                       | FX010 RZMA/UL-A, HZMA/UL-A, AGMZA/UL-A - relief FX040 RZGA/UL-A, AGRCZA/UL-A, HZGA/UL-A,                            |  |  |
| High performance directional - positive overlap with LVDT transducer                         | KZGA/UL-A - reducing                                                                                                |  |  |
| FX120 DHZA/UL-T, DKZA/UL-T - direct                                                          | FX070 DHRZA/UL-A - reducing FX300 LIMZA/UL-A - relief                                                               |  |  |
| Directional valves - positive overlap without transducer FX100 DHZA/UL-A, DKZA/UL-A - direct | LIRZA/UL-A - reducing<br>LICZA/UL-A - compensator                                                                   |  |  |
| FX200 DPZA/UL-A - piloted                                                                    | Flow valves, pressure compensated                                                                                   |  |  |
|                                                                                              | <b>FX420</b> QVHZA/UL-T, QVKZA/UL-T - with LVDT transducer <b>FX400</b> QVHZA/UL-A, QVKZA/UL-A - without transducer |  |  |

### 5 ON-OFF VALVES

Solenoid nameplate marking to NEC 500 and NEC 505

# Class I, Division I, Groups C & D Class I, Zone 1, Groups IIA & IIB

- cULus marking and certificate number
   Marking according to NEC 500 and NEC 505 standards
- 3 Ambient temperature
- 4 Power supply characteristics
- Solenoid model code
- 6 Solenoid serial number

|            | 5 6                                                                                                                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ①——        | MODEL CODE OA/EC-24DC  SERIAL N°   CULUS MADE IN ITALY  DRILLING INSTRUMENTATION                                                                                                                                                                                                        |
| ②——<br>③—— | Class I, Div. I, Groups C & D T. class T6/T5 Class I, Zone I, Groups II A & II B T. class T6/T5 Max ambient temp. 55/70 °C 131/158 °F  Electrical rating: 24 V DC 12W                                                                                                                   |
| •          | CAUTION: To reduce the risk of ignition of hazardous atmospheres, disconnect from circuit before opening enclosure. Keep tightly closed when in operation.  ATTENTION: Pour réduire le risque d'allumage des atmosphères dangereuses, déconnecter le circuit avant d'ouvrir le boîtier. |
|            | Garder le bien fermé lorsqu'il est en fonctionnement <b>T-880</b>                                                                                                                                                                                                                       |

### **NEC 500 classification**

| Class I                                       | Class I Division I                                                                      |                                                                                          | T6/T5                                  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|
| Class I Equipment for flamable Gas and Vapors | Division I Explosive substances continuosly or intermittently present in the atmosphere | Gas Group  C Methane, Butane, Petrol, etc. D Ethylene, Formaldehyde, Cloruprophane, etc. | Temperature Class T6 ≤ 85°C T5 ≤ 100°C |

### **NEC 505 classification**

| Class I                                       | Zone 1                                                            | Groups IIA & IIB                                                                              | T6/T5                                  |
|-----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|
| Class I Equipment for flamable Gas and Vapors | Zone 1 Location where explosive substance are continuosly present | Gas Group  IIA Methane, Butane, Petrol, etc.  IIB Ethylene, Formaldehyde, Cloruprophane, etc. | Temperature Class T6 ≤ 85°C T5 ≤ 100°C |

### RELATED DOCUMENTATION

| Directio         | nal valves                                                                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| EX010<br>EX020   | DHA/UL - direct, spool type DLAH/UL, DLAHM/UL - direct, poppet type CART-LAH/UL, CART-LAHM/UL - cartridge screw-in, direct, poppet type |
| EX030<br>EX050   | DPHA/UL – piloted, spool type LIDEW-AO/UL, LIDBH-AO/UL - piloted ISO cartridges and functional covers                                   |
| Pressur<br>CX010 | re relief valves  AGAM-AO/UL, ARAM-AO/UL - piloted, with solenoid valve for venting                                                     |



# Summary of Atos ex-proof components certified to MA



Atos MA certified ex-proof components are electrohydraulic equipment designed to operate in hazardous environments of chinese underground mines with presence of methane-air atmosphere or coal dust.

They are certified by an independent notified body in conformity to Chinese Mining Products Safety Approval and Certification Center - MA Center.

Official notification by MA Center states that the product under consideration meets the applicable Regulations for the Implementation of the Law of the People's Republic of China on Safety in Mines.

### 1 PRODUCTS RANGE

Atos MA certified ex-prof range includes on-off solenoid directional valves, direct type.

Atos Sh extended range includes on-off solenoid directional valves, direct & piloted type, plus pressure relief with solenoid pilot.

The MA certification is relevant to the on-off solenoids.

They are engineered and manufactured according to protection method Ex d, where internal parts are sealed inside a ruggedized flameproof enclosure, granting high protection to the risk of explosion, see section 2

The mechanical parts likes body, spools, etc, are strictly derived from highly engineered standard components.

They are not involved in the certification since their functioning does not represent a potential risk for the explosive environment.

| Product<br>Category | Component                                                   | Environment | MA C      | ertification | Marking     |
|---------------------|-------------------------------------------------------------|-------------|-----------|--------------|-------------|
| On-off<br>valves    | Directional valves, direct & piloted Pressure relief valves | Gas         | Ex d I Mb |              | see sect. 4 |

### 2 FLAMEPROOF ENCLOSURE - Ex d

### **Technical characteristics**

It is characterized by a strong mechanical construction, capable of withstanding the overpressure caused by a potential internal explosion and preventing the spread of flames to the external environment. It permits to dissipate the heat generated by the solenoid and driver power, in order to limit the surface temperature, to avoid the self-ignition of the surrounding flammable atmosphere.

The rugged design of the flameproof enclosure, makes the ex-proof valves suited for application in harsh environments.

### **Electrical wiring**

The MA certified ex-proof solenoids are provided with a built-in cable gland for the electrical wiring to the terminal board.

### 3 NAMEPLATE MARKING

Atos MA certified ex-proof components are provided with a specific nameplate reporting the MA certificate number, the notified body and the classification according to the MA certification.

The classification identifies the protection method and the compatibility of the ex-proof component for mining hazardous environment.

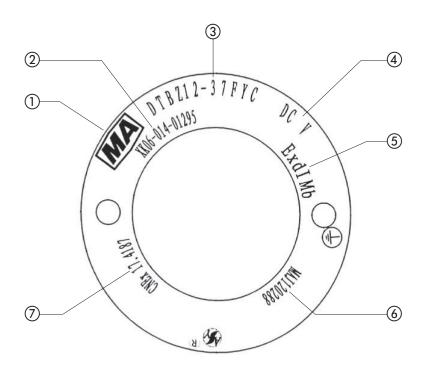
The following section provides a detailed description of the nameplate marking.

### Nameplate marking to MA

### Gas - group I Mb - Mining

1 MA logo

2 License


3 Solenoid model code

4 Power supply characteristics

MA classification for Mining

(6) MA certificate number

(7) Notified body and certificate number



### MA classification - for Gas group I - Mining

| Ex              | d                      | I         | Mb                            |
|-----------------|------------------------|-----------|-------------------------------|
| Mark of         | Protection Method      | Gas Group | Equipment<br>Protection Level |
| Explosion Proof | d Flameproof enclosure | I Methane | Mb High protection            |

#### **RELATED DOCUMENTATION**

### Directional valves

**EX015** DHA/MA - DKA/MA direct, spool type

Directional valves (1)

SHX121 SDHA/MA, SDKA/MA - direct, spool type

SHX121 DPHA/MA - piloted, spool type

Pressure relief valves (1)

SHX121 SAGAM/MA - piloted, with solenoid valve for venting

(1) Atos Sh products range, see www.atos.com



# Summary of Atos intrinsically safe components &





certified to **ATEX** or **IECEx** 

**Atos intrinsically safe components** are electrohydraulic equipment for industrial and mobile applications, designed to operate in hazardous environments of surface plants or underground mining with presence of flammable liquids, gases, or vapors.

They are designed to grant a very high protection, superior to ex-proof components, and suitable for hazardous environments classified **Zone 0** with high risk of explosion.

They are certified by independent notified bodies in conformity to ATEX or IECEx standards.

### 1 PRODUCTS RANGE

Atos intrinsically safe range includes on-off directional valves, pressure relief with solenoid pilot valve and power supply barriers.

#### 1.1 On-off valves

The core of intrinsically safe valves is represented by the intrinsically safe solenoid.

It is engineered, manufactured and certified according to the intrinsically safe protection method **Ex i**, based on the principle of limiting the energy in the electric circuits.

The "intrinsically safe" circuit is virtually unable to produce electrical surges or thermic effects able to cause explosion in hazardous environments also in presence of break-down situations.

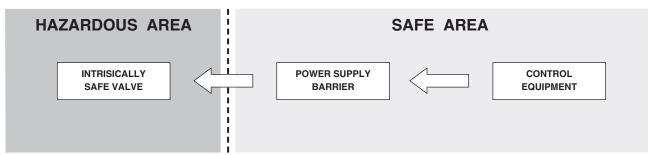
The Intrinsically safe equipment cannot release a sufficient electrical or thermal energy under normal or abnormal conditions to cause ignition of a specific hazardous mixture".

The intrinsically safe solenoids are designed to operate with a very low current and they must be powered by certified intrinsically safe power supply barriers.

The mechanical parts of the valve likes body, spools, etc, are strictly derived from highly engineered standard components.

They are not involved in the certification since their functioning does not represent a potential risk for the explosive environment.

| Doodoot             |                        |             |                  |                   |                 |                  |             |
|---------------------|------------------------|-------------|------------------|-------------------|-----------------|------------------|-------------|
| Product<br>Category | Component              | Environment | ATEX<br>Group II | IECEx<br>Group II | ATEX<br>Group I | IECEx<br>Group I | Marking     |
|                     |                        | Gas         | Χ                |                   |                 |                  | see sect. 3 |
| On-off              | Directional valves     | Cas         |                  | X                 |                 |                  | see sect. 4 |
| valves              | Pressure relief valves | Mining      |                  |                   | Χ               |                  | see sect. 5 |
|                     |                        | IVIIIIIII   |                  |                   |                 | Х                | see sect. 6 |
| Electronics         | Power supply bariers   | Gas & Dust  | Χ                | Х                 |                 |                  | see sect. 7 |


### 1.2 Power supply barriers

The electric power supply to the intrinsically safe valves must be operated through electronic devices, to be located outside the hazardous environment.

These devices are usually called "safety barriers" because they limit the electric current to the intrinsically safe solenoid within the classified range, also in case of short circuit.

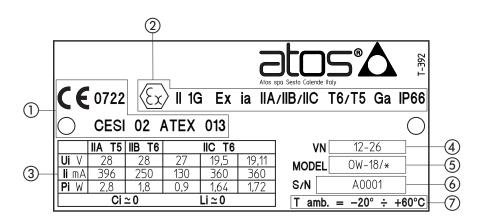
Atos barriers type Y-BXNE 412 are galvanic isolated electronic devices, designed in compliance with European Norms EN60079-0, EN60079-11 and ATEX certified with **Ex i** protection method – see tech table **GX010** 

They ensure the optimized functioning of the Atos intrinsically safe valves up to the max operating limits.



### 2 NAMEPLATE MARKING

Atos intrinsically safe components are provided with a specific nameplate reporting the ATEX or IECEx certificate number, the notified body and the classification according to the ATEX or IECEx certifications.


The classification identifies the protection method and the compatibility of the intrinsically safe component for a specific hazardous environment. The following sections provide a detailed description of the nameplate marking for the intrinsically safe valves.

X050

### Nameplate marking to ATEX

# Gas - group II 1G - Zone 0, 1, 2

- ATEX notified body and certificate nember
- Marking according to ATEX directive
- 3 Electric characteristics
- 4) Power supply characteristics
- (5) Solenoid model code
- 6 Solenoid serial number
- (7) Ambient temperature



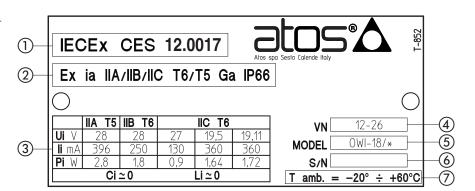
### ATEX classification - for Gas group II

| II 1G                                                                                          | Ex                         | ia                                                  | IIA / IIB / IIC                                                                                                             | T6 / T5                                | Ga                                                              |
|------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|
| Equipment Group II Industrial Equipment Category 1 Very high protection Suitable for use G Gas | Mark of<br>Explosion Proof | Protection Method ia Intrinsicaly safe (Gas Zone 0) | Gas Group  IIA Ammonia, Methane, Ethane, Propane, etc.  IIB Citygas, Ethylene, Ethyl glycol, etc.  IIC Hydrogen & Acetylene | Temperature Class T6 ≤ 85°C T5 ≤ 100°C | Equipment Protection Level Ga Very high protection (Gas Zone 0) |

### RELATED DOCUMENTATION

### **Directional valves**

EX100 DHW - direct, spool typeEX120 DLWH - direct, poppet typeEX130 DPHW - piloted, spool type


**EX150** LIDEW-WO, LIDBH-WO - piloted ISO cartridges and functional covers

### Pressure relief valves

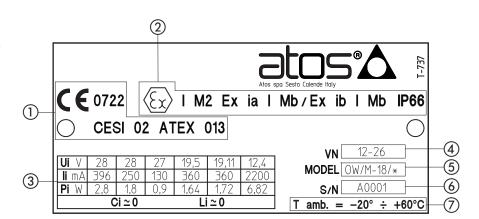
CX030 AGAM-WO, ARAM-WO - piloted, with solenoid valve for venting

## Gas - group II 1G - Zone 0, 1, 2

- 1 IECEx notified body and certificate nember
- 2 Marking according to IECEx scheme
- 3 Electric characteristics
- 4 Power supply characteristics
- Solenoid model code
- Solenoid serial number
- Ambient temperature



| Ex              | ia                   | IIA / IIB / IIC        | T6 / T5           | Ga               |
|-----------------|----------------------|------------------------|-------------------|------------------|
|                 |                      | Gas Group              |                   |                  |
|                 |                      | IIA Ammonia,           |                   |                  |
|                 |                      | Methane, Ethane,       |                   |                  |
|                 |                      | Propane, etc.          |                   | Equipment        |
|                 |                      | IIB Citygas, Ethylene, |                   | Protection Level |
|                 | Protection Method    | Ethyl glycol, etc.     | Temperature Class | Ga Very high     |
| lark of         | ia Intrinsicaly safe | IIC Hydrogen &         | <b>T6</b> ≤ 85°C  | protection       |
| Explosion Proof | (Gas Zone 0)         | Acetylene              | <b>T5</b> ≤ 100°C | (Gas Zone 0)     |


### RELATED DOCUMENTATION

| Directional valves                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EX100 DHW/IE - direct, spool type EX120 DLWH/IE - direct, poppet type EX130 DPHW/IE - piloted, spool type EX150 LIDEW/IE-WO - piloted ISO cartridges and functional covers |  |
| Pressure relief valves CX030 AGAM/IE-WO, ARAM/IE-WO - piloted, with solenoid valve for venting                                                                             |  |

### Nameplate marking to ATEX

### Gas - group I M2 - Mining

- ATEX notified body and certificate nember
- Marking according to ATEX directive
- 3 Electric characteristics
- 4 Power supply characteristics
- (5) Solenoid model code
- 6 Solenoid serial number
- 7 Ambient temperature



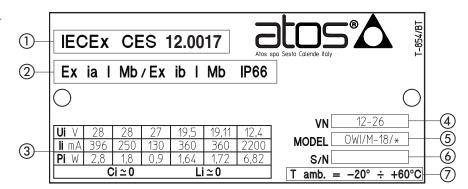
### ATEX classification - for Gas group I - Mining

| I M2                                                          | Ex                         | ia, ib                                                                                      | I                   | Mb                                                                             |
|---------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------|
| Equipment Group I Mines Equipment Category M2 High protection | Mark of<br>Explosion Proof | Protection Method ia Intrinsicaly safe (Gas Zone 0) ib Intrinsicaly safe (Gas Zone 1 and 2) | Gas Group I Methane | Equipment Protection Level Mb High protection (de-energized with gas presence) |

### RELATED DOCUMENTATION

#### **Directional valves**

EX100 DHW/M - direct, spool type
EX120 DLWH/M - direct, poppet type
EX130 DPHW/M - piloted, spool type


**EX150** LIDEW/M-WO, LIDBH/M-WO - piloted ISO cartridges and functional covers

### Pressure relief valves

**EX030** AGAM/M-WO, ARAM/M-WO - piloted, with solenoid valve for venting

### Gas - group I Mb - Mining

- 1 IECEx notified body and certificate nember
- 2 Marking according to IECEx scheme
- 3 Electric characteristics
- 4 Power supply characteristics
- (5) Solenoid model code
- 6 Solenoid serial number
- (7) Ambient temperature



#### IECEx classification - for Gas group I - Mining

| Ex                         | ia, ib                                                | I                    | Mb                                                  |
|----------------------------|-------------------------------------------------------|----------------------|-----------------------------------------------------|
|                            | Protection Method ia Intrinsicaly safe                |                      | Equipment<br>Protection Level                       |
| Mark of<br>Explosion Proof | (Gas Zone 0)  ib Intrinsicaly safe (Gas Zone 1 and 2) | Gas Group  I Methane | Mb High protection (de-energized with gas presence) |

### **RELATED DOCUMENTATION**

### Directional valves

**EX100** DHW//IEM - direct, spool type

**EX120** DLWH/IEM - direct, poppet type

**EX130** DPHW/IEM - piloted, spool type

EX150 LIDEW/IEM-WO, LIDBH/IEM-WO - piloted ISO cartridges and functional covers

### Pressure relief valves

EX030 AGAM/IEM-WO, ARAM/IEM-WO - piloted, with solenoid valve for venting

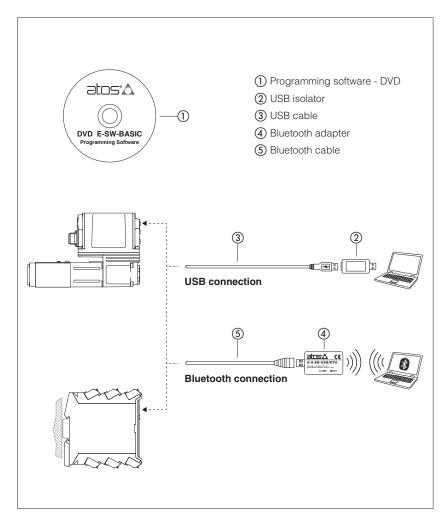
# Gas - group II 1G - Zone 0, 1, 2 Dust - group II 1D - Zone 20, 21, 22

### ATEX and IECEx classification - for Gas group II

| II 1G                  | Ex                     | ia                   |     | IIB / IIC          |
|------------------------|------------------------|----------------------|-----|--------------------|
|                        |                        |                      |     |                    |
| Equipment Group        |                        |                      |     |                    |
| II Industrial          |                        |                      | G   | as Group           |
| Equipment Category     |                        |                      |     | Citygas, Ethylene, |
| 1 Very high protection |                        | Protection Method    |     | Ethyl glycol, etc. |
| Suitable for use       | Mark of                | ia Intrinsicaly safe | IIC | Hydrogen &         |
| <b>G</b> Gas           | <b>Explosion Proof</b> | (Gas Zone 0)         |     | Acetylene          |

### ATEX and IECEx classification - for Dust group II

|                                            | • .                        |                                          |
|--------------------------------------------|----------------------------|------------------------------------------|
| II 1D                                      | Ex                         | ia D                                     |
|                                            |                            |                                          |
| Equipment Group II Industrial              |                            |                                          |
| Equipment Category  1 Very high protection |                            | Protection Method                        |
| Suitable for use  D Dust                   | Mark of<br>Explosion Proof | ia D Intrinsicaly safe<br>(Dust Zone 20) |


### RELATED DOCUMENTATION

GX010 Y-BXNE Power supply barrier



# **Programming tools for digital electronics**

Atos PC software, USB adapters, cables and terminators



The E-SW and Z-SW programming software are supplied in DVD format and can be easily installed on a desktop or a notebook computer. The intuitive graphic interface allows:

- set up valve's functional parameters
- verify the actual working conditions
- identify and quickly solve fault conditions
- adapt the factory preset parameters to the application requirements
- store the customized setting into the valve
- archive the customized setting into the PC

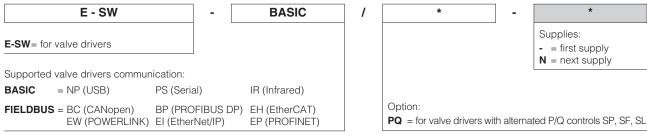
The graphic interface is organized in pages related to different specific groups of functions and parameters.

The software automatically recognizes the connected valve model and adapts the displayed parameter groups, according to the selected access level.

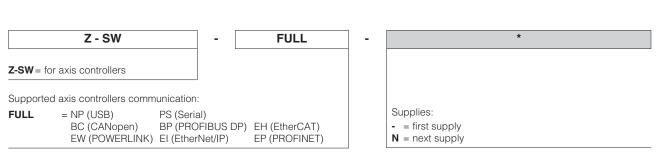
The software is available in different versions according to the driver and controller communication interfacing.

Fieldbus communication software includes also dedicated manuals and configuration files for user self management of the Atos electronics, using a fieldbus master.

#### Features:


- automatic valve recognition
- multilevel graphic interface
- numeric parameters settings (scale, bias, ramp, linearization, dither, etc.)
- real-time parameters modification
- diagnostic and monitor signals
- preset data storing into the digital driver and controller
- internal oscilloscope function
- internal database of customized preset

#### **DVD** contents:


- software installer
- user and fieldbus communication manuals
- fieldbus configuration files

### 1 PROGRAMMING SOFTWARE

Valve functional parameters can be easily set up with Atos E-SW / Z-SW programming software using proper connection to the digital driver/controller.



Note: E-SW-\*/PQ software supports also valve drivers without P/Q control



#### 1.1 Programming software versions

Different software versions are available according to the valve drivers / axis controllers type to be connected and communication interface.

Note: E-SW / Z-SW software are supplied in DVD format; E-SW-BASIC software can be free downloaded from the Atos website

Free programming software, web download:

E-SW-BASIC Software can be downloaded upon web registration at <a href="www.atos.com">www.atos.com</a>; service and DVD not included.

Upon web registration user receive via email the Activation Code (software free license)

and login data to access Atos Download Area.

The software remains active for 10 days from the installation date and then it stops until the user inputs the Activation Code.

DVD first supply of programming software, to be ordered separately:

E-SW-BASIC Software has to be activated via web registration at <a href="www.atos.com">www.atos.com</a>; 1 year service included.

**E-SW-BASIC/PQ** Upon web registration user receive via email the Activation Code (software license)

**E-SW-FIELDBUS** and login data to access personal Atos Download Area.

**E-SW-FIELDBUS/PQ** The software remains active for 10 days from the installation date **z-sw-FULL** and then it stops until the user inputs the Activation Code.

DVD next supplies of programming software, to be ordered separately:

**E-SW-BASIC-N** Only for supplies after the first; service not included, web registration not allowed.

**E-SW-BASIC/PQ-N** Software has to be activated with Activation Code received upon first supply web registration.

E-SW-FIELDBUS-N E-SW-FIELDBUS/PQ-N Z-SW-FULL-N

Notes: the software BASIC, FIELDBUS and FULL are NOT interchangeable and must be ordered separately; programming software FIELDBUS and FULL can program digital electronics through USB communication port for all industrial and ex-proof versions of drivers/controllers

#### 1.2 DVD contents

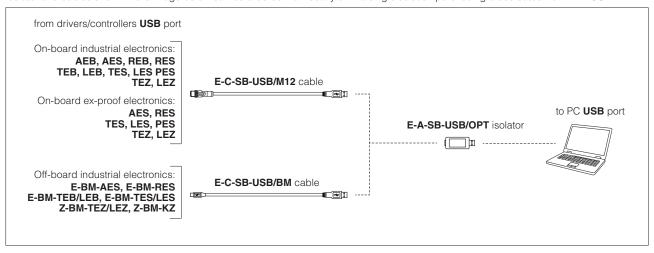
Include software installer, user manuals and fieldbus configuration files: EDS for BC - GSD for BP - XML for EH - XDD for EW - EDS for EI - GSDML for EP

#### 1.3 Atos Download Area

Direct access to latest releases of programming software, manuals, USB drivers and fieldbus configuration files at <a href="https://www.atos.com">www.atos.com</a> Software and USB drivers can be easily installed following the instruction contained in the "info.txt" files.

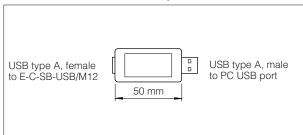
An automatic mailing message will inform all the registered users whenever a new software upgrade is available.

### 1.4 E-SW / Z-SW minimum PC requirements


| Personal Computer  | Pentium® processor 1GHz or equivalent | Memory    | 512 MB RAM + Hard Disk with 250MB free space |
|--------------------|---------------------------------------|-----------|----------------------------------------------|
| Operating System   | Windows XP SP3                        | Device    | DVD reader                                   |
| Monitor Resolution | 1024 x 768                            | Interface | Serial RS232 port (only for PS) or USB port  |

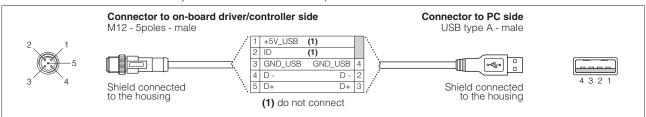
### 2 USB connection - ISOLATOR AND CABLE

E-SW / Z-SW software permit valve's parameterization through USB port.

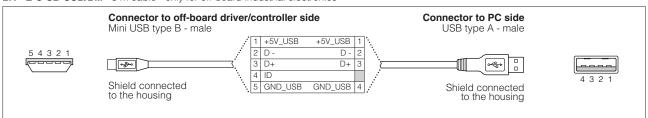

#### 2.1 Connection tools by driver/controller type

Isolator and cables shown in the image below can be ordered individually or in a single solution purchasing a dedicated kit: E-KIT-USB




**WARNING:** drivers/controllers **USB** port is not isolated! Use of USB isolator adapter is highly recommended for PC protection: wrong earthing connections may cause high potential difference between GNDs, generating high currents that could damage the PC connected to drivers/controllers.

#### 2.2 E-A-SB-USB/OPT - isolator adapter

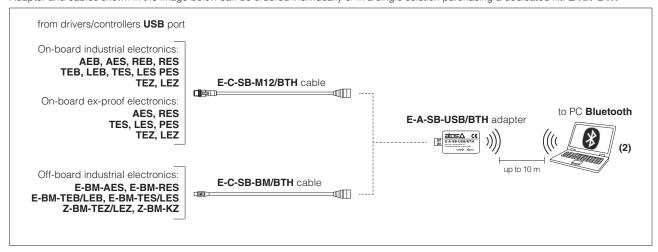



- USB 2.0 Full speed (12 MBps)
- electrical isolation 1 kV
- temperature range, -40° ÷ +50° (relative humidity 25% ÷ 75%)
- external power supply not required (power 400 mA output, 5 V ±10%)
- MTBF >1,2 million hours (MIL standard)

### 2.3 E-C-SB-USB/M12 - 4 m cable - only for on-board industrial and ex-proof electronics

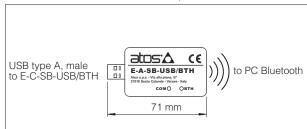


### 2.4 E-C-SB-USB/BM - 3 m cable - only for off-board industrial electronics




### 3 BLUETOOTH connection - ADAPTER AND CABLE

E-SW / Z-SW software permit valve's parameterization through Bluetooth (1).

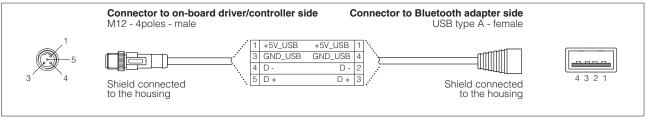

#### 3.1 Connection tools by driver/controller type

Adapter and cables shown in the image below can be ordered individually or in a single solution purchasing a dedicated kit: E-KIT-BTH

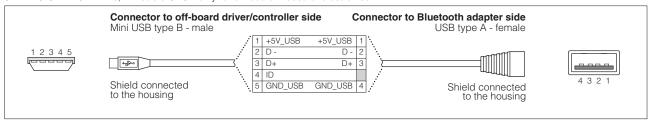


- (1) Bluetooth adapter is not compatible with E-BM-AES and E-BM-RES drivers
- (2) If PC has not built-in Bluetooth, use standard USB to Bluetooth dongle compatible with E-A-SB-USB/BTH specification (please refer to STARTUP-BTH guide)

#### 3.2 E-A-SB-USB/BTH - Bluetooth adapter



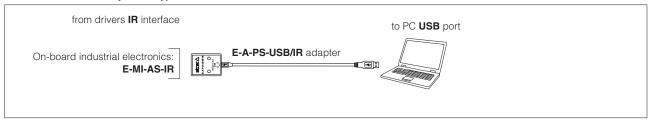

- USB male connector, type A
- type of radio interface: Bluetooth Class 2
- temperature range, -20 ÷ +70 °C (storage -40 ÷ +70 °C)
- external power supply not required (from Atos drivers/controllers only)
- protocol: Bluetooth Classic Version 2.x , 3.x supporting Serial Port Profile (SPP Profile)
- max RF transmission power: Class 2 Output Power (+1.5 dBm typical)
- frequency: 2.402 GHz to 2.480 GHz
- LEDs indicate the actual working condition
- IP20 protection degree


### WARNING: Bluetooth adapter is available only for European, USA and Canadian markets!

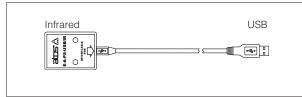
Bluetooth adapter is certified according to RED (Europe), FCC (USA) and ISED (Canada) directives

### 3.3 E-C-SB-M12/BTH - 0,4 m cable - only for on-board industrial and ex-proof electronics




#### 3.4 E-C-SB-BM/BTH - 0,2 m cable OTG - only for off-board industrial electronics



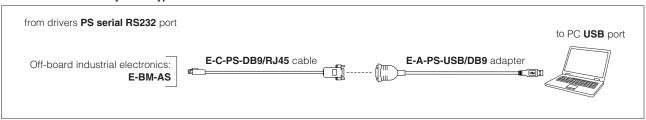

### 4 IR infrared - USB COMMUNICATION ADAPTER - only for E-MI-AS-IR drivers

The adapter have to be connected to the USB communication port of PC to activate the IR infrared communication interface towards Atos digital electrohydraulics.

#### 4.1 Connection tools by driver type

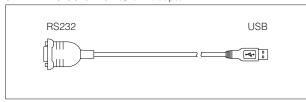


### 4.2 E-A-PS-USB/IR - 3 m adapter



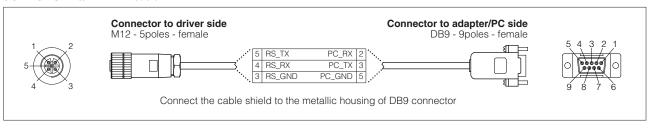

- direct infrared communication with the driver
- USB male connector, type A
- plug-in format for direct infrared connection on the driver
- transmission rate 9,6 kbit/s
- external power supply not required (USB supply)

### 5 PS serial RS232 - USB COMMUNICATION ADAPTER AND CROSS CABLES - only for E-BM-AS drivers

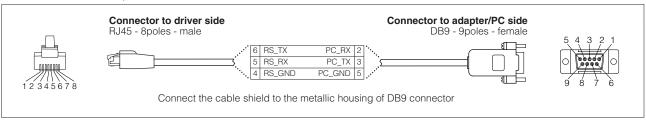

The adapter have to be connected to the USB communication port of PC to activate the PS serial RS232 communication interface towards Atos digital electrohydraulics. The cross cables connect the relevant connector of the USB adapter with the communication port of the digital drivers.

#### 5.1 Connection tools by driver type



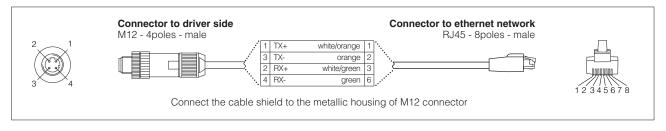

Note: the adapter is not required if PC is already equipped with a serial RS232 communication port

#### 5.2 E-A-PS-USB/DB9 - 0,45 m adapter




- DB9 male connector according to serial RS232 specification
- USB male connector, type A
- transmission rate from 1,6 kbit/s up to 225 kbit/s
- external power supply not required (USB supply)

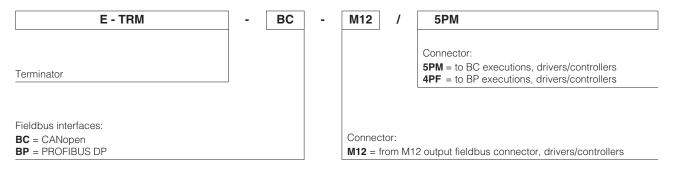
### **5.3 E-C-PS-DB9/M12** - 4 m cable




### 5.4 E-C-PS-DB9/RJ45 - 2,5 m cable

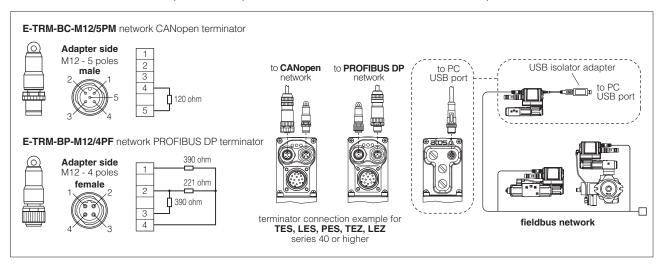


### 6 ETHERNET CABLE WIRING DIAGRAM - only for EH, EW, EI and EP


Typical ethernet cable wiring diagram from industrial M12 connectors to standard RJ45 ethernet connectors.



### 7 FIELDBUS TERMINATORS - only for BC and BP


For TES, LES, PES, TEZ, LEZ series 40 or higher in BC and BP executions, the fieldbus terminator has to be used.

Note: fieldbus terminators not available for ex-proof electronics



### 7.1 M12 - terminators for fieldbus network

The fieldbus terminators are required when output fieldbus connector has to be used as network end point.



### 8 FIRMWARE UPDATE

It is possible to update the firmware of the following digital drivers and controllers, using proper USB communication port. The firmware update is allowed starting from electronics series listed into the table or higher series:

### Industrial electronics

| E-RI-AEB s10                 | E-RI-REB s10 | E-BM-AES s10                 | E-RI-TEB s10 | E-BM-TEB s10 | E-RI-TES s40 | E-BM-TES s10 | E-RI-TES-S s40 | E-BM-TES-S s10 | E-RI-PES-S s40 |
|------------------------------|--------------|------------------------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|
| E-RI-AES s40                 | E-RI-RES s10 | E-BM-RES s10                 | E-RI-LEB s10 | E-BM-LEB s10 | E-RI-LES s40 | E-BM-LES s10 | E-RI-LES-S s40 | E-BM-LES-S s10 |                |
| Z-RI-TEZ s40<br>Z-RI-LEZ s40 | Z-BM-KZ s10  | Z-BM-TEZ s10<br>Z-BM-LEZ s10 |              |              |              |              |                |                |                |

#### **Ex-proof electronics**

| E-RA-AES s40 | E-RA-RES s40                     | E-RA-TES-S s40<br>E-RA-LES-S s40 |
|--------------|----------------------------------|----------------------------------|
|              | Z-RA-TEZ-S s40<br>Z-RA-LEZ-S s40 |                                  |

### 9 RECCOMENDED TOOLS SELECTION

### 9.1 Industrial and ex-proof electronics

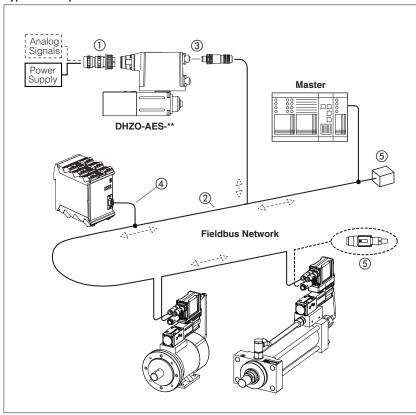
|                      | Model Code                                     | Series       | Software           | Cable           | USB Adapter    | Terminator |
|----------------------|------------------------------------------------|--------------|--------------------|-----------------|----------------|------------|
| IR                   | E-MI-AS-IR                                     | 11           | E-SW-BASIC         |                 | E-A-PS-USB/IR  |            |
| PS                   | E-BM-AS                                        | 10 or higher |                    | E-C-PS-DB9/RJ45 | E-A-PS-USB/DB9 |            |
|                      | E-BM-AES, E-BM-RES                             | 10 or higher |                    | E-C-SB-USB/BM   |                |            |
|                      | E-BM-TEB, E-BM-LEB, E-BM-TES, E-BM-LES (1)     | 10 or higher |                    |                 |                |            |
|                      | AEB, REB <b>(1)</b>                            | 10 or higher |                    |                 |                |            |
|                      | TEB, LEB (1)                                   | 10 or higher |                    | E-C-SB-USB/M12  | E-A-SB-USB/OPT |            |
| NP                   | TES, LES (1)                                   | 40 or higher |                    |                 |                |            |
|                      | TES, LES, PES with SP, SF, SL options (1)      | 40 or higher | - E-SW-BASIC/PQ    |                 |                |            |
|                      | E-BM-TES, E-BM-LES with SP, SF, SL options (1) | 10 or higher | E-SW-BASIC/PQ      | E-C-SB-USB/BM   |                |            |
|                      | TEZ, LEZ (1)                                   | 40 or higher | · Z-SW-FULL        | E-C-SB-USB/M12  |                |            |
|                      | Z-BM-KZ, Z-BM-TEZ, Z-BM-LEZ (1)                | 10 or higher | Z-3W-I OLL         | E-C-SB-USB/BM   |                |            |
| ВР                   | E-BM-AES, E-BM-RES                             | 10 or higher |                    | E-C-SB-USB/BM   | E-A-SB-USB/OPT |            |
| ВС                   | RES (1)                                        | 10 or higher | E-SW-FIELDBUS      | E-C-SB-USB/M12  |                |            |
| EH                   | AES (1)                                        | 40 or higher |                    |                 |                |            |
|                      | E-BM-TES, E-BM-LES (1)                         | 10 or higher | - E-SW-FIELDBUS    | E-C-SB-USB/BM   | E-A-SB-USB/OPT |            |
| BC<br>BP             | TES, LES (1)                                   | 40 or higher | L-3W-I ILLEDBOS    | E-C-SB-USB/M12  |                |            |
| EH<br>EW<br>EI<br>EP | E-BM-TES, E-BM-LES with SP, SF, SL options (1) | 10 or higher | - E-SW-FIELDBUS/PQ | E-C-SB-USB/BM   |                |            |
|                      | TES, LES, PES with SP, SF, SL options (1)      | 40 or higher | L-3W-I ILLDB03/FQ  | E-C-SB-USB/M12  |                |            |
|                      | TEZ, LEZ <b>(1)</b>                            | 40 or higher | · Z-SW-FULL        | E-C-SB-USB/M12  |                |            |
|                      | Z-BM-KZ, Z-BM-TEZ, Z-BM-LEZ (1)                | 10 or higher | ZOWIOLL            | E-C-SB-USB/BM   |                |            |

<sup>(1)</sup> Drivers/controllers compatible with Bluetooth adapter E-A-SB-USB/BTH (see 3.1)

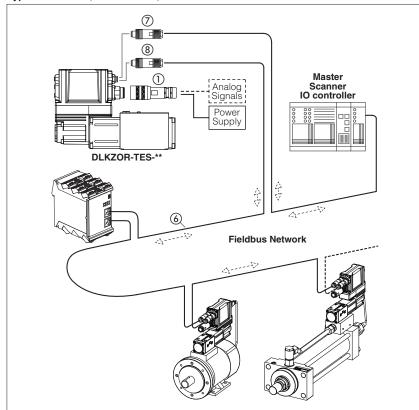
### 9.2 Phase out industrial electronics

|    | Model Code                            | Series       | Software         | Cable          | USB Adapter    | Terminator       |
|----|---------------------------------------|--------------|------------------|----------------|----------------|------------------|
| IR | E-MI-AS-IR                            | 10           | E-SW-IR          |                | E-A-PS-USB/IR  |                  |
|    | AES                                   | 30           | E-SW-BASIC       | E-C-PS-DB9/M12 | E-A-PS-USB/DB9 |                  |
|    | AERS, TERS, TES, LES                  | 31           |                  |                |                |                  |
| PS | TES, LES, PES with SP, SF, SL options | 31           | E-SW-BASIC/PQ    | L-C-F3-DB9/W12 |                |                  |
|    | TEZ, LEZ                              | 10           | Z-SW-FULL        |                |                |                  |
|    | Z-ME-KZ-PS                            | 10 or higher | Z-3W-FOLL        | E-C-PS-DB9/DB9 |                |                  |
|    | AES                                   | 30           | - E-SW-FIELDBUS  | E-C-PS-DB9/M12 | E-A-PS-USB/DB9 |                  |
|    | AERS, TERS, TES, LES                  | 31           |                  |                |                |                  |
| ВР | TES, LES, PES with SP, SF, SL options | 31           | E-SW-FIELDBUS/PQ | E-C-BP-DB9/M12 |                | E-TRM-BP-DB9/DB9 |
|    | TEZ, LEZ                              | 10           | Z-SW-FULL        |                | E-A-PS-USB/DB9 |                  |
|    | Z-ME-KZ-PS/BP                         | 10 or higher | Z-SW-I OLL       | E-C-PS-DB9/DB9 | E-A-PS-USB/DB9 |                  |
|    | AES                                   | 30           | E-SW-FIELDBUS    | E-C-PS-DB9/M12 | E-A-PS-USB/DB9 |                  |
| ВС | AERS, TERS, TES, LES                  | 31           | L-3W-I IEEDBOS   | E-C-BC-DB9/M12 | E-A-BC-USB/DB9 |                  |
| 60 | TES, LES, PES with SP, SF, SL options | 31           | E-SW-FIELDBUS/PQ |                |                | E-TRM-BC-DB9/DB9 |
|    | TEZ, LEZ                              | 10           | Z-SW-FULL        |                |                |                  |
| EH | AES                                   | 30           | E-SW-FIELDBUS    | E-C-PS-DB9/M12 | E-A-PS-USB/DB9 |                  |

### 9.3 Phase out ex-proof electronics


|    | Model Code           | Series | Software      | Cable         | USB Adapter    | Terminator       |
|----|----------------------|--------|---------------|---------------|----------------|------------------|
| PS | AES                  | 30     | E-SW-BASIC    | E-C-PS-DB9/M8 | E-A-PS-USB/DB9 |                  |
| 5  | AERS, TERS, TES, LES | 31     | L-3W-BASIC    |               |                |                  |
| ВР | AES                  | 30     |               | E-C-PS-DB9/M8 | E-A-PS-USB/DB9 |                  |
| BF | AERS, TERS, TES, LES | 31     | E-SW-FIELDBUS | E-C-BP-DB9/RA | E-A-BP-USB/DB9 | E-TRM-BP-DB9/DB9 |
| вс | AES                  | 30     | L-3W-FIELDBO3 | E-C-PS-DB9/M8 | E-A-PS-USB/DB9 |                  |
| ВС | AERS, TERS, TES, LES | 31     |               | E-C-BC-DB9/RA | E-A-BC-USB/DB9 | E-TRM-BC-DB9/DB9 |




### Fieldbus features

BC (CANopen), BP (PROFIBUS DP), EH (EtherCAT), EW (POWERLINK), EI (EtherNet/IP), EP (PROFINET RT/IRT)

Typical CANopen or PROFIBUS DP fieldbus network



Typical EtherCAT, POWERLINK, EtherNet/IP or PROFINET RT/IRT fieldbus network



Fieldbus communication interfaces are available for digital proportional drivers and controllers, granting several plus:

- more information available for machine operation to enhance its performances
- improved accuracy and robustness of digital transmitted information
- costs reduction due to simpler and standardized wiring solutions
- costs reduction due to fast and simple installation and maintenance
- direct integration into machine's communication networks

These executions allow to operate proportional valves and pumps through fieldbus or using the analog signals on main connector ①.

#### Fieldbus distributed-control

Fieldbus communication allows to share all the available information of the digital drivers and controllers (reference, monitor, etc).

This distributed-control design allows to implement powerful machines functionalities for tuning, diagnostic, maintenance, etc.

**CANopen and PROFIBUS DP** networks consist of a common cable (2 twisted wire, ②) for digital communication: several devices (node ③) can be connected to this main cable by means of short cable branches ④.

The two endpoints of the main cable must be terminated with specific devices (terminator, ⑤) to dissipate the communication signal's energy thus preventing interferences and degradations of fieldbus transmission.

EtherCAT, POWERLINK, EtherNet/IP and PROFINET RT/IRT networks consist in a Ethernet common cable (4 twisted wire, (6)) for digital communication. All slave, adapter and IO device have always the double connector for signal input (7) and signal output (8).

The main Ethernet cable starting from the master, scanner and IO controller has to be connected to the slave, adapter and IO device input connector.

The slave, adapter and IO device output connector has to be connected to the next slave, adapter and IO device input connector.

### 1 CANopen features for digital drivers and controllers in BC execution

**Physical** 

Serial input format Industrial field-bus with optical insulation type CAN-Bus ISO11898

Transmission rate Transmission rates from 10 Kbit/s to 1 Mbit/s

Max node 32 per segment without repeater; 127 per segment with repeater

**Communication Protocol** 

Data Link Layer DS301 V4.2.0 - based on CAN standard frame with 11-bit identifier

Device Profile DS408 - Fluid Power Technology (EN50325-4)

Device type Slave

Startup and configuration (as per DS301+DSP305)

Boot up process Minimum boot-up

Node setting LSS (Layer Setting Services)

SDO

E-SW-FIELDBUS and Z-SW-FULL programming software

Baudrate setting LSS (Layer Setting Services), SDO

Baudrate 10 / 20 / 50 (default) / 125 / 250 / 500 / 1000Kbit/s

Fieldbus communication diagnostic (as per DS301)

Device Error Emergency
Network Error Node Guarding
Heartbeat

TPDO

Real-time communication (as per DS301 + DS408)

RPDO 4 mappable PDOs to the drivers:

AES, BM-AES, TES, BM-TES, LES, BM-LES, RES, BM-RES, PES

4 mappable PDOs to the controllers: TEZ, BM-TEZ, LEZ, BM-LEZ, BM-KZ 4 mappable PDOs from the drivers:

AES, BM-AES, TES, BM-TES, LES, BM-LES, RES, BM-RES, PES

4 mappable PDOs from the controllers: TEZ, BM-TEZ, LEZ, BM-LEZ, BM-KZ

R(T)PDO types Event Triggered, Remotely requested, Sync(cyclic) and Sync(acyclic)

Non real-time communication (as per DS301 + DS408)

SDO 1 SDO (1 Server + 1 Client)

Standard references

ISO 11898

Road Vehicles – Interchange of digital information controller area network (CAN) for High-speed communication

EN50325-4

CiA DS301

Industrial communication subsystem based on ISO 11898 (CAN) for controller

device interfaces

CANopen – Application Layer and Communication Profile for Industrial

Systems

CiA DR303-1

Cabling and connector pin assignment

CiA DSP305

CANopen - Layer Setting Services and

Protocol CiA DS408

CANopen – Device Profile for Proportional

Hydraulic Valves v 1.5.2

#### **Programming interface**

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or CANopen master device

#### Configuration file

EDS (Electronic Data Sheet), enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

### Manuals

E-MAN-S-BC and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS Z-MAN-S-BC and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

### 2 PROFIBUS DP features for digital drivers and controllers in BP execution

**Physical** 

European fieldbus standard (lev.1 – EN50170-part 2)

Transmission rate Transmission rates from 9,6 Kbit/s to 12 Mbit/s

Max node 32 per segment without repeater; 126 node with repeater

**Communication Protocol** 

Data Link Layer PROFIBUS DPV0 - IEC 61158 (type 3)

Device Profile PROFIBUS-DP Profile for Fluid Power Technology

Device type Slave

Startup and configuration

Boot up process SAP 61 for sending parameter setting data

SAP 62 for checking configuration data

Node setting SAP 55

E-SW-FIELDBUS and Z-SW-FULL programming software

Baudrate setting Automatic

Baudrate 9,6 / 19,2 / 45,45 / 93,75 / 187,5 / 500 / 1500 / 3000 / 6000 / 12000 Kbit/s

Fieldbus communication diagnostic

Device error SAP 60

Real-time communication

PZD Process data area of PPO telegram by Data Exchange, default SAP:

cyclic transmission of standard Profibus frame

Standard electronics - drivers

PPO type 3, 113, 213, 230 for:

AES, BM-AES, TES, BM-TES, LES, BM-LES, RES, BM-RES

PPO type 5, 115, 214, 240 for:

TES, BM-TES, LES, BM-LES, PES with alternated P/Q control

Note: PPO type 213, 230, 214, 240 are customizable by user

Standard electronics - controllers

**PPO type 1, 111, 121, 123 for:** TEZ, BM-TEZ, LEZ, BM-LEZ, BM-KZ

PPO type 1, 101, 103, 111, 121, 123, 223, 227 for:

TEZ, BM-TEZ, LEZ, BM-LEZ, BM-KZ with alternated P/Q control

Note: PPO type 223, 227 are customizable by user

Cyclic mode standard, sync and freeze

Non real-time communication

PKW Parameter data area of PPO telegram by Data Exchange, default SAP:

acyclic transmission of standard Profibus frame

Programming interface

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or PROFIBUS DP master device

Configuration file

GSD (General Station Description) enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

Manuals

E-MAN-S-BP and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS

Z-MAN-S-BP and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

Standard references

PROFIBUS profile PROFIBUS Profile, Fluid Power Technology,

Edition Oct. 2001

VDMA profile
Fluid Power Technology,
Proportional Valves and

Hydrostatic Transmissions, ver 1.1

GS510 GENERAL INFORMATION

587

## 3 EtherCAT features for digital drivers and controllers in EH execution

**Physical** 

Serial input format Industrial fieldbus type Fast Ethernet galvanically insulated IEC 61158-2

Transmission rate 2 x 100 Mbit/s (Fast Ethernet, Full-Duplex)

Max node 65535 slaves

Ethernet Standard ISO/IEC 8802-3 frame format

EtherType 0x88A4 according to IEEE 802.3

Cable length 0,2 - 100m (between two slave devices)

Cable type CAT5 (4 wire twisted pair) according with T568B

Network topology Line, tree and star Termination Device internally

**Communication Protocol** 

Data Link Layer EtherCAT use Standard Ethernet Frames:

ISO/IEC 8802-3 + IEC 61784-2

Device Profile CANopen over EtherCAT (CoE) DS408 - Fluid Power Technology

EN 50325-4

Device type Slave

Supported protocol CANopen SDO Mailbox-Interface "CoE"

Network Management

PDO

PDO Watchdog Cycle time min 1 msec

Startup and configuration (as per DS301+DSP305)

Node setting Automatic position addressing

Device node addressing

Baudrate 100 Mbit/s (Automatic)

Fieldbus communication diagnostic (as per DS301)

Device Error Emergency

Real-time communication (as per DS301 + DS408)

RPDO 4 PDOs messages to the driver and controller (up to 32 byte for each PDO)
TPDO 4 PDOs messages from the driver and controller (up to 32 byte for each PDO)

R(T)PDO types Remotely requested

Non real-time communication (as per DS301 + DS408)

SDO 1 SDO (1 Server + 1 Client)

Standard references

ISO 11898

Road Vehicles – Interchange of digital information controller area network (CAN) for High-speed communication

EN 50325-4

Industrial communication subsystem based on ISO 11898 (CAN) for controller

device interfaces

CiA DS301

CANopen – Application Layer and Communication Profile for Industrial

Systems

CiA DSP305

CANopen - Layer Setting Services and

Protocol

CiA DS408

CANopen – Device Profile for Proportional Hydraulic Valves v 1.5.1

IEC 61076-2-101

Connectors for electronic equipment

- Product Requirements -Part 2-101: Circular connectors

- Detail specification for M12 connectors

with screw-locking

IEC 61158-2

Industrial communication networks

- Fieldbus specification -

Part 2: Physical layer specification and

service definition

IEC 61784-2

Industrial communication networks

- Profiles -

Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 8802-3

#### Programming interface

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or EtherCAT master device

#### Configuration file

XML (Extensible Markup Language) enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

#### **Manuals**

E-MAN-S-EH and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS Z-MAN-S-EH and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

## 4 POWERLINK features for digital drivers and controllers in EW execution

**Physical** 

Serial input format Industrial fieldbus type Fast Ethernet galvanically insulated IEC 61158-2

Transmission rate 2 x 100 Mbit/s (Fast Ethernet, Half-Duplex)

Max node 239 slaves

Ethernet Standard ISO/IEC 8802-3 frame format EtherType 0x88AB according to IEEE 802.3

Integrated Hub

Cable length 0,2 - 100m (between two slave devices)

Cable type CAT5 (4 wire twisted pair) according with T568B

Network topology Line, tree, star, daisy chain, ring structure or any combination of these topo-

logies

Ethernet Hub Integrated with 2 ports:

- one led for Link/Activity indicator (on each port)

- one bicolor led Status/Error indicator

#### **Communication Protocol**

Data Link Layer POWERLINK use Standard Ethernet Frames:

ISO/IEC 8802-3 + IEC 61784-2

Comm. Profile EPSG DS 301 v1.2

Device Profile CANopen over Ethernet based on DS408 - Fluid Power Technology

Device type Slave - supported features:

- Ethernet POWERLINK v2.0

- Ring Redundancy

- Support PollRsponse Chaining

- Support Multiplexing - Cycle time min 200 µsec

- SDO Multiple Parameter Read/Write

### Startup and configuration (as per EPSG DS301 + EPSG DS 302-A/B/C/D/E)

Node setting E-SW-FIELDBUS and Z-SW-FULL programming software

Baudrate 100 Mbit/s (Automatic)

## Fieldbus communication diagnostic

Custom parameters mappable on TPDO for emergency diagnosis

#### Real-time communication (as per EPSG DS301 + DS408)

RPDO 1 PDO message to the driver

(max number of of mapping parameters is Device specific)

TPDO 1 PDO message from the driver

(max number of of mapping parameters is Device specific)

#### Standard references

EPSG DS301

Ethernet POWERKLINK

Communication Profile Specification v 1.2

EPSG DS302-A/B/C/D/E

Ethernet POWERKLINK Part A: High Availability v1.1

Part B: Multiple ASnd v1.0

Part C: PollResponse Chaining v1.0 Part D: Multiple PReq/PRes v1.0

Part E: Dynamic Node Allocation v1.0

#### EPSG DS311

Ethernet POWERKLINK XML Device Description v 1.0

#### CiA DS408

CANopen - Device Profile for Proportional Hydraulic Valves v 1.5.1

#### IEC 61076-2-101

Connectors for electronic equipment

- Product Requirements -Part 2-101: Circular connectors

- Detail specification for M12 connectors

with screw-locking

### IEC 61158-2

Industrial communication networks

- Fieldbus specification -

Part 2: Physical layer specification and

service definition

## IEC 61784-2

Industrial communication networks

- Profiles -

Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 8802-3

Industrial communication networks

- Profiles -

Part 3: Functional safety fieldbuses -General rules and profile definitions

#### IEC 61158-300/400/500/600

Industrial communication networks

- Fieldbus specifications -

Part 300: Data Link Layer service defini-

Part 400: Data Link Layer protocol specification

Part 500: Application Layer service defini-

tion

Part 600: Application Layer protocol spe-

cification

## ISO 15745-1

Industrial automation systems and integration - Open systems application

integration framework -

Part 1: Generic reference description

#### **Programming interface**

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or POWERLINK master device

#### Configuration file

XDD (XML Device Description) enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

## Manuals

E-MAN-S-EW and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS

Z-MAN-S-EW and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

GENERAL INFORMATION GS510 589

## 5 EtherNet/IP features for digital drivers and controllers in El execution

#### **Physical**

Ethernet Standard ISO/IEC 8802-3 frame format
EtherType 0x08E1 according to IEEE 802.3
Transmission rate 10/100 Mbit Full/Half-Duplex

Integrated 2-port switch
Cable length max 100m

Cable type CAT5 (4 wire twisted pair) according with T568B Network topology Device Level Ring (DLR), linear, star structure

Ethernet switch integrated with two ports

Led indicator 2 led for Link/Activity indicator (on each port) and

1 bicolor led for Status/Error indicator

#### **Communication Protocol**

ODVA CIP Object Model

ODVA CIP Object library for Generic Device Profile

- Identity Object (0X01)
- Message Router Object (0x02)
- Assembly Object (0x04)
- Connection Manager Object (0x06)
- Parameter Object (0x0F)
- DLR Object (0x47)
- QoS Object (0x48h)
- Port Object (0xF4)
- TCP/IP Object (0xF5)
- Ethernet Link Object (0xF6)

Valve parameters accessible via Vendor Specific Object 0xA2

IP address setting (range 0.0.0.0 - 255.255.255.255):

- TCP/IP Object (0xF5)
- DHCP
- Auxiliary USB communication + Atos Software

I/O Adapter and Explicit Message Server device type

Cyclic data transmission via Implicit Messages (transport class 1)

- Minimum RPI for Implicit Messages 1ms
- Total number of supported class 1 connections: 4
- Up to 5 parameters and 20 bytes for each connection
- Trigger types: Cyclic CoS

Acyclic data transmission via Connected and Unconnected Explicit Messages (transport class 3)

- Minimum RPI for Explicit Messages 100ms
- No. of simultaneous Class 3 connections: 6

#### Standard references

#### IEC 61918

Industrial communication networks
- Installation of communication networks in industrial premises

## IEC 61076-2-101

Connectors for electronic equipment

- Product Requirements -

Part 2-101: Circular connectors

- Detail specification for M12 connectors

with screw-locking

#### IEC 61158-1

Industrial communication networks

- Fieldbus specification -

Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

#### IEC 61158-2

Industrial communication networks

- Fieldbus specification -

Part 2: Physical layer specification and service definition

#### IEC 61784-1

Industrial communication networks

- Profiles -

Part 1: Fieldbus profile

#### IEC 61784-2

Industrial communication networks

- Profiles -

Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 8802-3

#### IEC 61784-3

Industrial communication networks

- Profiles -

Part 3: Functional safety fieldbuses - General rules and profile definitions

#### IEC 61784-5-2

Industrial communication networks - Profiles -

- Profiles -

Part 5-2: Installation of fieldbuses - Installation profiles for CPF 2

#### ISO 15745-4

Industrial automation systems and integration - Open systems application integration framework -

Part 4: Reference description for Ethernetbased control systems

#### Programming interface

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or EtherNet/IP scanner device

#### Configuration file

EDS (Electronic Data Sheet) enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

## Manuals

E-MAN-S-EI and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS Z-MAN-S-EI and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

## 6 PROFINET RT/IRT features for digital drivers and controllers in EP execution

**Physical** 

Ethernet Standard ISO/IEC 8802-3 frame format
EtherType 0x8892 according to IEEE 802.3

Transmission rate 100 Mbit Full-Duplex Integrated 2-port switch Cable length max 100m

Cable type CAT5 (4 wire twisted pair) according with T568B

Network topology line, star, tree and ring structure
Ethernet switch integrated with two ports

Led indicator 2 led for Link/Activity indicator (on each port) and

1 bicolor led for Status/Error indicator

#### **Communication Protocol**

Data Link Layer PROFINET use Standard Ethernet Frames:

ISO/IEC 8802-3 + IEC 61784-2

Device type IO device - supported features:

- complies with PROFINET IO conformance Class A, B, C

- Acyclic parameter Channel

Real Time (RT) and Isochronous Real Time (IRT) communication
 Up to 8 input/output parameters for real time data exchange

PROFINET specific diagnostic supportMedia Redundancy Protocol (MRP)

- DCP Discovery and Configuration Protocol supported

- Identification & Maintenance (I&M)

- Cycle time min: 1 msec [RT] , 250 µsec [IRT]

#### Startup and configuration

Address setting IP Address and Station Name are assigned automatically by IO controller (e.g.

Discovery and Configuration Protocol)

Baudrate 100 Mbit/s (Automatic)

## Fieldbus communication diagnostic

Custom parameters mappable on real time communication for emergency diagnosis

## Real-time communication

Modular config for drivers: AES, BM-AES, TES, BM-TES, LES, BM-LES, RES, BM-RES, PES

up to 5 input parameters for real time data exchange up to 5 output parameters for real time data exchange

for controllers: TEZ, BM-TEZ, LEZ, BM-LEZ, BM-KZ up to 8 input parameters for real time data exchange up to 8 output parameters for real time data exchange

#### Standard references

#### IEC 61918

Industrial communication networks
- Installation of communication networks in industrial premises

#### IEC 61076-2-101

Connectors for electronic equipment

- Product Requirements -Part 2-101: Circular connectors - Detail specification for M12 connectors with screw-locking

#### IEC 61158-1

Industrial communication networks

- Fieldbus specification -

Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

## IEC 61158-2

Industrial communication networks

- Fieldbus specification -

Part 2: Physical layer specification and

service definition

## IEC 61158-5-10

Industrial communication networks

- Fieldbus specification -

Part 5-10: Application layer service defini-

tion – Type 10 elements

## IEC 61784-1

Industrial communication networks

- Profiles -

Part 1: Fieldbus profile

#### IEC 61784-2

Industrial communication networks

- Profiles -

Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 8802-3

#### IEC 61784-5-3

Industrial communication networks

- Profiles -

Part 5-3: Installation of fieldbuses - Installation profiles for CPF 3

#### Programming interface

E-SW-FIELDBUS and Z-SW-FULL software using proper cable/adapter (see tech table GS500) or PROFINET controller.

#### Configuration file

GSDML (Electronic Data Sheet) enclosed in programming software DVD E-SW-FIELDBUS and Z-SW-FULL

#### Manuals

E-MAN-S-EP and STARTUP-FIELDBUS, enclosed in programming software DVD E-SW-FIELDBUS Z-MAN-S-EP and STARTUP-FULL, enclosed in programming software DVD Z-SW-FULL

09/19 GS510 GENERAL INFORMATION 591



# Mounting surfaces for electrohydraulic valves

ISO standard, for directional, pressure and flow control valves plus pressure switches

1 ISO 4401: 2005 - for directional, pressure and flow control valves

| Maunting ourfood dimensions [mm]                             | ISO code / ports size                                         | Valve                                                                            | e type                                              |
|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| Mounting surfaces dimensions [mm]                            | [mm]                                                          | industrial                                                                       | ex-proof                                            |
| M5<br>M5<br>M5<br>M5<br>M5<br>M5<br>M5<br>M5<br>M5<br>M5     | 4401-03-02-0-05  P, A, B, T = Ø 7,5 max without Y port        | DH* DLOH / DLOK DLEH / DLEHM QV-06 RZMO RZGO DHZE / DHZO DLHZO QVH* H* (modular) | DHA / DHW DLAH / DLWH RZMA RZGA DHZA DLHZA QVHZA    |
| Y port only for 4401-03-03-0-05                              | 4401-03-03-0-05  P, A, B, T = Ø 7,5 max  Y = Ø 3,3 max        | DHZO / Y<br>DLHZO / Y                                                            | DHZA / Y<br>DLHZA / Y                               |
| 8 M6 M6 Y X A B Y                                            | 4401-05-04-0-05  P, A, B, T = Ø 11,2 max without X and Y port | DKE<br>DKZOR<br>DLKZOR<br>QVKZOR<br>K* (modular)                                 | DKZA<br>DLKZA<br>QVKZA                              |
| 16.7 1 37.3 50.8 54 62 X and Y port only for 4401-05-05-0-05 | 4401-05-05-0-05  P, A, B, T = Ø 11,2 max X, Y = Ø 6,3 max     | DKE/Y DKZOR / Y DLKZOR / Y DP-1* DPH-1* DPZO-*-1*                                | DKZA / Y<br>DLKZA / Y<br>DPHA-1*/ DPHW-1<br>DPZA-*1 |
| M10  M6  T  P  X  S12  S12  S12  S12  S12  S12  S12          | <b>4401-07-07-0-05</b> P, A, B, T = Ø 17,5 max Y = Ø 6,3 max  | DP-2*<br>DPH*-2*<br>DPZO-*-2*<br>JP*-2* (modular)                                | DPHA-2 / DPHW-2<br>DPZA-*-2                         |

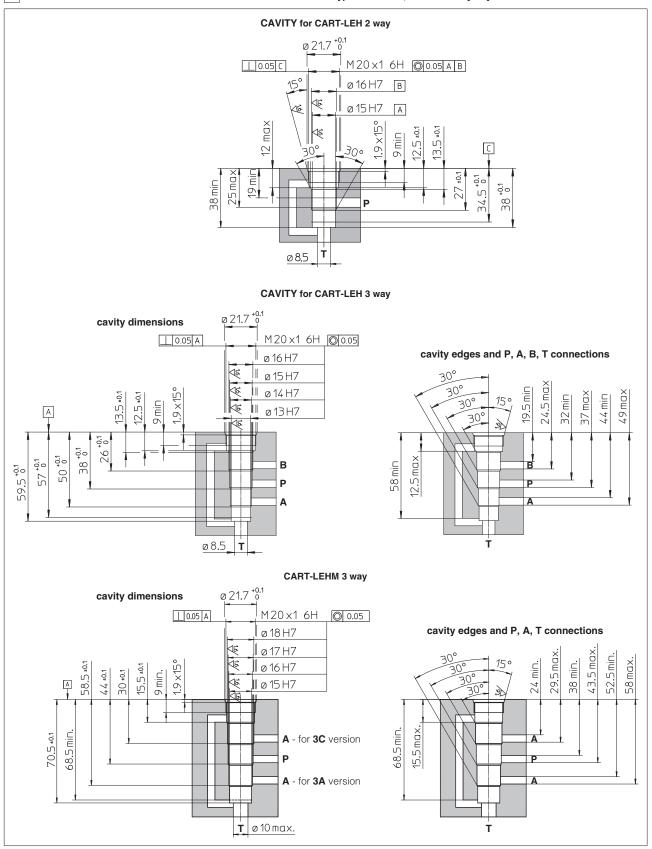
| Mounting surfaces dimensions [mm]                | ISO code / ports<br>size [mm]                                     | Valve<br>industrial                      | e type<br>ex-proof          |
|--------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-----------------------------|
| M 12 T P Y S S S S S S S S S S S S S S S S S S   | 4401-08-08-0-05  P, A, B, T = Ø 25 max X, Y, L = Ø 11,2 max       | DP-4* DPH*-4* DPZO-*-4* JP*-3* (modular) | DPHA-4 / DPHW-2<br>DPZA-*-4 |
| P Y SE       | <b>4401-10-09-0-05</b> P, A, B, T = Ø 32 max X, Y, L = Ø 11,2 max | DP-6*<br>DPH*-6*<br>DPZO-*-6*            | DPHA-6<br>DPZA-*-6          |
| M20  T  P  Y  SE  SE  SE  SE  SE  SE  SE  SE  SE | <b>4401-10-09-0-05</b> P, A, B, T = Ø 50 max X, Y, L = Ø 11,2 max | DPZO-*-8*                                | -                           |

## 2 ISO 6264: 2007 - for pressure relief valves

| Mounting surfaces dimensions [mm]           | ISO code / ports size                             | Valve                 | type                                        |
|---------------------------------------------|---------------------------------------------------|-----------------------|---------------------------------------------|
| Mounting surfaces dimensions [mm]           | [mm]                                              | industrial            | ex-proof                                    |
| M12 P T N N N N N N N N N N N N N N N N N N | 6264-06-09-1-97  P, T = Ø 14,7 max  X = Ø 4,8 max | AGAM-10<br>AGMZO-*-10 | AGAM-10 / AO<br>AGAM-10 / WO<br>AGMZA-*-10  |
| 23.8 11.1 34.9 57.2 79.4 90.5               | 6264-08-11-1-97  P, T = Ø 23,4 max X = Ø 6,3 max  | AGAM-20<br>AGMZO-*-20 | AGAM -20 / AO<br>AGAM-20 / WO<br>AGMZA-*-20 |
| M 20 P T 9                                  | 6264-10-17-1-97  P, T = Ø 32 max  X = Ø 6,3 max   | AGAM-32<br>AGMZO-*-32 | AGAM-32 / AO<br>AGAM-32 / WO<br>AGMZA-*-32  |

# 3 ISO 5781: 2000 - for pressure reducing and piloted check valves

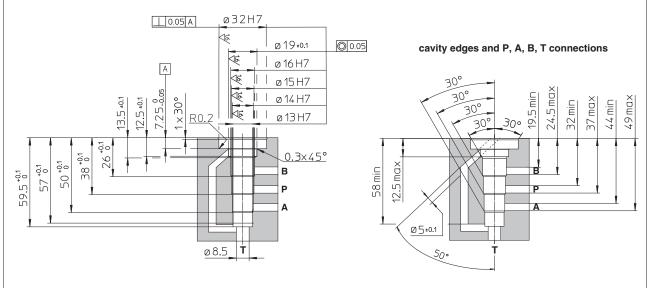
| Mounting ourfaces dimensions [mm]                                                      | ISO code / ports size                               | Valve                                                    | type        |
|----------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------------|
| Mounting surfaces dimensions [mm]                                                      | [mm]                                                | industrial                                               | ex-proof    |
| M10<br>A B E E E E E E E E E E E E E E E E E E                                         | 5781-06-07-0-00                                     | AGIS-10<br>AGIR-10                                       |             |
| 7.1<br>21.4<br>31.8<br>35.7<br>42.9                                                    | A, B = Ø 14,7 max<br>X, Y = Ø 4,8 max               | AGIU-10<br>AGRL*-10<br>AGRCZO-*-10                       | AGRCZA-*-10 |
| A B E E E E E E E E E E E E E E E E E E                                                | 5781-08-10-0-00  A, B = Ø 23,4 max X, Y = Ø 4,8 max | AGIS-20<br>AGIR-20<br>AGIU-20<br>AGRL*-20<br>AGRCZO-*-20 | AGRZA-*-20  |
| M10<br>A B 8 8 8 6 8 8 6 8 6 8 6 8 6 8 6 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5781-10-13-0-00                                     | AGIS-32<br>AGIR-32<br>AGIU-32<br>AGRL*-32                | -           |
| 42.1<br>59.6<br>62.7<br>67.5<br>84.1                                                   | A, B = Ø 32 max<br>X, Y = Ø 4,8 max                 |                                                          |             |


## 4 ISO 16873: 2002 - for pressure switches

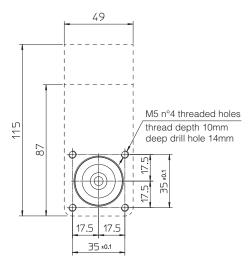
| Mounting surfaces dimensions [mm]           | ISO code / ports size [mm] | Valve type |
|---------------------------------------------|----------------------------|------------|
| 31<br>= = = = = = = = = = = = = = = = = = = | 16873-01-01-0-02           | MAP        |
| M5 — — —                                    | P = Ø 4 max                | IVIAF      |



# Mounting surfaces and cavities for cartridge valves

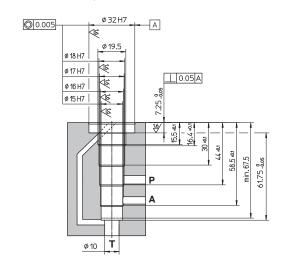

1 CAVITIES DIMENSIONS for 2 WAY and 3 WAY CARTRIDGE VALVES type CART-LEH, CART-LEHM [mm]



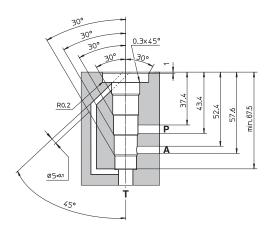

## **CAVITY** for CART-LAH 2 way ø32H7 Ø 19 ±0.1 р́ 16 Н7 30°. 埏 6 15 H7 130 7.25-0.05 12.5 ±0.1 13.5 ±0.1 12 max 300 34.5 0.1 25 тах 19 min 27 ±0.1 38 min 38 6.1 R0.2 <u>0.3×45°</u> <u>ø 8</u>.5 Т Ø5±0.1

## **CAVITY** for CART-LAH 3 way

## cavity dimensions

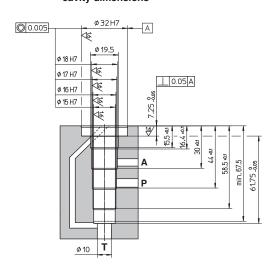



## MOUNTING SURFACE for CART-LAH 2 and 3 way

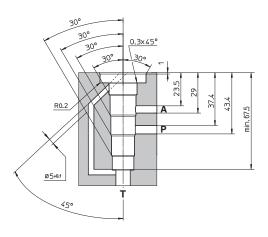



## **CAVITY for CART-LAHM-3A**

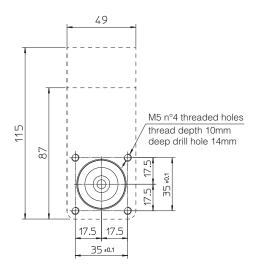
## cavity dimensions



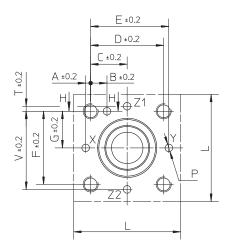

## cavity edges and P, A, T connections




## **CAVITY for CART-LAHM-3C**


## cavity dimensions




## cavity edges and P, A, T connections



## MOUNTING SURFACE for CART-LAHM 3 way

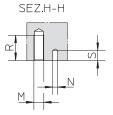


## Size from 16 to 63



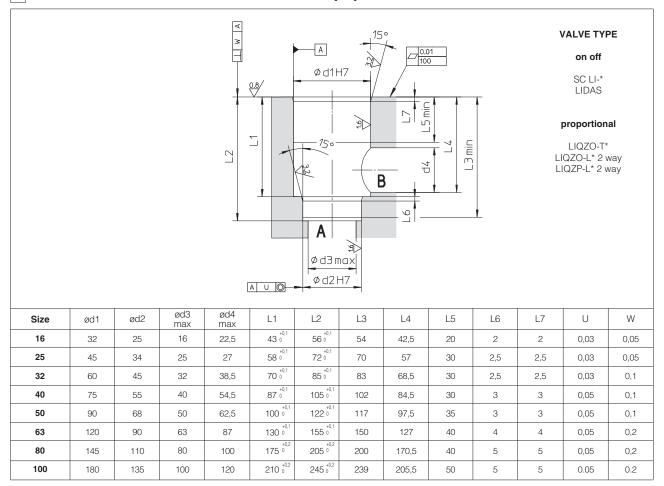
## **VALVE TYPE**

## on off

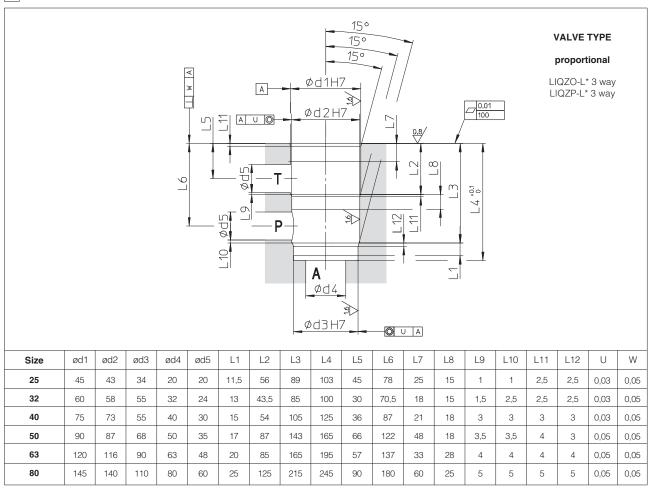

LIM LIR LIC LIQV LIDD LIDEW LIDBH LIDO LIDB LIDR LIDAS

## proportional

LIQZO-T\* LIQZO-L\* 2 way LIQZO-L\* 3 way LIQZP-L\* 2 way LIQZP-L\* 3 way


## Size 80 and 100






| Size | А    | В    | С    | D   | Е     | F    | G    | L    | М   | ØN | P max | R  | S min | Т    | V     |
|------|------|------|------|-----|-------|------|------|------|-----|----|-------|----|-------|------|-------|
| 16   | 2    | 12,5 | 23   | 46  | 48    | 46   | 23   | 65   | M8  | 4  | 4     | 20 | 6     | 2    | 48    |
| 25   | 4    | 13   | 29   | 58  | 62    | 58   | 29   | 85   | M12 | 6  | 6     | 30 | 8     | 4    | 62    |
| 32   | 6    | 18   | 35   | 70  | 76    | 70   | 35   | 102  | M16 | 6  | 8     | 38 | 8     | 6    | 76    |
| 40   | 7,5  | 19.5 | 42.5 | 85  | 92.5  | 85   | 42,5 | 125  | M20 | 6  | 10    | 46 | 8     | 7.5  | 92.5  |
| 50   | 8    | 20   | 50   | 100 | 108   | 100  | 50   | 140  | M20 | 8  | 10    | 46 | 8     | 8    | 108   |
| 63   | 12.5 | 24.5 | 62.5 | 125 | 137,5 | 125  | 62.5 | 180  | M30 | 8  | 12    | 66 | 8     | 12.5 | 137.5 |
| 80   | -    | -    | -    | -   | -     | Ø200 | =    | Ø250 | M24 | 10 | 16    | 50 | 10    | -    | -     |
| 100  | -    | -    | -    | -   | -     | Ø245 | -    | Ø300 | M30 | 10 | 20    | 63 | 10    | -    | -     |

## 5 ISO 7368 CAVITIES DIMENSIONS for 2 WAY CARTRIDGE VALVES [mm]



## 4 CAVITIES DIMENSIONS for 3 WAY CARTRIDGE VALVES [mm]





## **Operating and maintenance information**

for ex-proof proportional valves

This operating and maintenance information apply to Atos ex-proof proportional valves and is intended to provide useful guidelines to avoid risks when the valves are installed in a system operating in hazardous areas with explosive or flammable environement.

The prescriptions included in this document must be strictly observed to avoid damages and injury. The respect of this operating and maintenance information grant an increased working life, trouble-free operation and thus reduced repairing costs.

Information and notes on the transport and storage of the valves are also provided.



## 1 SYMBOL CONVENTIONS



This symbol refers to possible danger which can cause serious injuries

## 2 GENERAL NOTES

The operating and maintenance information is part of the operating instructions for the complete machine but it cannot replace them.

This document is relevant to the installation, use and maintenance of proportional directional, flow and pressure control valves equipped with ex-proof proportional solenoid and on-board driver type OZA-\* and MZA-\* for application in explosive hazardous environments.

## 2.1 Warranty

All the ex-proof proportional valves have 1 year warranty; the expiration of warranty results from the following operations:

- unauthorized mechanical or electronic operations
- the ex-proof proportional valves are not used exclusively for their intended purpose as defined in these operating and maintenance



Service work performed on the valve by the end users or not qualified personnel invalidates the certification

## **3 CERTIFICATIONS AND PROTECTION MODE**

#### 3.1 Valves with on-board driver/axis controller

The ex-proof proportional valves subject of this operating and maintenance information are certified ATEX or IECEx. They are in compliance with following protection mode



⟨ξχ⟩ II 2 G Ex d IIC T6, T5, T4 Gb



(Ex) II 2 D Ex th IIIC T85°C, T100°C, T135°C Db

## 3.2 Valves with off-board driver/axis controller

The ex-proof solenoids subject of this operating and maintenance information are multicertified ATEX, IECEx, EAC, PESO or cULus They are in compliance with following protection mode:

Multicertification Group II - ATEX, IECEx, EAC, PESO

cULus Noth American certification

⟨Ex⟩ II 2 G Ex d IIC T6, T4, T3 Gb

Class I, Div. I, Groups C & D Class I, Zone I, Groups II A & II B

T. class T4/T3 T. class T4/T3

(ξχ) II 2 D Ex tb IIIC T85°C, T135°C, T200°C Db

Multicertification Group I (mining) - ATEX, IECEx



(ξχ) IM2 Ex d IMb

## 4 HARMONIZED STANDARDS

The Essential Health and Safety Requirements are assured by compliance to the following standards:

#### **ATEX**

EN 60079-0 Explosive atmospheres - Equipment: General requirements

EN 60079-1 Explosive atmospheres - Equipment protection by flameproof enclosures "d" Explosive atmospheres - Equipment dust ignition protection by enclosures "t"

#### **IECEx**

IEC 60079-0 Explosive atmospheres - Part 0: General requirements

IEC 60079-1 Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d" Explosive atmospheres - Part 31: Equipment dust ignition protection by enclosures "t"

## 5 GENERAL CHARACTERISTICS

| Ambient temperature range | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage temperature range | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |
| Surface protection        | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |
| Compliance                | Explosion proof protection -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                   |
|                           | RoHs Directive 2011/65/EU as last update by 2015/65/EU (not for valves type T) REACH Regulation (EC) n°1907/2006                                                                         |

## 6 HYDRAULIC CHARACTERISTICS

See technical tables relevant to the specific components, listed in section 12

## 7 ELECTRICAL CHARACTERISTICS

#### 7.1 Valves with on-board driver/axis controller

#### Characteristics:

The power limitation is obtained by feeding the solenoid with current of 2,75 A, controlled by the on-board electronic driver/axis controller:

- Power supply: 24 VDC ±10 % stabilized - Rectified and filtered: VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)

- Current supply: IMAX = 2,75 A PWM square wave type

- Max power consumption: 35 W

- Output protection: against short circuit

**Note:** 2,5 A external fuse type RVT (fast) must be provided on the power supply line For details see technical tables relevant to the specific components, listed in section 12

## 7.2 Valves with off-board driver/axis controller

### Solenoid characteristics:

- Max power consumption: 35 W

- Coil resistance R at 20°C: 3,2  $\Omega$ ; 17,6  $\Omega$  (option /24) - Max solenoid current: 2,5 A; 1,1 A (option /24)

For details see technical tables relevant to the specific components, listed in section 12

## Off-board driver/axis controller characteristics:

The power limitation is obtained by feeding the solenoid with current of 2,5 A, controlled by following off-board driver/axis controller:

- Power supply: 24 VDC ±10 % stabilized - Rectified and filtered: VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)

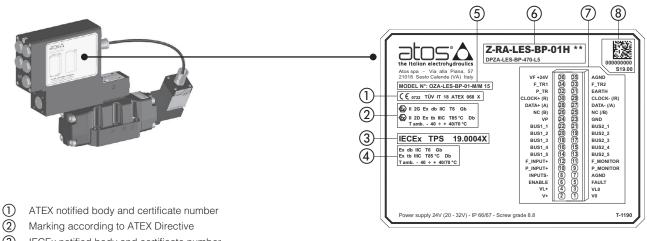
- Current supply: IMAX = 2,5 A PWM square wave type

- Output protection: against short circuit

Note: 2,5 A external fuse type RVT (fast) must be provided on the power supply line

For valves without transducer:

E-BM-AS-\*/A see tech table G030 E-BM-AES-\*/A see tech table GS050


For valves with LVDT transducer:

E-BM-TEB/LEB-\*/A see tech table GS230 E-BM-TES/LES-\*/A see tech table GS240 Z-BM-TEZ/LEZ-\*/A see tech table GS330

## 8 NAMEPLATES

## 8.1 Valve with on-board driver/axis controller - ATEX and IECEx certification

Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22



- 3 IECEx notified body and certificate number
- 4 Marking according to IECEx Scheme
- (5) Code of solenoid
- 6 Code of on-board driver and related proportional valve
- 7 Electronic connections
- Qr code and driver serial number

| C€                   | Mark of conformity to the applicable European directives                                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>€</b> x           | Mark of conformity to the 2014/34/EU directive and to the relevant technical norms                                                                          |
| II 2 G               | Equipment for surface plants with gas and vapors environment, category 2, suitable for zone 1 and zone 2                                                    |
| Ex db                | Explosion-proof equipment                                                                                                                                   |
| II C                 | Group II C equipment suitable for substances (gas) for group II C                                                                                           |
| Т6                   | Equipment temperature class (maximum surface temperature)                                                                                                   |
| Gb                   | Equipment protection level, very high level protection for explosive Gas atmospheres                                                                        |
| II 2 D               | Transducer for surface plants with dust environment, category 2, suitable for zone 21 and zone 22                                                           |
| Ex tb                | Equipment protection by enclosure"tb"                                                                                                                       |
| III C                | Suitable for conductive dust (applicable also IIIB and/or IIIA)                                                                                             |
| IP66/67              | Protection degree                                                                                                                                           |
| T85°C                | Maximum surface temperature (Dust)                                                                                                                          |
| Db                   | Equipment protection level, high level protection for explosive Dust atmospheres                                                                            |
| TUV IT 18 ATEX 068 X | Name of the laboratory responsible for the CE certification: 18 year of the certification release; 068 X certification number                               |
| 0948                 | Number of the Certified Body authorized for the production quality system certification                                                                     |
| IECEx TPS 19.0004X   | Certificate number: TPS laboratory name responsible for the IECEx certification scheme: 19 year of the certification release; 0004X number of certification |
| T amb.               | Ambient temperature range                                                                                                                                   |

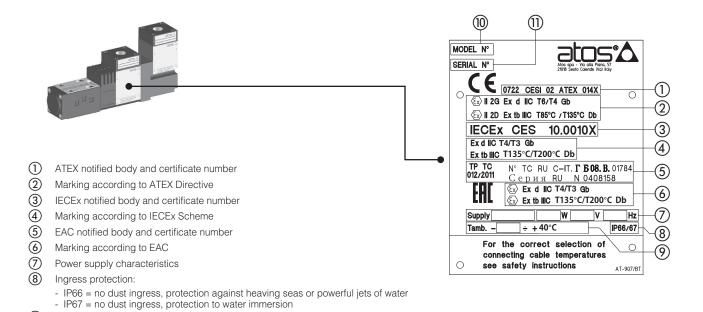
#### Notes:

The group IIC solenoids are suitable for IIA and IIB environments.

The T6 temperature class solenoids are suitable for all the substances having higher temperature class (T5, T4, T3, T2, T1).

The T5 temperature class solenoids are suitable also for all the substances having higher temperature class (T4, T3, T2, T1).

Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22


9

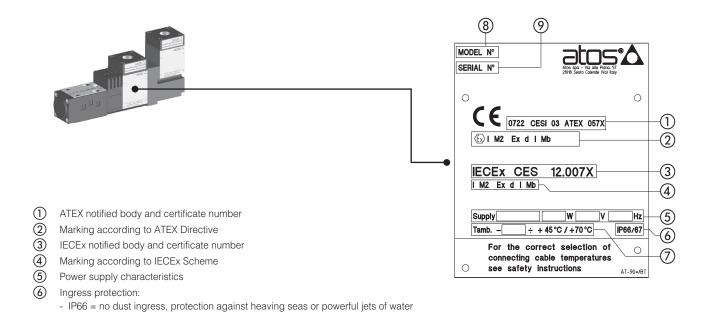
(10)

(11)

Ambient temperature

Solenoid model code Solenoid serial number

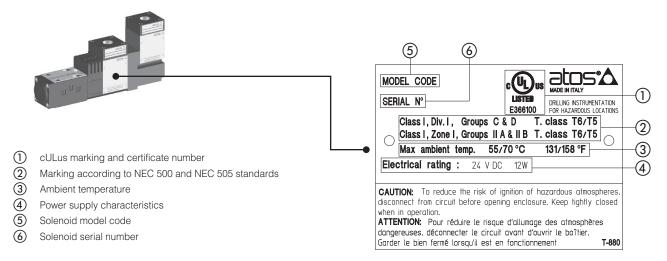



|                       | Mayly of a onformity to the applicable Furences directives                                                                                                  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C€                    | Mark of conformity to the applicable European directives                                                                                                    |
| ⟨Ex⟩                  | Mark of conformity to the 2014/34/EU directive and to the relevant technical norms                                                                          |
| II 2 G                | Equipment for surface plants with gas and vapors environment, category 2, suitable for zone 1 and zone 2                                                    |
| Ex d                  | Explosion-proof equipment                                                                                                                                   |
| II C                  | Group II C equipment suitable for substances (gas) for group II C                                                                                           |
| T4, T3                | Solenoid temperature class (maximum surface temperature)                                                                                                    |
| Gb                    | Equipment protection level, very high level protection for explosive Gas atmospheres                                                                        |
| II 2 D                | Equipment for surface plants with dust environment, category 2, suitable for zone 21 and zone 22                                                            |
| Ex tb                 | Equipment protection by enclosure"tb"                                                                                                                       |
| III C                 | Suitable for conductive dust (applicable also IIIB and/or IIIA)                                                                                             |
| IP66/67               | Protection degree                                                                                                                                           |
| T85°C, T135°C, T200°C | Maximum surface temperature (Dust)                                                                                                                          |
| Db                    | Equipment protection level, high level protection for explosive Dust atmospheres                                                                            |
| CESI 02 ATEX 014 X    | Name of the laboratory responsible for the CE certification: 02 year of the certification release; 014 X certification number                               |
| 0722                  | Number of the Certified Body authorized for the production quality system certification:<br>0722 = CESI                                                     |
| IECEx CES 10.0010X    | Certificate number: CES laboratory name responsible for the IECEx certification scheme: 10 year of the certification release; 0010X number of certification |
| T amb.                | Ambient temperature range                                                                                                                                   |

#### 8.3 Valve with off-board driver/axis controller - ATEX and IECEx

- IP67 = no dust ingress, protection to water immersion

Ambient temperature Solenoid model code Solenoid serial number


Gas - group I M2 - Mining



CEMark of conformity to the applicable European directives Mark of conformity to the 2014/34/UE directive and to the technical norms Equipment for mining (or relevant surface plants) which could be exposed to gas and / or flammable dust. IM2 The power supply of these equipment has to be switched off in case of explosive atmosphere. Ex d Explosion-proof equipment 1 Group I equipment suitable for substances (gas) for group I Mb Equipment protection level, high level protection for explosive atmospheres Name of the laboratory responsible for the CE certification: **CESI 03 ATEX 057 X** 03 year of the certification release; 057 certification number X= reduced risk of mechanical shock (the equipment has to be protected from mechanical shocks) Number of the Certified Body authorized for the production quality system certification: 0722 = CESI 0722 Certificate number: CES laboratory name responsible for the IEC Ex certification scheme: IECEx CES 12.007X 12 year of the certification release; 007X number of certification T amb. Ambient temperature range

#### 8.4 Valve with off-board driver/axis controller - cULus certification

Class I, Division I, Groups C and D Class I, Zone I, Groups IIA and IIB



| CUL US LISTED E366100 | cULus mark and certificate number                                                            |
|-----------------------|----------------------------------------------------------------------------------------------|
| Class I               | Equipment for flammable gas and vapours                                                      |
| Division I            | Explosive substances continuously or intermittently present in the atmosphere                |
| Groups C & D          | Gas group C (Methane, Buthane, Petrol, etc) and D (Etylene, Formaldeyde, Cloruprophane, etc) |
| Zone I                | Location where explosive substances are continuously present                                 |
| Groups IIA & IIB      | Equipment of group IIA and IIB suitable for gas of group IIA and IIB                         |
| Class T6/T5           | Solenoid temperature class (maximum surface temperature)                                     |
| Max ambient temp.     | Max ambient temperature range in °C and °F                                                   |

## 9 SAFETY NOTES

## 9.1 Improper use

Any improper use of the components is not admissible.

Improper use of the product includes:

- Wrong installation / installation in areas not approved for the specific component
- Incorrect cleanliness during storage and assembly
- Use of inappropriate or non-admissible hydraulic fluids
- Use outside of the specified performance limits
- Use of inappropriate electrical power supply
- Incorrect transport

#### 9.2 Installation



The installation or use of inappropriate components in explosive hazardous environments could cause personal injuries and damage to property

For the application in explosion hazardous environments, the compliance of the solenoid with the zone classification and with the flammable substances present in the system must be verified.

The main safety requirements against the explosion risks in the classified areas are established by the European Directives 2014/34/UE (for the components) and 99/92/CE (for the plants and safety of the workers against the risk of explosion).

The classification criteria of the area against the explosion risks are established by the norm EN60079-10.

The technical requirements of the electrical systems are established by the norm EN60079-14 (group II).

Note: the max fluid temperature controlled by the valve must not exceed + 60°C



Ensure that no explosive atmosphere may occur during the valve installation.

Only use the valve in the intended explosion protection area.

The ignition temperature of the hydraulic fluid used must be 50°C higher than the maximum surface temperature of the valve.

Use of the valve outside the approved temperature ranges may lead to functional failures like e.g. overheating of the valve solenoid/driver. This means that the explosion protection is no longer ensured.

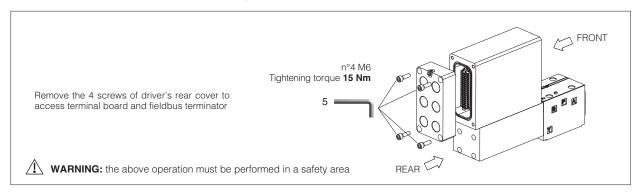
Only use the valve within the fluid temperature range.

During operation, touch the valve solenoid only by using protective gloves.

Unload the system pressure before working on the valve.

Danger of serious injury can be caused by a powerful leaking of hydraulic fluid jet.

Before working on the valve, ensure that the hydraulic system is depressurized and the electrical control is de-energized.


#### 9.3 Electrical connection - valve with on-board driver/axis controller

Electrical connections to the external circuits are achieved through 36 poles terminal block installed on a PCB fixed inside driver housing. The threaded cable entrance is provided with a cylindrical thread M20x1,5 UNI 4535.

The cable glands used for the cable entrance must be certified for the specific hazardous environment – see tech. table **KX800** for Atos ex-proof cable glands.

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

The electrical cables must be suitable for the working temperatures as shown in the section 9.4



#### 9.4 Cable specification and temperature - Valve with on-board driver/axis controller

Power supply and signals: section of wire = 1,0 mm<sup>2</sup> Grounding: section of external ground wire = 4 mm<sup>2</sup>

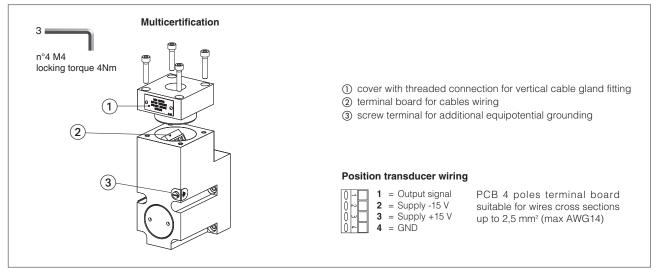
#### Cable temperature

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] | Min. cable temperature [°C] |  |
|------------------------------|-------------------|------------------------------|-----------------------------|--|
| 40 °C                        | T6                | 85 °C                        | 80 °C                       |  |
| 55 °C                        | T5                | 100 °C                       | 90 °C                       |  |
| 70 °C                        | T4                | 135 °C                       | 110 °C                      |  |

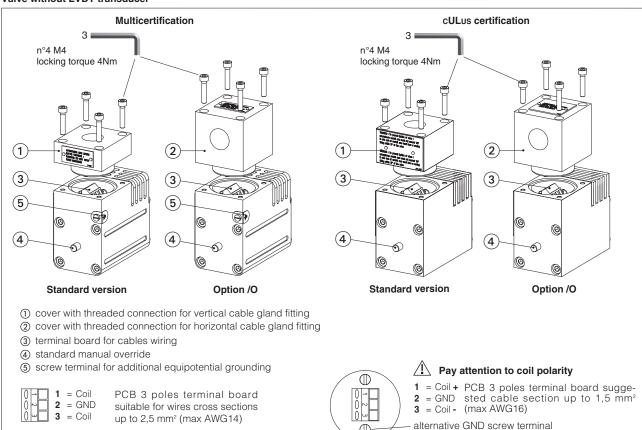
## 9.5 Electrical connection - valve off-board driver/axis controller

The connection to the external circuit is made with a screw clamps 2 poles + ground, installed inside the solenoid and transducer housing. The eventual requirement of the additional ground connection on the solenoid housing must be made on the relative screw (M3x6 UNI-6107).

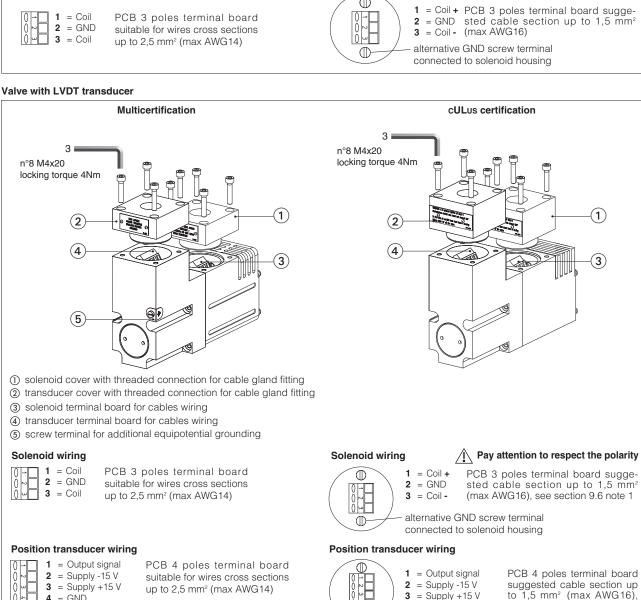
The threaded cable entrance is provided with one of following optional connections:


- conical thread 1/2" NPT ANSI B2.1
- conical thread GK-1/2" "(Annex 1 CEI EN 60079-1 2008-11) only for the Italian market
- cylindrical thread M20x1,5 UNI 4535

The cable glands used for the cable entrance must be certified for the specific hazardous environment – see tech. table **KX800** for Atos ex-proof cable glands.


Note: a Loctite sealant type 545, should be used on the cable gland entry threads

The electrical cables must be suitable for the working temperatures as shown in the section 9.6

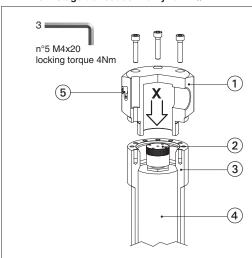

## LVDT main stage transducer - only for DPZA-T



#### Valve without LVDT transducer

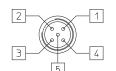


= GND




3 = Supply + 15 V

4 = GND


see section 9.6 note 1

#### LVDT main stage transducer - only for LIQZA-L



- ① transducer cover with threaded connection for cable gland fitting
- ② transducer terminal board for cables wiring
- 3 ex-proof protection for LVDT transducer
- 4) LVDT transducer
- (5) screw terminal for additional equipotential grounding

### Transducer wiring - view from X



1 = Do not connect

2 = Supply -15 V

**3** = GND

4 = Output signal

5 = Supply +15 V

#### 9.6 Cable specification and temperature - Valve with off-board driver/axis controller

#### Cable specification - Multicertification Group I and Group II

Power supply: section of coil connection wires = 2,5 mm<sup>2</sup>

**Grounding:** section of internal ground wire = 2,5 mm<sup>2</sup> section of external ground wire = 4 mm<sup>2</sup>

## Cable temperature - Multicertification Group I and Group II

| Max ambient temperature [°C] | Tempera | ture class | ass Max surface temperature [°C] |         | Min. cable temperature [°C |         |
|------------------------------|---------|------------|----------------------------------|---------|----------------------------|---------|
|                              | Goup I  | Goup II    | Goup I                           | Goup II | Goup I                     | Goup II |
| 40 °C                        | -       | T4         | 150 °C                           | -       | 90 °C                      | -       |
| 45 °C                        | -       | T4         | 150 °C                           | 135 °C  | -                          | 90 °C   |
| 55 °C                        | -       | T3         | 150 °C                           | 200 °C  | -                          | 110 °C  |
| 60 °C                        | -       | -          | 150 °C                           | -       | 110 °C                     | -       |
| 70 °C                        | N.A.    | T3         | N.A.                             | 200 °C  | N.A.                       | 120 °C  |

#### Cable specification - cULus certification

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm $^2$  (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: for Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring

## Cable temperature - cULus certification

| Max ambient temperature [°C] | ambient temperature [°C] Temperature class Max surface temperature [°C] |        | Min. cable temperature [°C] |  |
|------------------------------|-------------------------------------------------------------------------|--------|-----------------------------|--|
| 55 °C                        | T4                                                                      | 135 °C | 100 °C                      |  |
| 70 °C                        | T3                                                                      | 200 °C | 100 °C                      |  |

## 9.7 Hydraulic fluids and operating viscosity range

Mineral oils type HLP having high viscosity index are recommended.

The hydraulic fluids must be compatible with the selected seals.

Make sure that the working fluid is compatible with gas and dust present in the environment. The type of fluid has to be selected in consideration of the effective working temperature range, so that the fluid viscosity remains at the optimal level.

| Hydraulic fluid               | Suitable seals type | Classification             | Ref. Standard |
|-------------------------------|---------------------|----------------------------|---------------|
| Mineral oils NBR, FKM, HNBR   |                     | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |
| Flame resistant without water | FKM                 | HFDU, HFDR                 | ISO 12922     |
| Flame resistant with water    | NBR, HNBR           | HFC                        | 130 12922     |

Fluid viscosity: 20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s

## 9.8 Filtration

The correct fluid filtration ensures a long service life of the valves and it prevent anomalous wearing or sticking.



Contamination in the hydraulic fluid may cause functional failures e.g. jamming or blocking of the valve spool / poppet.

FX900

In the worst case, this may result in unexpected system movements and thus constitute a risk of injury.

Ensure adequate hydraulic fluid cleanliness according to the cleanliness classes of the valve over the entire operating range.

Max fluid contamination level, see also filter section at www.atos.com or KTF catalog:

- normal operation: ISO4406 class 18/16/13 NAS1638 class 7
- longer life: ISO4406 class 16/14/11 NAS1638 class 5

611

## 10 MAINTENANCE



Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

## 10.1 Ordinary maintenance



Service work performed on the valve by end user or not qualified personnel invalidates the certification

- The valves does not require other maintenance operations except seals replacement
- Results of maintenance and inspection must be planned and documented
- Follow the maintenance instructions of the fluid manufacturer
- Any preventive maintenance should be performed only by experienced personnel authorized by Atos.
- Cleaning the external surfaces using a wet cloth to avoid accumulation of dust layer over 5 mm
- Don't use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires the immediate stop of the system and the inspection of the relevant components

#### 10.2 Repairing

In case of incorrect functioning or beak-down it is recommended to send the valve back to Atos or to Atos authorized service centers which will provide for the reparation.

Unauthorized opening of the valves during the warranty period invalidates the warranty and invalidates the certification tools for repairing.



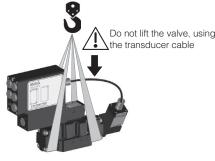
The intrinsically safe solenoids must not be opened.

Any tampering invalidates the certification and it may cause serious dangerous.

## 11 TRANSPORT AND STORAGE

#### 11.1 Transport

Observe the following guidelines for transportation of valves:


- Before any movement check the valve weight reported in the technical table relevant to the specific component
- Use soft lifting belts to move or lift the heavy valves to avoid damages



Danger of damage to property and personal injuries!

The valve may fall down and cause damage and injuries, if transported improperly:

- Use the original packaging for transport
- Use personal protective equipment, such as: gloves, working shoes, safety goggles, working clothes, etc.



#### 11.2 Storage

Valve's corrosion protection is achieved with zinc coating: this treatment protect the valve to grant a storage period up to 12 months. Additionally all valves are tested with mineral oil OSO 46; the oil film left after testing ensure the internal corrosion protection. In case of storage period longer than 12 months please contact our technical office

Ensure that valves are well protected against water and humidity in case of storage in open air.

## 12 RELATED DOCUMENTATION

### 12.1 Valve with on-board driver/axis controller

#### Servoproportional directional - zero overlap with LVDT transducer FX150 DLHZA-TES, DLKZA-TES - direct, sleeve execution

FX135 DHZA-TES, DKZA-TES - direct FX235 DPZA-LES, piloted

FX380

LIQZA-LES, 3-way cartridge

#### High performance directional - positive overlap with LVDT transducer

FX130 DHZA-TES, DKZA-TES - direct

FX230 DPZA-LES - piloted

FX360 LIQZA-LES, 2-way cartridge

#### Directional valves - positive overlap without transducer

FX110 DHZA-AES, DKZA-AES - direct

FX210 DPZA-AES - piloted

#### High performance pressure valves - with pressure transducer

RZMA-RES, AGMZA-RES - relieft FX030

RZGA-RES, AGRCZA-RES - reducing FX060

FX320 LIMZA-RES, LIRZA-RES, LICZA-RES - relief, reducing, compensator

## Pressure valves - without transducer

FX020 RZMA-AES, AGMZA-AES - relief RZGA-AES, AGRCZA-AES - reducing FX050

FX080 DHRZA-AES - reducing FX310 LIMZA-AES - relief

> LIRZA-AES - reducing LICZA-AES - compensator

#### Flow valves, pressure compensated

FX430 QVHZA-TES, QVKZA-TES - with LVDT transducer FX410 QVHZA-AES, QVKZA-AES - without transducer

## Servoproportional valves with on-board axis controller

FX610 DLHZA-TEZ, DLKZA-TEZ - direct, sleeve execution

DHZA-TEZ, DKZA-TEZ - direct FX620

FX630 DPZA-LEZ - piloted

## 12.2 Valve with off-board driver/axis controller

## Servoproportional directional - zero overlap with LVDT transducer

FX140 DLHZA-T DLKZA-T - direct, sleeve execution

FX370 LIQZA-L, 3-way cartridge

#### High performance directional - positive overlap with LVDT transducer

FX120 DHZA-T, DKZA-T - direct

DPZA-T - piloted FX220

FX350 LIQZA-L, 2-way cartridge

## Directional valves - positive overlap without transducer

DHZA-A, DKZA-A - direct FX100

FX200 DPZA-A - piloted

## Pressure valves - without pressure transducer

RZMA-A, HZMA-A, AGMZA-A - relief FX010

FX040 RZGA-A, AGRCZA-A, HZGA-A, KZGA-A - reducing

DHRZA-A - reducing FX070 FX300 LIMZA-A - relief LIRZA-A - reducina

LICZA-A - compensator

#### Flow valves, pressure compensated QVHZA-T, QVKZA-T - with LVDT transducer

FX400 QVHZA-A, QVKZA-A - without transducer



# Operating and maintenance information

for ex-proof on-off valves

This operating and maintenance information apply to Atos ex-proof on-off valves and is intended to provide useful guidelines to avoid risks when the valves are installed in a system operating in hazardous areas with explosive or flammable environement.

The prescriptions included in this document must be strictly observed to avoid damages and injury. The respect of this operating and maintenance information grant an increased working life, trouble-free operation and thus reduced repairing costs.

Information and notes on the transport and storage of the valves are also provided.



## 1 SYMBOL CONVENTIONS



This symbol refers to possible danger which can cause serious injuries

## 2 GENERAL NOTES

The operating and maintenance information is part of the operating instructions for the complete machine but it cannot replace them.

This document is relevant to the installation, use and maintenance of on-off directional, flow and pressure control valves equipped with ex-proof solenoids type OA-\* for application in explosive hazardous environments.

## 2.1 Warranty

All the ex-proof on-off valves have 1 year warranty; the expiration of warranty results from the following operations:

- unauthorized mechanical or electronic interventions
- the ex-proof on-off valves are not used exclusively for their intended purpose as defined in these operating and maintenance instructions



Service work performed on the valve by the end users or not qualified personnel invalidates the certification

## 3 CERTIFICATIONS AND PROTECTION MODE

The ex-proof on-off solenoids subject of this operating and maintenance information are multicertified ATEX, IECEx, EAC or cULus They are in compliance with following protection mode:

Multicertification Group II - ATEX, IECEx, EAC, PESO

Multicertification Group I (mining) – ATEX, IECEx



⟨Ex⟩ II 2 G Ex d IIC T6, T4, T3 Gb



IM2 ExdIMb



II 2 D Ex tb IIIC T85°C, T135°C, T200°C Db

MA chinese mining certification

cULus Noth American certification



d I Mb

Class I, Div. I, Groups C & D T. class T4/T3
Class I, Zone I, Groups II A & II B T. class T4/T3

#### 4 HARMONIZED STANDARDS

The Essential Health and Safety Requirements are assured by compliance to the following standards:

## ATEX

EN 60079-0 Explosive atmospheres - Equipment: General requirements

EN 60079-1 Explosive atmospheres - Equipment protection by flameproof enclosures "d" Explosive atmospheres - Equipment dust ignition protection by enclosures "t"

**IECE**x

IEC 60079-0 Explosive atmospheres - Part 0: General requirements

IEC 60079-1 Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d" Explosive atmospheres - Part 31: Equipment dust ignition protection by enclosures "t"

cULus

UL 1203 Standard for Explosion-Proof and Dust-Ignition-Proof Electrical Equipment for use in Hazardous (classified) locations

UL 429 Standard for Electrically Operated valves CSA C22.2 No.139-13 Electrically Operated Valves

EX900 GENERAL INFORMATION

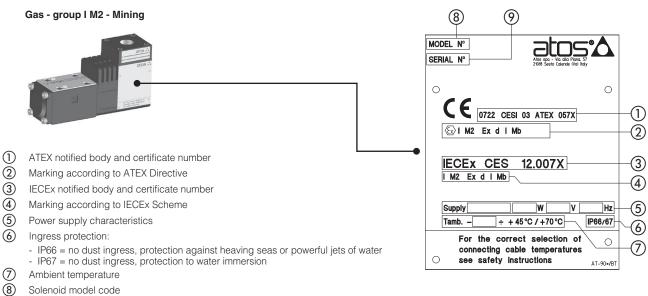
## 5 GENERAL CHARACTERISTICS

| Ambient temperature range | <b>Standard</b> = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$ |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Storage temperature range | <b>Standard</b> = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /PE option = $-20^{\circ}\text{C} \div +70^{\circ}\text{C}$ /BT option = $-40^{\circ}\text{C} \div +70^{\circ}\text{C}$ |  |  |  |  |
| Surface protection        | Zinc coating with black passivation - salt spray test (EN ISO 9227) > 200 h                                                                                                              |  |  |  |  |
| Compliance                | Explosion proof protection -Flame proof enclosure "Ex d" -Dust ignition protection by enclosure "Ex t"                                                                                   |  |  |  |  |
|                           | RoHs Directive 2011/65/EU as last update by 2015/65/EU (not for valves type T) REACH Regulation (EC) n°1907/2006                                                                         |  |  |  |  |

## 6 HYDRAULIC CHARACTERISTICS

See technical tables relevant to the specific components, listed in section 12

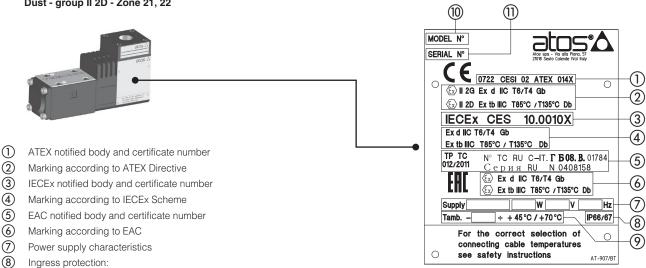
## 7 ELECTRIC CHARACTERISTICS


| Harmonized standard       | Multicertification | cULus |
|---------------------------|--------------------|-------|
| Power consumption at 20°C | 8W                 | 12W   |

See technical tables relevant to the specific components, listed in section  $\boxed{12}$ 

## 8 NAMEPLATES

## 8.1 ATEX and IECEx multicertification

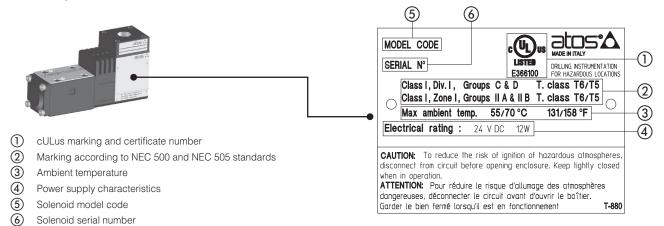

Solenoid model code Solenoid serial number



| C€                                                                                                                                                                            | Mark of conformity to the applicable European directives                                                                                                                                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>€</b> ∑                                                                                                                                                                    | Mark of conformity to the 2014/34/UE directive and to the relevant technical norms                                                                                                                                         |  |  |
| I M2                                                                                                                                                                          | Equipment for mining (or relevant surface plants) which could be exposed to gas and / or flammable dust. The power supply of these equipment have to be switched off in case of explosive atmosphere.                      |  |  |
| Ex d                                                                                                                                                                          | Explosion-proof equipment                                                                                                                                                                                                  |  |  |
| Group I equipment suitable for substances (gas) for group I                                                                                                                   |                                                                                                                                                                                                                            |  |  |
| Mb                                                                                                                                                                            | Equipment protection level, high level protection for explosive atmospheres                                                                                                                                                |  |  |
| CESI 03 ATEX 057 X                                                                                                                                                            | Name of the laboratory responsible for the CE certification: 03 year of the certification release; 057 certification number X= reduced risk of mechanical shock (the equipment has to be protected from mechanical shocks) |  |  |
| 0722                                                                                                                                                                          | Number of the Certified Body authorized for the production quality system certification: 0722 = CESI                                                                                                                       |  |  |
| IECEx CES 12.007X  Certificate number: CES laboratory name responsible for the IEC Ex certification scheme 12 year of the certification release; 007X number of certification |                                                                                                                                                                                                                            |  |  |
| T amb.                                                                                                                                                                        | Ambient temperature range                                                                                                                                                                                                  |  |  |

## 8.2 ATEX, IECEx, EAC and PESO multicertification

Gas - group II 2G - Zone 1, 2 Dust - group II 2D - Zone 21, 22




- IP66 = no dust ingress, protection against heaving seas or powerful jets of water
   IP67 = no dust ingress, protection to water immersion
- 9 Ambient temperature
- 10 Solenoid model code
- (1) Solenoid serial number

| CE                                                                                 | Mark of conformity to the applicable European directives                                                                                                     |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (Ex)                                                                               | Mark of conformity to the 2014/34/UE directive and to the relevant technical norms                                                                           |  |  |
| II 2 G                                                                             | Equipment for surface plants with gas or vapors environment, category 2, suitable for zone 1 and 2                                                           |  |  |
| Ex d                                                                               | Explosion-proof equipment                                                                                                                                    |  |  |
| II C                                                                               | Group II C equipment suitable for substances (gas) for group II C                                                                                            |  |  |
| T6, T4, T3                                                                         | Equipment temperature class (maximum surface temperature)                                                                                                    |  |  |
| Gb Equipment protection level, high level protection for explosive Gas atmospheres |                                                                                                                                                              |  |  |
| II 2 D                                                                             | Equipment for surface plants with dust environment, category 2, suitable for zone 21 and zone 22                                                             |  |  |
| Ex tb                                                                              | Equipment protection by enclosure"tb"                                                                                                                        |  |  |
| IIIC                                                                               | Suitable for conductive dust (applicable also IIIB and/or IIIA)                                                                                              |  |  |
| IP66/67                                                                            | Protection degree                                                                                                                                            |  |  |
| T85°C, T135°C, T200°C,                                                             | Maximum surface temperature (Dust)                                                                                                                           |  |  |
| Db                                                                                 | Equipment protection level, high level protection for explosive Dust atmospheres                                                                             |  |  |
| CESI 02 ATEX 014 X                                                                 | Name of the laboratory responsible for the CE certification: 02 year of the certification release; 014 X certification number                                |  |  |
| 0722                                                                               | Number of the Certified Body authorized for the production quality system certification: 0722 = CESI                                                         |  |  |
| IECEx CES 10.0010X                                                                 | Certificate number: CES laboratory name responsible for the IEC Ex certification scheme: 10 year of the certification release; 0010X number of certification |  |  |
| T amb.                                                                             | Ambient temperature range                                                                                                                                    |  |  |

#### 8.3 cULus certification

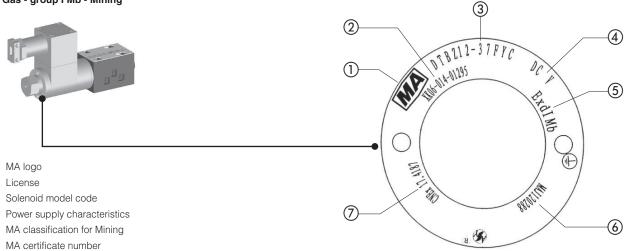
Class I, Division 1 Class I, Zone 1



| CUL US LISTED E366100 | cULus mark and certificate number                                                            |  |
|-----------------------|----------------------------------------------------------------------------------------------|--|
| Class I               | Equipment for flammable gas and vapours                                                      |  |
| Division I            | Explosive substances continuously or intermittently present in the atmosphere                |  |
| Groups C & D          | Gas group C (Methane, Buthane, Petrol, etc) and D (Etylene, Formaldeyde, Cloruprophane, etc) |  |
| Zone I                | Location where explosive substances are continuously present                                 |  |
| Groups IIA & IIB      | Equipment of group IIA and IIB suitable for gas of group IIA and IIB                         |  |
| Class T6/T5           | Solenoid temperature class (maximum surface temperature)                                     |  |
| Max ambient temp.     | Max ambient temperature range in °C and °F                                                   |  |

## 8.4 MA certification

1 2


3

45

6



Notified body and certificate number



| MA                                                                             | MA Center mark                                              |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Ex d                                                                           | Explosion-proof equipment                                   |  |
| I                                                                              | Group I equipment suitable for substances (gas) for group I |  |
| Mb Equipment protection level, high level protection for explosive atmospheres |                                                             |  |

## 9 SAFETY NOTES

#### 9.1 Improper use

Any improper use of the components is not admissible.

Improper use of the product includes:

- Wrong installation / installation in areas not approved for the specific component
- Incorrect cleanliness during storage and assembly
- Use of inappropriate or non-admissible hydraulic fluids
- Use outside of specified performance limits
- Use of inappropriate electrical power supply
- Incorrect transport

#### 9.2 Installation



The installation or use of inappropriate components in explosive hazardous environments could cause personal injuries and damage to property.

For the application in explosion hazardous environments, the compliance of the solenoid with the zone classification and with the flammable substances present in the system must be verified.

The main safety requirements against the explosion risks in the classified areas are established by the European Directives 2014/34/UE (for the components) and 99/92/CE (for the plants and safety of the workers against the risk of explosion).

The classification criteria of the area against the explosion risks are established by the norm EN60079-10.

The technical requirements of the electrical systems are established by the norm EN60079-14 (group II).

Note: the max fluid temperature controlled by the valve must not exceed + 60°C



Ensure that no explosive atmosphere may occur during the valve installation.

Only use the valve in the intended explosion protection area.

The ignition temperature of the hydraulic fluid used must be 50°C higher than the maximum surface temperature of the valve.

Use of the valve outside the approved temperature ranges may lead to functional failures like e.g. overheating of the valve solenoid.

This means that the explosion protection is no longer ensured.

Only use the valve within the fluid temperature range.

During operation, touch the valve solenoid only by using protective gloves.

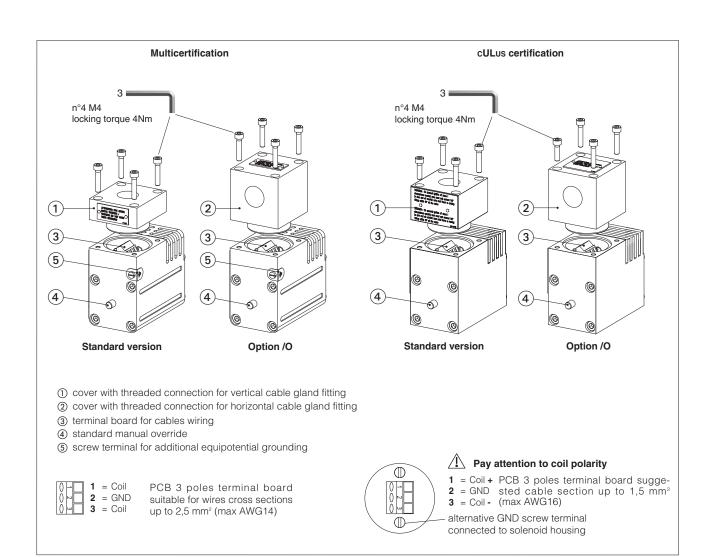
Unload the system pressure before working on the valve.

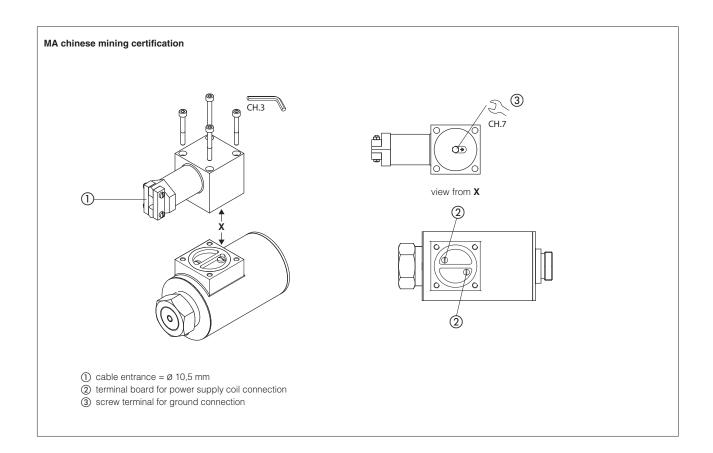
Danger of serious injury can be caused by a powerful leaking of hydraulic fluid jet.

Before working on the valve, ensure that the hydraulic system is depressurized and the electrical control is de-energized.

#### 9.3 Electrical connection - valve off-board driver/axis controller

The connection to the external circuit is made with a screw clamps 2 poles + ground, installed inside the solenoid and transducer housing. The eventual requirement of the additional ground connection on the solenoid housing must be made on the relative screw (M3x6 UNI-6107).


The threaded cable entrance is provided with one of following optional connections:


- conical thread 1/2" NPT ANSI B2.1
- conical thread GK-1/2" "(Annex 1 CEI EN 60079-1 2008-11) only for the Italian market
- cylindrical thread M20x1,5 UNI 4535

The cable glands used for the cable entrance must be certified for the specific hazardous environment – see tech. table **KX800** for Atos ex-proof cable glands.

Note: a Loctite sealant type 545, should be used on the cable gland entry threads

The electrical cables must be suitable for the working temperatures as shown in the section 9.6





#### 9.4 Cable specification and temperature

#### Cable specification - Multicertification Group I and Group II

| <b>Power supply:</b> section of coil connection wires = 2,5 mm <sup>2</sup> | <b>Grounding:</b> section of internal ground wire = 2,5 mm <sup>2</sup> |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                             | section of external ground wire = 4 mm <sup>2</sup>                     |

## Cable temperature - Multicertification Group I and Group II

| Max ambient temperature [°C] | Temperat | ture class | Max surface te | mperature [°C] | Min. cable temperature [°C] |  |
|------------------------------|----------|------------|----------------|----------------|-----------------------------|--|
| max ambient temperature [ C] | Goup I   | Goup II    | Goup I         | Goup II        | wiii. cable temperature [ C |  |
| 40 °C                        | -        | T6         | 150 °C         | 85 °C          | not prescribed              |  |
| 70 °C                        | -        | T4         | 150 °C         | 135 °C         | 90 °C                       |  |

#### Cable specification - cULus certification

- Suitable for use in Class I Division 1, Gas Groups C
- Armored Marine Shipboard Cable which meets UL 1309
- Tinned Stranded Copper Conductors
- Bronze braided armor
- · Overall impervious sheath over the armor

Any Listed (UBVZ/ UBVZ7) Marine Shipboard Cable rated 300 V min, 15A min. 3C 2,5 mm² (14 AWG) having a suitable service temperature range of at least -25°C to +110°C ("/BT" Models require a temperature range from -40°C to +110°C)

Note 1: For Class I wiring the 3C 1,5 mm<sup>2</sup> AWG 16 cable size is admitted only if a fuse lower than 10 A is connected to the load side of the solenoid wiring.

#### Cable temperature - cULus certification

| Max ambient temperature [°C] | Temperature class | Max surface temperature [°C] Min. cable temperature |        |  |  |
|------------------------------|-------------------|-----------------------------------------------------|--------|--|--|
| 55 °C                        | T6                | 85 °C                                               | 100 °C |  |  |
| 70 °C                        | T5                | 100 °C                                              | 100 °C |  |  |

#### 9.5 Hydraulic fluids and operating viscosity range

Mineral oils type HLP having high viscosity index are recommended.

The hydraulic fluids must be compatible with the selected seals.

Make sure that the working fluid is compatible with gas and dust present in the environment.

The type of fluid has to be selected in consideration of the effective working temperature range, so that the fluid viscosity remains at the optimal level.

| Hydraulic fluid               | Suitable seals type | Classification             | Ref. Standard |  |
|-------------------------------|---------------------|----------------------------|---------------|--|
| Mineral oils                  | NBR, FKM, HNBR      | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |  |
| Flame resistant without water | FKM                 | HFDU, HFDR                 | - ISO 12922   |  |
| Flame resistant with water    | NBR, HNBR           | HFC                        |               |  |

Fluid viscosity:  $15 \div 100 \text{ mm}^2\text{/s}$  - max allowed range  $2.8 \div 500 \text{ mm}^2\text{/s}$ 

## 9.6 Filtration

The correct fluid filtration ensures a long service life of the valves and it prevent anomalous wearing or sticking.



Contamination in the hydraulic fluid may cause functional failures e.g. jamming or blocking of the valve spool / poppet. In the worst case, this may result in unexpected system movements and thus constitute a risk of injury.

EX900

In the worst case, this may result in unexpected system movements and thus constitute a risk of injury.

Ensure adequate hydraulic fluid cleanliness according to the cleanliness classes of the valve over the entire operating range.

#### Max fluid contamination level:

ISO 4406 class 20/18/15 NAS 1638 class 9

Note: see also filter section at www.atos.com or KTF catalog

## 10 MAINTENANCE



Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

#### 10.1 Ordinary maintenance



Service work perfored on the valve by end user or not qualified personnel invalidates the certification

- The valves does not require other maintenance operations except seals replacement
- Results of maintenance and inspection must be planned and documented
- Follow the maintenance instructions of the fluid manufacturer
- Any preventive maintenance should be performed only by experienced personnel authorized by Atos.
- Cleaning the external surfaces using a wet cloth to avoid accumulation of dust layer over 5 mm
- Don't use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires the immediate stop of the system and the inspection of the relevant components

## 10.2 Repairing

In case of incorrect functioning or beak-down it is recommended to send the valve back to Atos which will provide for the reparation. If the reparations are not made by the manufacturer, they must be performed in accordance to the criteria of IEC 60079-19 standard for IECEx and EN 60079-19 for ATEX, and by facilities having the technical know-how about the protection modes and equipped with suitable tools for repairing and controls.



Service work perfored on the valve by end user or not qualified personnel invalidates the certification

Before beginning any repairing activity, the following guidelines must be observed:

- Unauthorized opening of the valves during the warranty period invalidates the warranty and invalidates the certification
- Be sure to use only original spare parts manufactured or supplied by Atos factory
- Provide all the required tools to make the repair operations safely and to don't damage the components
- Read and follow all the safety notes given in section

## 11 TRANSPORT AND STORAGE

#### 11.1 Transport

Observe the following guidelines for transportation of valves:

- Before any movement check the valve weight reported in the technical table relevant to the specific component
- Use soft lifting belts to move or lift the heavy valves to avoid damages



Danger of damage to property and personal injuries!

The valve may fall down and cause damage and injuries, if transported improperly:

- Use the original packaging for transport
- Use personal protective equipment (such as gloves, working shoes, safety goggles, working clothes, etc.)



## 11.2 Storage

Valve's corrosion protection is achieved with zinc coating: this treatment protect the valve to grant a storage period up to 12 months. Additionally all valves are tested with mineral oil OSO 46; the oil film left after testing ensure the internal corrosion protection. In case of storage period longer than 12 months please contact our technical office.

Ensure that valves are well protected against water and humidity in case of storage in open air.

## 12 RELATED DOCUMENTATION

## Directional valves

EX010 DHA - direct, spool typeEX015 DHA, DKA - direct, spool typeEX020 DLAH , DLAHM - direct, poppet type

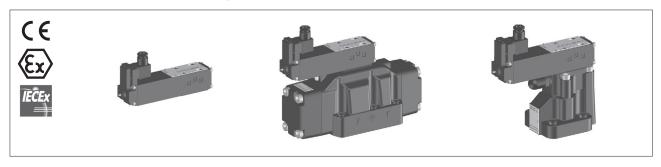
**EX030** DPHA - piloted

**EX050** LIDEW-AO, LIDBH-AO - piloted ISO cartridges and functional covers

#### Pressure relief valves

CX010 AGAM-AO, ARAM-AO - piloted, with solenoid valve for venting




# Operating and maintenance information

for intrinsically safe on-off valves

This operating and maintenance information apply to Atos intrinsically safe on-off valves and is intended to provide useful giudelines to avoid risks when the valves are installed in a system operating in hazardous areas with explosive or flammable environement.

The prescriptions included in this document must be strictly observed to avoid damages and injury. The respect of this operating and maintenance information grant an increased working life, trouble-free operation and thus reduced repairing costs.

Information and notes on the transport and storage of the valves are also provided.



## 1 SYMBOL CONVENTIONS



This symbol refers to possible danger which can cause serious injuries

## 2 GENERAL NOTES

The operating and maintenance information is part of the operating instructions for the complete machine but it cannot replace them.

This document is relevant to the installation, use and maintenance of on-off directional and pressure control valves equipped with intrinsically safe solenoids type OW-\* for application in explosive hazardous environments.

Due to the low power consumption, the intrinsically safe circuit is virtually protected against electrical sparks or thermal effects that could cause the ignition of the explosive atmosphere, also in case of failure. The protection is ensured only if the whole system is in compliance with the requirements of IEC/EN 60079-25 (Ex-i systems).

## 2.1 Warranty

All the intrinsically safe valves have 1 year warranty; the expiration of warranty results from the following operations:

- unauthorized mechanical or electronic interventions
- the intrinsically safe valves are not used exclusively for their intended purpose as defined in these operating and maintenance instructions

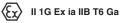


Service work performed on the valve by the end users or not qualified personnel invalidates the certification

## 3 CERTIFICATIONS AND PROTECTION MODE

The intrinsically safe solenoids subject of this operating and maintenance information are certified ATEX or IECEx. They are in compliance with following protection mode:

#### Group II




⟨{x⟩ II 1G Ex ia IIC T6 Ga



Group I (mining)

(Fx) IM2 Exial Mb / Exibl Mb





II 1G Ex ia IIA T5 Ga

## 4 HARMONIZED STANDARDS

The Essential Health and Safety Requirements are assured by compliance to the following standards:

## **ATEX**

EN 60079-0 Electrical apparatus for explosive atmospheres - Part 0: general requirements

EN 60079-11 Equipment protection by intrinsic safety 'i'

EN 60079-26 Equipment with equipment protection level (EPL) Ga

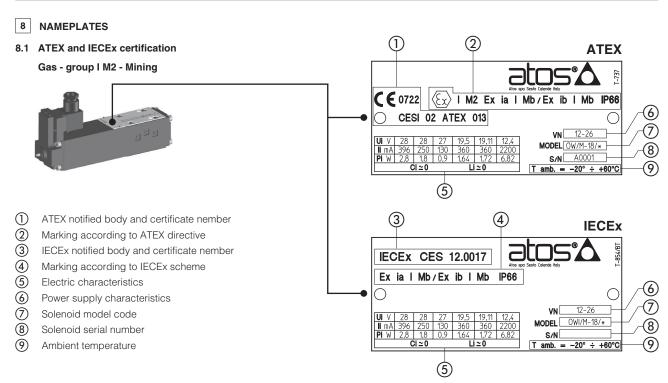
IEC 60079-0 Electrical apparatus for explosive atmospheres - Part 0: general requirements

Equipment protection by intrinsic safety 'i'

IEC 60079-26 Equipment with equipment protection level (EPL) Ga

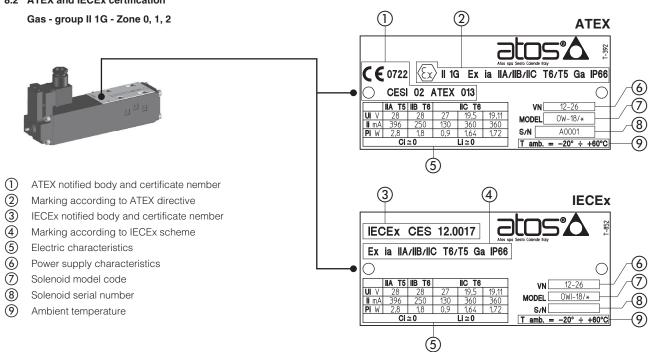
EX950 GENERAL INFORMATION

## 5 GENERAL CHARACTERISTICS


| Ambient temperature                                    | <b>Standard</b> = $-20^{\circ}$ C $\div$ $+60^{\circ}$ C /PE option = $-20^{\circ}$ C $\div$ $+70^{\circ}$ C /BT option = $-40^{\circ}$ C $\div$ $+70^{\circ}$ C                                                                   |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Storage temperature range                              | <b>Standard</b> = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/PE</b> option = $-20^{\circ}$ C ÷ $+80^{\circ}$ C <b>/BT</b> option = $-40^{\circ}$ C ÷ $+70^{\circ}$ C                                                                    |  |  |
| Seals, recommended fluid temperature                   | NBR seals (standard) = -20°C $\div$ +60°C, with HFC hydraulic fluids = -20°C $\div$ +50°C FKM seals (/PE option) = -20°C $\div$ +80°C HNBR seals (/BT option) = -40°C $\div$ +60°C, with HFC hydraulic fluids = -40°C $\div$ +50°C |  |  |
| Surface protection Zinc coating with black passivation |                                                                                                                                                                                                                                    |  |  |
| Compliance                                             | Intrinsically safe protection "Ex ia"  RoHs Directive 2011/65/EU as last update by 2015/65/EU  REACH Regulation (EC) n°1907/2006                                                                                                   |  |  |

## 6 HYDRAULIC CHARACTERISTICS

See technical tables relevant to the specific components, listed in section 12


## 7 CERTIFIED ELECTRICAL CHARACTERISTICS

| Floor  | atrical                                       | Metod of protection |                |     |           |       |     |                  |                   |      |            |          |  |
|--------|-----------------------------------------------|---------------------|----------------|-----|-----------|-------|-----|------------------|-------------------|------|------------|----------|--|
|        | Electrical<br>characteristics<br>(max values) |                     | Group II       |     |           |       |     | Group I (Mining) |                   |      |            |          |  |
|        |                                               |                     | Ex II 1G Ex ia |     |           |       |     | Ex I M2          | Ex ia I Mb        |      | Ex ib I Mb |          |  |
| (IIIax |                                               |                     | IIB T6 Ga      |     | IIC T6 Ga |       |     |                  | EX IA I IVID EX I |      |            | D I IVID |  |
| Ui     | [V]                                           | 28                  | 28             | 27  | 19,5      | 19,11 | 28  | 28               | 27                | 19,5 | 19,11      | 12,4     |  |
| li     | [mA]                                          | 396                 | 250            | 160 | 360       | 360   | 396 | 250              | 160               | 360  | 360        | 2200     |  |
| Pi     | [W]                                           | 2,8                 | 1,8            | 0,9 | 1,64      | 1,72  | 2,8 | 1,8              | 0,9               | 1,64 | 1,72       | 6,82     |  |
| Ci     | Ci, Li ≅0                                     |                     |                |     |           |       |     |                  |                   |      |            |          |  |
| \      | VN 12 ÷ 26 V                                  |                     |                |     |           | -     |     |                  |                   |      |            |          |  |



| C€                 | Mark of conformity to the applicable European directives                                                                                                                                                      |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ⟨£x⟩               | Mark of conformity to the 2014/34/EU directive and to the relevant technical norms                                                                                                                            |  |  |  |
| I M2               | Solenoid for mining (or relevant surface plants) which could be exposed to gas and / or flammable dust. Category M2: power supply of these equipments has to be switched off in case of explosive atmosphere. |  |  |  |
| Ex ia / Ex ib      | Intrinsically safe solenoid, category "ia" or "ib"                                                                                                                                                            |  |  |  |
| I                  | Equipment of group I                                                                                                                                                                                          |  |  |  |
| Mb                 | Equipment protection level, high level protection for explosive atmospheres                                                                                                                                   |  |  |  |
| CESI 02 ATEX 013   | Name of the laboratory responsible for the CE certification: 02= year of the certification release; 013 certification number                                                                                  |  |  |  |
| 0722               | Number of the Certified Body authorized for the production quality system certification: 0722 = CESI                                                                                                          |  |  |  |
| IECEx CES 12.0017X | Certificate number: CES laboratory name responsible for the IEC Ex certification scheme: 12 year of the certification release; 0017X number of certification                                                  |  |  |  |
| Ui, Ii, Pi, Ci, Li | Max input parameters of the equipment (relevant to the intrinsically safe)                                                                                                                                    |  |  |  |
| T amb.             | T amb. Ambient temperature range (min20°C max. +60°C)                                                                                                                                                         |  |  |  |

## 8.2 ATEX and IECEx certification



| C€                                                                                             | Mark of conformity to the applicable European directives                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (Ex)                                                                                           | Mark of conformity to the 2014/34/EU directive and to the technical norms                                                                                    |  |  |  |
| II 1 G                                                                                         | Solenoid for surface plants with gas or vapours environment, category 1, suitable for zone 0 and with redundancy for zone 1 and 2                            |  |  |  |
| Ex ia                                                                                          | Intrinsically safe solenoid, category "ia"                                                                                                                   |  |  |  |
| II C                                                                                           | Group II C equipment suitable for substances (gas) for group II C                                                                                            |  |  |  |
| II B                                                                                           | Group II B equipment suitable for substances (gas) for group II B                                                                                            |  |  |  |
| II A                                                                                           | Group II A equipment suitable for substances (gas) for group II A                                                                                            |  |  |  |
| T6 / T5                                                                                        | Solenoid temperature class (maximum surface temperature)                                                                                                     |  |  |  |
| Ga                                                                                             | Equipment protection level, very high level protection for explosive Gas atmospheres                                                                         |  |  |  |
| CESI 02 ATEX 013                                                                               | Name of the laboratory responsible for the CE certification: 02= year of the certification release; 013 certification number                                 |  |  |  |
| 0722                                                                                           | Number of the Certified Body authorized for the production quality system certification: 0722 = CESI                                                         |  |  |  |
| IECEx CES 12.0017X                                                                             | Certificate number: CES laboratory name responsible for the IEC Ex certification scheme: 12 year of the certification release; 0017X number of certification |  |  |  |
| Ui, Ii, Pi, Ci, Li  Max input parameters of the equipment (relevant to the intrinsically safe) |                                                                                                                                                              |  |  |  |
| T amb.                                                                                         | Ambient temperature range (min20°C and -40°C for /BT option, max. +60°C)                                                                                     |  |  |  |

### Notes:

The group IIC solenoids are suitable for IIA and IIB environments.

The T6 temperature class solenoids are suitable for all the substances having higher temperature class (T5, T4, T3, T2, T1).

The T5 temperature class solenoids are suitable also for all the substances having higher temperature class (T4, T3, T2, T1).

## 9 SAFETY NOTES

#### 9.1 Improper use

Any improper use of the components is not admissible.

Improper use of the product includes:

- Wrong installation / installation in areas not approved for the specific component
- Incorrect cleanliness during storage and assembly
- Use of inappropriate or non-admissible hydraulic fluids
- Use outside of the specified performance limits
- Use of inappropriate electrical power supply
- Incorrect transport

#### 9.2 Installation



The installation or use of inappropriate components in explosive hazardous environments could cause personal injuries and damage to property.

For the application in explosion hazardous environments, the compliance of the solenoid with the zone classification and with the flammable substances present in the system must be verified.

The main safety requirements against the explosion risks in the classified areas are established by the European Directives 2014/34/UE (for the components) and 99/92/CE (for the plants and safety of the workers against the risk of explosion).

The classification criteria of the area against the explosion risks are established by the norm EN60079-10.

The technical requirements of the electrical systems are established by the norm EN60079-14 (group II).

Note: the max fluid temperature controlled by the valve must not exceed + 60°C



Ensure that no explosive atmosphere may occur during the valve installation.

Only use the valve in the intended explosion protection area.

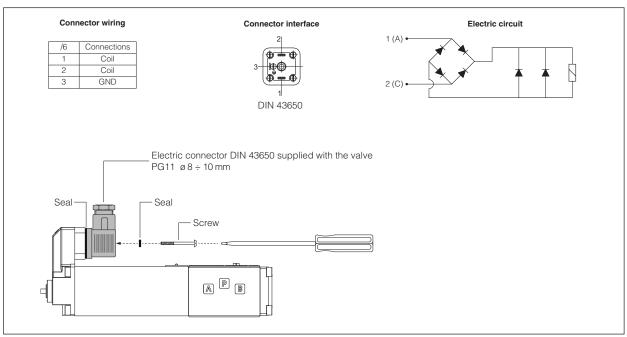
The ignition temperature of the hydraulic fluid used must be 50°C higher than the maximum surface temperature of the valve.

Use of the valve outside the approved temperature ranges may lead to functional failures like e.g. overheating of the valve solenoid. This means that the explosion protection is no longer ensured.

Only use the valve within the fluid temperature range.

During operation, touch the valve solenoid only by using protective gloves.

Unload the system pressure before working on the valve.


Danger of serious injury can be caused by a powerful leaking of hydraulic fluid jet.

Before working on the valve, ensure that the hydraulic system is depressurized and the electrical control is de-energized.

## 9.3 Electrical connection

For the solenoid application in classified area, specific equipment (safety barriers), certified in conformity to EN60079-11 norms, must be used. Their electrical output characteristics must be in accordance to the solenoid max input parameters, printed on the solenoid nameplate. See tech. table GX010 for Atos safety barriers.

The analysis of the system composed by the electrical equipment, the solenoid and the connection cables has to be performed by trained personnel and it must be in accordance to the requirements of EN 60079-25 (Ex-i systems) concerning to the intrinsically safety systems.





In case of humid or wet environments, water or humidity may penetrate into the electrical connections.

This case may lead to malfunctions at the valve and to unexpected movements of the controlled hydraulic actuator which may result in personal injury and damage to property.

Only use the valve within the intended IP protection class.

Before the assembly ensure that the connector seals are in good condition.

The electric connector must be fully tightened with the relevant screw.

#### 9.4 Hydraulic fluids and operating viscosity range

Mineral oils type HLP having high viscosity index are recommended.

The hydraulic fluids must be compatible with the selected seals.

Make sure that the working fluid is compatible with gas and dust present in the environment.

The type of fluid has to be selected in consideration of the effective working temperature range, so that the fluid viscosity remains at the optimal level.

| Hydraulic fluid               | Suitable seals type | Classification             | Ref. Standard |
|-------------------------------|---------------------|----------------------------|---------------|
| Mineral oils                  | NBR, FKM, HNBR      | HL, HLP, HLPD, HVLP, HVLPD | DIN 51524     |
| Flame resistant without water | FKM                 | HFDU, HFDR                 | ISO 12922     |
| Flame resistant with water    | NBR, HNBR           | HFC                        | 130 12922     |

Fluid viscosity: 15 ÷ 100 mm<sup>2</sup>/s - max allowed range 2,8 ÷ 500 mm<sup>2</sup>/s

#### 9.5 Filtration

The correct fluid filtration ensures a long service life of the valves and it prevent anomalous wearing or sticking.



Contamination in the hydraulic fluid may cause functional failures e.g. jamming or blocking of the valve spool / poppet. In the worst case, this may result in unexpected system movements and thus constitute a risk of injury. Ensure adequate hydraulic fluid cleanliness according to the cleanliness classes of the valve over the entire operating range.

#### Max fluid contamination level:

ISO 4406 class 20/18/15 NAS 1638 class 9

Note: see also filter section at www.atos.com or KTF catalog

## 10 MAINTENANCE



Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

#### 10.1 Ordinary maintenance



Service work perfomed on the valve by end user or not qualified personnel invalidates the certification

- The valves does not require other maintenance operations except seals replacement
- Results of maintenance and inspection must be planned and documented
- Follow the maintenance instructions of the fluid manufacturer
- Any preventive maintenance should be performed only by experienced personnel authorized by Atos.
- Cleaning the external surfaces using a wet cloth to avoid accumulation of dust layer over 5 mm
- Don't use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires the immediate stop of the system and the inspection of the relevant components

## 10.2 Repairing

In case of incorrect functioning or beak-down it is recommended to send the valve back to Atos or to Atos authorized service centers which will provide for the reparation.

Unauthorized opening of the valves during the warranty period invalidates the warranty and invalidates the certification tools for repairing.



The intrinsically safe solenoids must not be opened.

Any tampering invalidates the certification and it may cause serious dangerous.

## 11 TRANSPORT AND STORAGE

## 11.1 Transport

Observe the following guidelines for transportation of valves:

- Before any movement check the valve weight reported in the technical table relevant to the specific component
- Use soft lifting belts to move or lift the heavy valves to avoid damages



Danger of damage to property and personal injuries!

The valve may fall down and cause damage and injuries, if transported improperly:

- Use the original packaging for transport
- Use personal protective equipment (such as gloves, working shoes, safety goggles, working clothes, etc.)

## 11.2 Storage

Valve's corrosion protection is achieved with zinc coating: this treatment protect the valve to grant a storage period up to 12 months. Additionally all valves are tested with mineral oil OSO 46; the oil film left after testing ensure the internal corrosion protection. In case of storage period longer than 12 months please contact our technical office.

Ensure that valves are well protected against water and humidity in case of storage in open air.

EX950



625

## 12 RELATED DOCUMENTATION

## **Directional valves**

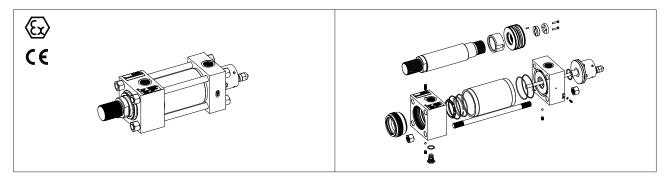
**EX100** DHW - direct, spool type EX120 DLWH - direct, poppet type
EX130 DPHW - piloted, spool type
EX150 LIDEW-WO, LIDBH-WO - piloted ISO cartridges and functional covers

## Pressure relief valves

CX030 AGAM-WO, ARAM-WO - piloted, with solenoid valve for venting

## Safety barriers

**GX010** Y-BXNE Power supply barrier




# **Operating and maintenance information**

for ex-proof cylinders & servocylinders

These operating and maintenance information are valid only for Atos ex-proof cylinders & servocylinders; they are intended to provide useful guidelines to avoid risks when hydraulic cylinders are installed in a machine or a system. Information and notes about transportation and storage of hydraulic cylinders are also provided.

These norms must be strictly observed to avoid damages and ensure trouble-free operation. The respect of these operating and maintenance information ensures an increased working life and thus reduced repairing cost of the hydraulic cylinders and system.



## 1 SYMBOLS CONVENTIONS

 $\Lambda$ 

This symbol refers to possible danger which can cause serious injuries

## 2 GENERAL NOTES

The cylinder operating and maintenance information are part of the operating instructions for the complete machine but they cannot replace them

Atos is not liable for damages resulting from an incorrect observance of these instructions.

All the hydraulic cylinders have 1 year warranty; the expiration of warranty results from the following operations:

- Unauthorised mechanical or electronic interventions
- The hydraulic cylinders are not used exclusively for their intended purpose as defined in these operating and maintenance instructions

## 3 HARMONIZED STANDARDS

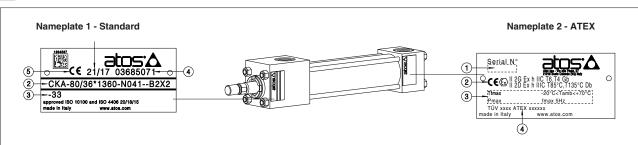
CKA cylinders meet the requirements laid down in the Explosion protection directive 2014/34/EU with reference to European standards documentations:

ISO 80079-36 "Non electrical equipment for potentially explosive atmospheres - Basic method and requirements"

Check the code in the nameplate to ensure that the hydraulic cylinder is suitable for the installation area

ISO 80079-37 "Non electrical equipment for explosive atmospheres - Protection constructional safety 'c', liquid immersion 'k'"

The hydraulic cylinder must be exclusively used in areas and zones assigned to the equipment group and category. Also observe the other details about explosion protection given as follow. See section 6 for zones in relation to equipment groups and category.


## 4 WORKING CONDITIONS

## The operation of hydraulic cylinders is not permitted at different operating and environmental conditions than those specified below

| Description                   | CKA, CKAM                                                                                |
|-------------------------------|------------------------------------------------------------------------------------------|
| Ambient temperature           | -20 ÷ +70°C -40 ÷ +65°C for <b>CKAM</b>                                                  |
| Fluid temperature             | -20 ÷ +70°C ( <b>T6</b> ) -20 ÷ +120°C ( <b>T4</b> ) for seals type <b>G2</b> (1)        |
| Max surface temperature       | $\leq$ +85 °C ( <b>T6</b> ) $\leq$ +135 °C ( <b>T4</b> ) for seals type <b>G2</b> (1)    |
| Max working pressure          | 16 MPa (160 bar)                                                                         |
| Max pressure                  | 25 MPa (250 bar)                                                                         |
| Max frequency                 | 5 Hz                                                                                     |
| Max speed                     | 1 m/s 0,5 m/s for seals type <b>G1</b>                                                   |
| Recommended viscosity         | 15 ÷ 100 mm²/s                                                                           |
| Max fluid contamination level | ISO4406 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog |

Note: (1) Cylinders with seals type G2 may also be certified T6 limiting the max fluid temperature to 70°C

BX900 GENERAL INFORMATION



#### Nameplate 1 - Standard (2)

| Pos. | Description                       |
|------|-----------------------------------|
| 1    | Delivery date                     |
| 2    | Cylinder code                     |
| 3    | Series number                     |
| 4    | Customer code (only if requested) |
| (5)  | CE mark                           |

## Nameplate 2 - ATEX (1)(2)

| Pos. | Description                         |
|------|-------------------------------------|
| 1    | Cylinder serial number              |
| 2    | Marking according to ATEX directive |
| 3    | Working limit conditions            |
| 4    | Notified body and certified number  |

#### Working conditions - legend

| Sym.  | Meaning               |  |
|-------|-----------------------|--|
| Tfmax | Max fluid temperature |  |
| Pmax  | Max pressure          |  |
| Tamb  | Ambient temperature   |  |
| fmax  | Max frequency         |  |

Notes: (1) ATEX cylinders are supplied with 2 nameplates: standard and ATEX

(2) The position of the nameplate on the rear or front heads can change due to the cylinder overall dimensions

## 6 ATEX CERTIFICATION

The user must define the overall areas of the system into different explosive atmospheres zones in accordance with directive EN 60079-10-1/2. The table below shows the available installation zones related to the equipment group and category.

| EN 60 | EN 60079-0 Directive 2014/34/EU                                                                                                        |                 |                                                                                                                                           | Application, properties                                                                                                                                    |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| EPL   | Group                                                                                                                                  | Equipment group | Category                                                                                                                                  | (exerpt from Directives)                                                                                                                                   |    |
| Gb    |                                                                                                                                        | Ш               | 2G                                                                                                                                        | Potentially explosive atmospheres, in which explosive gases, mists or vapors are likely to occur occasionally. <b>High level of protection</b>             |    |
| Gc    |                                                                                                                                        |                 | 3G                                                                                                                                        | Potentially explosive atmospheres, in which explosive gases, mists or vapors are likely to occur for short periods. <b>Normal level of protection</b>      | 2  |
| Db    | II 2D Potentially explosive atmospheres, in which explosive dust/air mixtures are likely occasionally. <b>High level of protection</b> |                 | Potentially explosive atmospheres, in which explosive dust/air mixtures are likely to occur occasionally. <b>High level of protection</b> | 21,22                                                                                                                                                      |    |
| Dc    |                                                                                                                                        | II              | 3D                                                                                                                                        | Potentially explosive atmospheres, in which explosive dust/air mixtures are likely to occur rarely or for short periods. <b>Normal level of protection</b> | 22 |

The cylinder group and category may change when rod position transducers or proximity sensors are provided, see table below and tab. BX500. For details about certification and safety notes consult the user's guides included in the supply

| Cylinder type                             |      | Group | Equipment category | Gas/dust<br>group | Temperature class      | Zone      |
|-------------------------------------------|------|-------|--------------------|-------------------|------------------------|-----------|
| CKA                                       |      | II    | 2 GD               | II C/III C        | T85°C(T6) / T135°C(T4) | 1,2,21,22 |
| CKA with ex-proof rod position transducer | GAS  | II    | 2 G                | IIΒ               | T6/T5                  | 1,2       |
| CITA WITH EX-PROOF FOU POSITION TRANSCUCE | DUST | II    | 2 D                | IIIC              | T85°C/T100°C           | 21,22     |
| CKA with ex-proof proximity sensors       |      | II    | 3 G                | II                | T4                     | 2         |

#### II 2G Ex h IIC T6,T4 Gb (gas) II 2D Ex h IIIC T85°C, T135°C Db (dust) **GROUP II, Atex**

= Group II for surface plants= High protection (equipment category)= For gas, vapours

= For dust

Ex = Equipment for explosive atmospheres
IIC = Gas group

IIIC = Dust group

T85°C/T135°C = Surface temperature class for dust

T6/T4 = Surface temperature class for gas

Gb/Db = EPL Equipment group

## 7 SAFETY NOTES

#### 7.1 General

- The presence of cushioning can lead to a peak of pressure that can reduce the cylinder working life, ensure that the dissipated energy is less than the max value reported in **tab. B015**
- Make sure that the maximum working conditions, shown in section [4] are not exceeded
- Ensure to use hydraulic fluids compatible with the selected sealing system, see tab. BX500
- The rod must be handled with care to prevent damages on the surface coating which can deteriorate the sealing system and lead to the corrosion of the basic material
- The mounting screws must be free from shearing stress
- Transverse forces on the rods must always be avoided
- When the cylinder has to drive a rotating structure or where little alignment errors are expected, mounting style with spherical bearing should be used
- Contact surfaces, support elements in tolerance, elastic materials and labels must be covered before painting the cylinder

#### 7.2 Proximity sensors

- Proximity sensors are supplied already adjusted, if other regulations are necessary see tab. BX500 or contact our technical office
- Ensure not to remove the sensor while the cylinder is under pressure
- The connectors must never be plugged or unplugged when the power supply is switched-on

#### 7.3 Position measuring system

- Position transducers must never be removed, if not otherwise specified in tab. BX500, while the cylinder is under pressure
- Observe the information provided in  ${f tab.}\ {f BX500}$  for the electronic connections
- The connectors must never be plugged or unplugged when the power supply is switched-on

#### 7.4 Installation

- Consult tab. P002 for installation, commissioning and maintenance of electrohydraulic system
- The piping have to be dimensioned according to the max pressure and max flow rate required
- All pipes and surfaces must be cleaned from dirt before mounting
- Remove all plug screws and covers before mounting
- Make sure that connections are sealed before giving pressure to the system
- Ensure to not exchange the pipe ports when connecting the cylinders
- Bleed-off the system or the hydraulic cylinder using the proper device, see the technical data sheet for details
- Ensure that the cylinder mounting allow easy of acces for the purpose of maintenance and the adjustment of cushioning
- The max surface temperature indicated in the nameplate must be lower than the following values:

## GAS - 80% of gas ignition temperature

DUST - max value between dust ignition temperature - 75°C and 2/3 of dust ignition temperature

- The ignition temperature of the fluid must be 50°C greater than the maximum surface temperature indicated in the nameplate
- The cylinder must be grounded using the threaded hole on the rear head, evidenced by the nameplate with ground symbol. The hydraulic cylinder must be put at the same electric potential of the machine





For details about ex-proof proximity sensors or position transducer refer to the user's guide included in the supply

## 8 MAINTENANCE

- Ordinary maintenance of the cylinder consist of cleaning of the external surfaces using a wet cloth to avoid accumulation of dust layer > 5 mm
- Do not use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires immediate stop of the system and inspection of the relevant components

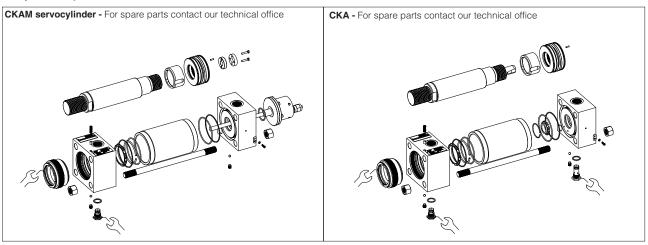


8.1 Preliminary check and ordinary maintenance

Atos hydraulic cylinders don't require any maintenance after commissioning. Anyway it is recommended to take into account the following remarks:

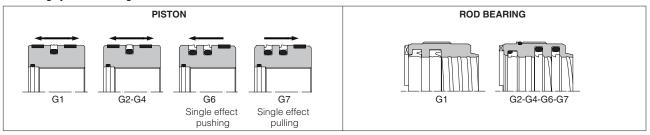
- Results of maintenance and inspection must be planned and documented
- Check oil escaping from oil ports or leakages at the cylinder heads
- Check for damages of the chromeplated surface of the rod: damages may indicate oil contamination or the presence of excessive transverse load
- Determine lubricating intervals for spherical clevises, trunnion and all parts not self-lubricated
- The rod should always be retracted during long stop of the machine or system

## Any repairing must be performed only by experienced personnel, authorized by Atos


- Remove any salt, machining residuals or other dirt cumulated on the rod surface
- Follow the maintenance instructions of the fluid manufacturer

#### 8.2 Repairing

Before beginning any repairing observe the following guidelines:


- Unauthorized opening of the cylinder during the warranty period results in the warranty expiration
- Be sure to use only original spare parts manufactured or supplied by Atos
- Provide all the required tools to make the repair operations safely and not damage the components
- Read and follow all the safety notes given in section 7
- Ensure that the cylinder is well locked before beginning any operation
- Disassembly or assembly the cylinder with the right order as indicated in section 8.3
- When mounting rod or piston guides and seals observe the correct position as indicated in section 8.4. Any bad positioning can result in oil leakages
- It is strongly recommended the use of expanding sleeves to insert the seals in the proper groove
- Tighten all the screws or nuts as follow: lubricates the threads, insert the screw or the nut by hand for some turns, tighten the screw crosswise with the tightening torque specified in the technical table (a pneumatic screw driver may be used)
- Rod bearing and piston must be locked respectively to the front head and to the rod by means of special pin to avoid unscrewing
- The replacement of wear parts such as seals, rod bearing and guide rings depends on the operating conditions, temperature and quality of the fluid

#### 8.3 Cylinders exploded views



Note: 2\tag{Note: 2\tag{Note: equipment is required for mounting, contact our technical office

#### 8.4 Sealing system mounting



## 9 TRANSPORT AND STORAGE

#### 9.1 Transport

Observe the following guidelines for transport of hydraulic cylinders:

- Cylinders have to be transported using a forklift truck or a lifting gear always ensuring a stable position of the cylinder
- Cylinders have to be transported in horizontal position in their original packaging
- Use soft lifting belts to move or lift the cylinders in order to avoid damages
- Before any movement check the cylinders weight (due to tolerances, the weight may be 10% greater than the values specified in the technical table)

## Additional parts such as pipes, subplates and transducers must never be used for lifting

#### 9.2 Storage

Corrosion protection is achieved with alkyd primer painting RAL 9007: the primer grants a storage period up to 12 months. Additionally all cylinders are tested with mineral oil OSO 46; the oil film, presents in the cylinder chambers after testing, ensures the internal corrosion protection.

Anyway be care to observe the following remarks:

- When a storage in the open air is foreseen ensure that cylinders are well protected against water
- The cylinders must be inspected at least once a year and rotated through 90° every six months to preserve the seals

♠ In case of storage period longer than 12 months, contact our technical office

## 10 CYLINDERS TROUBLESHOOTING

| TROUBLE                          | POSSIBLE CAUSES                                                                                                       | SOLUTIONS                                                                                                                                                                                                                                                                                                                 |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | High lateral loads involve a premature wear of the bronze bushing, seals and wear rings                               | a) Improve the precision of the machine alignment     b) Decrease lateral loads     c) Install a pivoted mounting style C-D-G-H-S-L                                                                                                                                                                                       |
|                                  | Fluid contaminants produce scratch and score marks on the seals                                                       | Check the fluid contamination class is < 20/18/15                                                                                                                                                                                                                                                                         |
|                                  | Chemical attack cause the deterioration of seals compound                                                             | Check seals compatibility with operating fluid                                                                                                                                                                                                                                                                            |
|                                  | High temperatures (fluid/ambient) the seals dark and flaked                                                           | a) Decrease the fluid temperature     b) Install <b>G2</b> sealings for high temperatures                                                                                                                                                                                                                                 |
| Oil leakage                      | Low temperature (ambient) make the seals brittle                                                                      | a) Move the cylinder in a higher temperature zone     b) Install <b>G9</b> seals for low temperatures                                                                                                                                                                                                                     |
|                                  | High rod speed reduce the lubricant capacity of the seals                                                             | For rod speed > 0,5 m/s Install <b>G2</b> – <b>G4</b> seals                                                                                                                                                                                                                                                               |
|                                  | High frequency reduce the lubricant capacity of the seals                                                             | For rod frequency > 5 hz Install <b>G0</b> seals                                                                                                                                                                                                                                                                          |
|                                  | Output rod speed higher than the input one                                                                            | Check the rod speed ratio in/out complies with the minimum $\rm R_{\rm min}$ value, see tech.table $\bf B015$                                                                                                                                                                                                             |
|                                  | The pressurization of the mixture air/mineral oil may involve self combustion dangerous for the seals (Diesel effect) | Bleed off completely the air inside the hydraulic circuit                                                                                                                                                                                                                                                                 |
|                                  | Overpressure                                                                                                          | a) Limit the pressure of the system b) Install <b>G2-G4-G8</b> seals if overpressure cannot be reduced                                                                                                                                                                                                                    |
| Wiper or seal extrusion          | Rod seals leakages may involve overpressures among wiper and rod seal, causing their extrusion                        | a) See possible causes and solutions for oil leakage troubles b) Install draining option <b>L</b>                                                                                                                                                                                                                         |
|                                  | Rod speed too low at end stroke                                                                                       | a) Check the cushioning adjustment is not fully open, regulate it if necessary b) Replace "fast" cushioning <b>1-2-3</b> , with "slow" cushioning <b>4-5-6</b> if the cushioning is not effective with cushioning adjustment fully closed                                                                                 |
| Lose of cushioning effect        | Cushioning adjustment cartridge with improper regulation                                                              | Close the cushioning adjustment screw till restoring the cushioning effect                                                                                                                                                                                                                                                |
|                                  | Fluid contaminants produce scratch and score marks on the cushioning piston                                           | Check the fluid contamination class is < 20/18/15                                                                                                                                                                                                                                                                         |
| Rod locked or impossible to move | Overpressure in the cushioning chamber could involve the cushioning piston locking                                    | a) Replace "fixed" cushioning <b>7-9</b> with "adjustable" cushioning <b>1-3</b> b) For adjustable cushioning, open the cushioning adjustment to decrease the max pressure inside the cushioning chamber c) Check the energy dissipated by the cushioning is lower than max energy dissipable, see tech.table <b>B015</b> |
|                                  | Fluid contaminants may lock the piston because of its tight tolerances                                                | Check the fluid contamination class is < 20/18/15                                                                                                                                                                                                                                                                         |
| Rod failure                      | Overload/overpressure involves ductile rod failure                                                                    | a) Check the overpressure inside the cylinder and decrease it     b) Check the compliance with the admitted operating pressure according to the cylinder series                                                                                                                                                           |
| Tiou failure                     | High load/pressure coupled to high frequencies or long life expectation involves fatigue rod failure                  | <ul> <li>a) Check the expected rod fatigue working life proposed in tech. table B015</li> <li>b) Decrease the operating pressure</li> </ul>                                                                                                                                                                               |
| Rod vibration                    | Seals with excessive friction could involve rod vibration and noise                                                   | Install low friction PTFE seals <b>G2-G4</b> , see tech.table <b>B015</b>                                                                                                                                                                                                                                                 |
| nou vibration                    | Air in the circuit may involve a jerky motion of the rod                                                              | Bleed off completely the air inside the hydraulic circuit                                                                                                                                                                                                                                                                 |
| Rod motion without oil           | Variations in the fluid temperature involve the fluid expansion / compression thus the rod moving                     | a) Decrease the temperature variations in the oil     b) Change the fluid type to decrease the coefficient of thermal expansion                                                                                                                                                                                           |
| pressure                         | Excessive oil leakage from the piston or rod seals                                                                    | See likely causes and solutions for oil leakage troubles                                                                                                                                                                                                                                                                  |
|                                  | Impact of the piston with the heads caused by high speed ( >0,05 m/s)                                                 | <ul> <li>a) Decrease the rod speed</li> <li>b) Install external or internal cushioning system 1-9, see tech.table</li> <li>B015 for the max energy that can be dissipated</li> </ul>                                                                                                                                      |
| Noisy cylinder                   | Fluid contaminants, foreign particles inside the cylinder may generate unusual noise                                  | Check the fluid contamination class is < 20/18/15                                                                                                                                                                                                                                                                         |
|                                  | High oil flow speed > 6 m/s                                                                                           | a) Increase the piping diameters to reduce the oil flow speed b) Install oversized oil ports, options <b>D-Y</b>                                                                                                                                                                                                          |

## 11 SERVOCYLINDERS TROUBLESHOOTING

| TROUBLE                             | POSSIBLE CAUSES                                                                               | SOLUTIONS                                                                            |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                     | Improper electronic connections may involve the transducer malfunctioning                     | Check the electronic connections scheme in tech table B310                           |
| Transducer malfunctioning / failure | Not stabilized power supply may involve dangerous peak of voltage                             | Install a voltage stabilizer                                                         |
|                                     | Uncontrolled disconnection and connection of plug-<br>in connectors may damage the transducer | Be carefull to switch off the power supply before connecting the position transducer |

Note: for cylinders troubleshooting refer to section  $\boxed{\mbox{10}}$ 



# **Operating and maintenance information**

## for ex-proof pumps

This operating and maintenance information apply to ATOS ex-proof pumps and is intended to provide useful guidelines to avoid risks when the pumps are installed in a system.

These norms must be strictly observed to avoid damages and to ensure trouble-free operation. The respect of these operating and maintenance norms grant an increased working life, trouble-free operation and thus reduced repairing costs.

Information and notes on the transport and storage of the pumps are also provided.



## 1 SYMBOLS CONVENTIONS



This symbol refers to possible dangers which can cause serious injuries

## 2 GENERAL NOTES

The operating and maintenance information are part of the operating instructions for the complete machine but thay cannot replace them

This document is relevant to the installation, use and maintenance of ex-proof fixed displacement vane pumps and ex-proof variable displacement piston pumps for application in explosive hazardous environments.

#### 2.1 Warranty

All the hydraulic pumps have 1 year warranty; the expiration of warranty results from the following operations:

- Unauthorized mechanical interventions
- The hydraulic pumps are not used exclusively for their intended porpose as defined in these operating and maintenance information
- Respect the working limits indicated on nameplate and on technical tables: AX010 for PFEA and AX050 for PVPCA

## 3 CERTIFICATIONS AND PROTECTION MODE

The ex-proof pumps subject of this operating and maintenance information are certified ATEX They are in compliance with following protection mode:



II 2/2 G Ex h IIC T5 Gb



(ξχ) II 2/2 D Ex h IIIC T100°C Db

## 4 HARMONIZED STANDARDS

The Essential Health and Safety Requirements are assured by compliance to the following standards:

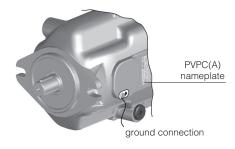
EN ISO 80079-36 Explosive atmospheres - Part 36: Non-electrical equipment for explosive atmospheres - Basic method and requirements

EN ISO 80079-37 Explosive atmospheres - Part 37: Non-electrical equipment for explosive atmospheres - Non electrical type of protec-

tion constructional safety "c", control of ignition source "b", liquid immersion "k'

The pumps may exclusively be used in areas and zones assigned to the equipments group and category. See section [6] for zones in relation to equipment groups and category.

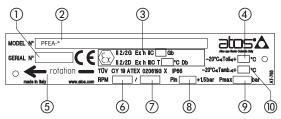



Check the code in the nameplate to ensure that the pump is suitable for the installation area.

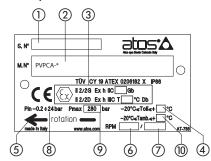
## 5 WORKING CONDITIONS

| Pumps type                      |       | PF                                                                                                                                       | EA               | PVPCA                                              |                  |
|---------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|------------------|
| Pumps version                   |       | STD, /PE                                                                                                                                 | /7 /PE           | STD, /PE                                           | /7 /PE           |
| Ambient temperature             | [°C]  | -20 ÷ +60                                                                                                                                | -20÷+70          | -20 ÷ +60                                          | -20÷+70          |
| Max inlet fluid temperature     | [°C]  | +60                                                                                                                                      | +80              | +60                                                | +80              |
| Protection degree               |       | IP 66                                                                                                                                    |                  |                                                    |                  |
| Max working pressure (1)        |       | <b>PFEA*-*1</b> : from 160 to 210 bar <b>PFEA*-*2</b> : from 210 to 300 bar                                                              |                  | 280 bar for size 29, 46, 73<br>250 bar for size 90 |                  |
| Recommended pressure at inlet p | ort   | PFEA*-*1: from -0,15 to +1,5 bar for speed up to 1800 rpm;<br>from 0 to +1,5 bar for speed over 1800 rpm<br>PFEA*-*2: from 0 to +1,5 bar |                  |                                                    |                  |
| Speed range (1)                 | [rpm] | from 800 to 2800 rpm, depend                                                                                                             | ling to the size | from 600 to 3000 rpm, depend                       | ling to the size |

(1) Max working pressure and speed range must be reduced for /PE versions and for water glycol fluids, see tab. AX10 for PFEA and AX050 for PVPCA-\*


GENERAL INFORMATION AX900




## Description

- Serial number
- ② Pump code
- 3 Marking according to ATEX
- Maximum inlet fluid temperature
- (5) Pump shaft rotation direction: clockwise or counterclockwise

## Nameplate for PFEA



#### Nameplate for PVPCA



- Minimum pump rotation speed in RPM = revolution/min
- Maximum pump rotation speed in RPM = revolution/min
- (a) Mimimun inlet pressure (PFEA), range inlet pressure (PVPCA)
- Maximum working pressure
- Maximum ambient temperature
- 11) Delivery date

## Ex II 2/2G Ex h IIC T(\*) Gb or Ex II 2/2D Ex h IIIC T(\*\*) $^{\circ}$ C Db

**Ex** = Equipment for explosive atmospheres

II = Group II for surfaces plants

**2/2** = Pump category

 $\mathbf{G}$  or  $\mathbf{D} = \mathbf{G}$  for gas and vapours,  $\mathbf{D}$  for dust

**h** = Marking includes one on more of the following types of protection ("c", "b", "k")

**IIC** = Gas group (acetylene, hydrogen)

**IIIC** = Conduictive dust

T\* = Temperature class (T6, T5, T4)

 $T^{**}$ °C = Max surface temperature (85, 100, 135)

# 6 EQUIPEMENT GROUP, CATEGORY AND INSTALLATION ZONE

The user must define the overall areas of the system into different explosive atmospheres zones in accordance with directive 99/92/CE. The table below shows the available installation zones related to the equipment group and category.

| Equipment group | Category | Application, properties                                                                                                                           |        |
|-----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| II              | 2/2G     | Potentially explosive atmospheres, in which explosive gases, mists or vapors are likely to occur occasionally.<br><b>High level of protection</b> | 1, 2   |
| II              | 2/2D     | Potentially explosive atmospheres, in which explosive dust/air mixtures are likely to occur occasionally. <b>High level of protection</b>         | 21, 22 |

| PUMP VERSION                   | Equipment group | Category      | Gas and Dust group | Temperature class                        | Zone         |
|--------------------------------|-----------------|---------------|--------------------|------------------------------------------|--------------|
| PFEA and PVPCA                 | II              | 2/2G and 2/2D | IIC and IIIC       | PFEA T6 (T85°C),<br>PVPCA T5 (T100°C)    | 1, 2, 21, 22 |
| PFEA* /7 /PE and PVPCA* /7 /PE | II              | 2/2G and 2/2D | IIC and IIIC       | PFEA* T5 (T100°C),<br>PVPCA* T4 (T135°C) | 1, 2, 21, 22 |

## 7 SAFETY NOTES

- Before start up make sure that the pump is always filled with the working fluid. See section 7.4.
- The pump must not be used with "OUT" port closed; in order to limit the maximum working pressure a relief valve must be installed on the pressure line.
- Make sure that the maximum working conditions shown in section 5 are not exceeded

#### 7.1 Installation position and port orientation

The installation must ensure that the pump remains always filled with the working fluid.

- For **PFEA:** the pump can operate in any position, the available orientation of the oil ports is according to the below picture. In the ordering code must be specified the selected orientation.









#### - For PVPCA:

- The pumps can be installed in horizontal or in vertical position. In case of vertical position the pump shaft must be oriented upward.
  The drain pipe must be oriented so that the pump body always remains filled with the fluid, specially when not working. For this reason the pump is provided with 2 drain connections located in opposite side of the body, so that, depending to the pump orientation, the optimal drain piping can be arranged
  Before the commissioning the pump body must be filled with the working fluid through one of the drain connections.
- The connection with the electric motor must be realized by means of proper elastic coupling.

#### 7.2 Shaft loads

PFEA: axial and radial loads acting on shaft are not permitted.

PVPCA: axial and radial loads acting on shaft are permitted, max permissible loads are indicated in the table AX050, section 2. The coupling with the electric motor must be sized to absorb the power peaks.

The coupling alignment between the motor and pump shaft must ensured

#### 7.3 Shaft rotation

The direction of shaft rotation (D = clockwise, S = counterclockwaise, viewed from the shaft end) must be the same of the arrow on the nameplate.

#### 7.4 Oil level and temperature

Make sure that the pump is always filled with flui. The installer / end user has to provide a level meter to verify the presence of fluid inside the tank.

## The monitoring of the inlet fluid temperature it is required only when it can reach critical values.

This monitoring should be performed on the surface of the fluid inlet pipe, near the pump's suction flange.

The monitoring system must operating with a tolerance of -5 °C of the maximum declared value. For example, if the maximum inlet fluid temperature is 60 °C, the control system must be operating between + 55 °C and + 60 °C.

The sensor used for monitoring the fluid level and the temperature must be ATEX certified and conform to the installation area: the control unit (PLC) must be certified IPL1 or SIL 1 also.

#### 7.5 Important notes

- A pressure relief valve must be installed on the pressure line near the pump outlet port.
- The electric motor to be used for the pump operation must be also certified in compliance with installation zone. The compliance with applicable norms is extended to all electrical components connected with the installed pump.
- The piping have to be dimensioned according to the max pressure and max flow rate
- All pipes and surfaces must be cleaned from dirt before mounting
- Make sure that connections are sealed before giving pressure to the system
- Ensure to not exchange the pipe ports when connecting the system
- Ensure that the pump installation allows an easy acces for maintenance purpose
- According to EN 1127-1:2008, the maximum surface temperature indicated in the nameplate must be lower than the following Tmax values:

Gas - Tmax = max value (80% of gas ignition temperature) Dust - Tmax = dust ignition tempeature - 75°C

- Make sure that the pump is suitable for the use in the designated installation area, on the base of the zone classification according to the Directive 99/92/CE and to the type of flammable atmosphere (gas, vapor, dust)
- The fluid ignition temperature must be 50K greater than the maximum surface temperature indicated in the
- The maximum operating pressure and minimum inlet pressure are indicated on pump's nameplate
- The pump must be connected to ground using the ground facility (screw M3x5) provided on the pump body and evidenced with grounding nameplate
- The pump's body and the electric motor, or other devices used to drive the pump, must be connected at the same electric equipotential level
- Pumps PVPCA with control devices type CH are equipped with Explosion-proof solenoid valves (assembled to the pump body and certified according to ATEX 2014/34/EU
- Pumps PVPCA with control devices type LW are equipped with a device to achieve a constant power, factory set at a specific power value required by customer



Ground connection



Grounding nameplate

## 7.6 Hydraulic fluids and operating viscosity range

Recommended mineral oils type HLP having high viscosity index. Ensure to use hydraulic fluids compatible with the selected seals. The type of fluid has to be selected in consideration of the effective working temperature range, so that the fluid viscosity remains at the optimal level.

Note: for PVPCA the temperature of the fluid contained in the pump body (drain line) is always higher than the tank temperature, specially if the pump is working for long time in null flow conditions and at high pressure.

## Fluid viscosity limits:

- 10 mm<sup>2</sup>/s for short periods at max fluid temperature on drain line
- 24 to 100 mm<sup>2</sup>/sduring normal operation
- 1000 mm<sup>2</sup>/s for short period at cold start-up (800 mm<sup>2</sup>/sec for PVPCA)

#### 7.7 Filtration

The correct fluid filtration ensures a long service life of the pumps and it prevent anomalous wearing or sticking. Contamination in the hydraulic fluid may cause functional failures e.g. loss of efficiency and increased noise level. In the worst case, this may result in heavy damages and breakages

Ensure adequate hydraulic fluid cleanliness according to the cleanliness classes of the pumps over the entire operating range.

#### Max fluid contamination level:

- normal operation: **PFEA** = ISO4406 class 21/19/16 NAS1638 class 10;
- longer life: **PFEA** = ISO4406 class 19/17/14 NAS1638 class 8;

**PVPCA** = ISO4406 class 20/18/15 NAS1638 class 9 **PVPCA** = ISO4406 class 18/16/13 NAS1638 class 7

Note: see also filter section at www.atos.com or KTF catalog

## 8 MAINTENANCE



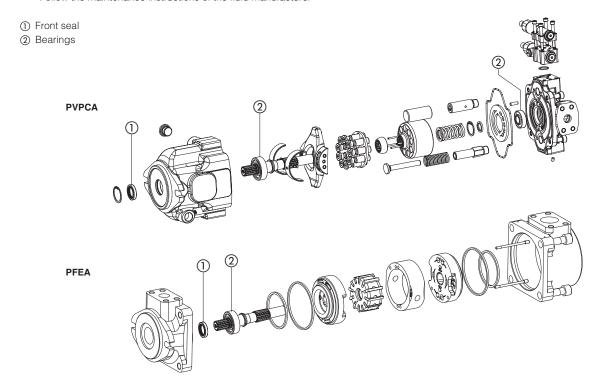
Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics.

#### 8.1 Ordinary Maintenance

- Service work performed on the valve by end user or not qualified personnel invalidates the certification
- Cleaning the external surfaces using a wet cloth to avoid accumulation of dust layer over 5 mm
- Don't use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires the immediate stop of the system and the inspection of the relevant components
- The pump does not require other maintenance operations except for bearing and front shaft seal, according to the following schedule: PFEA must be replaced after reaching **20000 working hours**

PVPCA without radial loads must be replaced after reaching 20000 working hours

In presence of radial loads (permitted only for PVPCA) the following maintenance schedule must be considerated:


PVPCA-3029 must be replaced after reaching 1550 working hours

PVPCA-4046 must be replaced after reaching 2600 working hours

PVPCA-5073 must be replaced after reaching 5000 working hours

PVPCA-5090 must be replaced after reaching 5000 working hours

- When mounting bearings and front seal, observe the correct position as indicated in the drawing below: any incorrect positioning can result in oil leakages
- Results of maintenance and inspection must be planned and documented
- Follow the maintenance instructions of the fluid manufacturer



## 8.2 Repairing

Before beginning any repairing activity, the following guidelines must be observed:

- Unauthorized opening of the pump during the warranty period invalidates the warranty
- Be sure to use only original spare parts manufactured or supplied by ATOS factory
- Provide all the required tools to make the repair operations safely and to don't damage the components

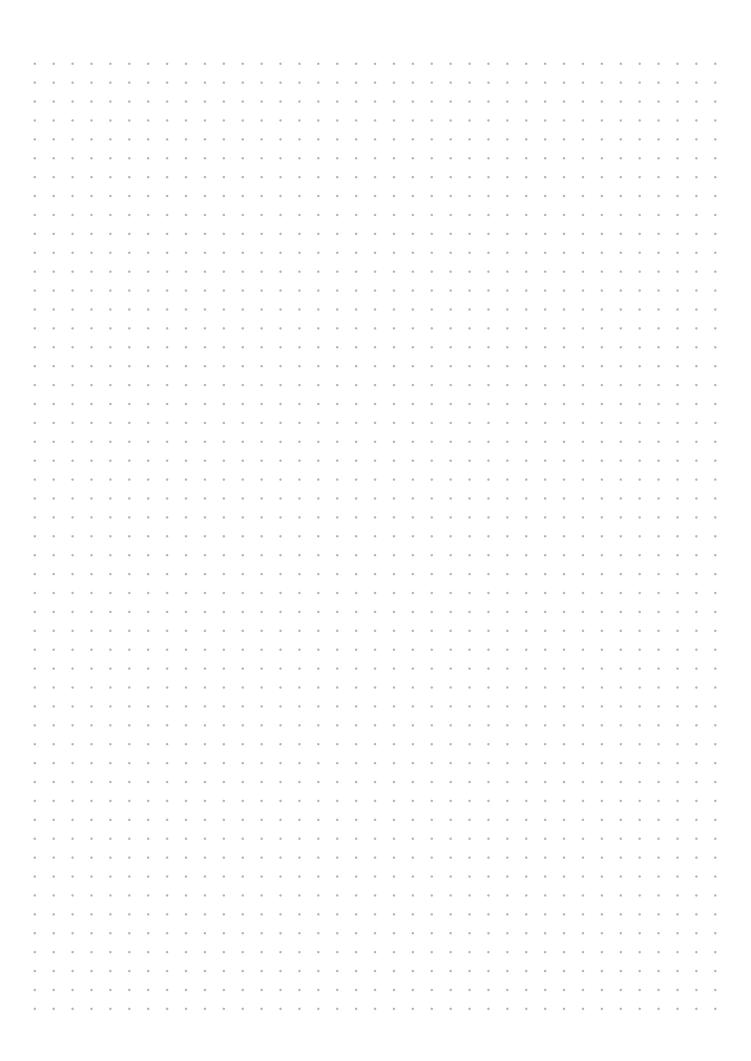
## 9 TRANSPORT AND STORAGE

## 9.1 Transport

Observe the following guidelines for transportation of pumps:

- Hydraulic pumps should be transported using a forklift or a lifting gear ensuring a stable position of the pump
- Use soft lifting belts to move or lift the pumps in order to avoid damages
- Before any movement check the pumps weight specified in the rilevant technical tables AX010 and AX050

## 9.2 Storage


PFEA corrosion protection is achieved with zinc phosphating: this treatment protect the pump to grant a storage period up to 12 months. PVPCA corrosion protection is achieved with trasparent oil film.

Additionally all pumps are tested with mineral oil OSO 46; the oil film left after testing ensure the internal corrosion protection.



In case of storage period longer than 12 months please contact our technical office.

Ensure that pumps are well protected against water and humidity in case of a storage in the open air.





# Headquarters Italy - 21018 Sesto Calende Phone +39 0331 922078 info@atos.com

# Worldwide Sales Organization

#### Branches

Argentina - Benelux - Brazil - Canada - China - Czech Republic Denmark - Finland - France - Germany - Great Britain India - Korea - Poland - Romania - Russia - Singapore Spain - Sweden - Taiwan - Thailand - Turkey - USA

## Agents and service

Algeria - Australia - Austria - Belgium - Bulgaria - Chile - Colombia Croatia - Cyprus - Ecuador - Egypt - Greece - Hong Kong - Hungary Iceland - Indonesia - Iran - Ireland - Israel - Japan - Jordan Kazakhstan - Latvia - Lithuania - Malaysia - Mexico - Morocco Netherlands - New Zealand - Norway - Pakistan - Paraguay - Peru Philippines - Portugal - Saudi Arabia - Slovenia - South Africa Switzerland - Syria - Tunisia - Ukraine - United Arab Emirates Uruguay - Venezuela - Vietnam





www.atos.com