

First class facilities high level of automation

TECHNICAL INF	FORMATION	ISO	ø bores [mm]	Pmax [bar]	Table	Pag
	or cylinders and servocylinders				B015	3
INDUSTRIAL CY	/LINDERS & SERVOCYLINDERS					
CK	square heads with tie rods	6020-2	25 ÷ 200	250	B137	10
СН	square heads with counterflanges	6020-2	63 ÷ 200	250	B140	18
СН	big bore sizes	6020-3	250 ÷ 400	250	B160	26
CN	round heads with counterflanges	6020-1	40 ÷ 200	250	B180	32
СС	round heads with counterflanges	6022	50 ÷ 320	320	B241	38
CK*	servocylinders with built-in position transducer	6020-2	40 ÷ 200	250	B310	44
CKS	with adjustable proximity sensors	6020-2	25 ÷ 100	150	B450	57
AZC	servocylinder plus servoproportional valve with o	n-board driv	er & axis card		FS700	59
EX-PROOF CYL	INDERS & SERVOCYLINDERS					
	INDERS & SERVOCYLINDERS square heads with tie rods	6020-2	25 ÷ 200	250	BX500	
CKA		6020-2	25 ÷ 200	250	BX500	
CKA	square heads with tie rods	6020-2	25 ÷ 200 50 ÷ 100	250 150	BX500	63
CKA STAINLESS STE	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS					63
CKA STAINLESS STE CNX ACCESSORIES	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS					63
CKA STAINLESS STE CNX ACCESSORIES	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS round heads with counterflanges				BW500	63
CKA STAINLESS STE CNX ACCESSORIES ATTACHMENTS	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS round heads with counterflanges for hydraulic cylinders for CK* servocylinders				BW500	63 65
STAINLESS STECNX ACCESSORIES ATTACHMENTS CONNECTORS OPERATING IN	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS round heads with counterflanges for hydraulic cylinders for CK* servocylinders	6020-1	50 ÷ 100		BW500	63 65
STAINLESS STECNX ACCESSORIES ATTACHMENTS CONNECTORS OPERATING IN Operating and in	square heads with tie rods EEL CYLINDERS & SERVOCYLINDERS round heads with counterflanges for hydraulic cylinders for CK* servocylinders FORMATION	6020-1 servocylinde	50 ÷ 100		BW500 B800 K810	63 65 67 71

Supplementary components range available on www.atos.com

Sizing criteria for cylinders and servocylinders

1 ON-LINE CONFIGURATOR

Accessible directly from Atos website, the configurator leads users through the definition of desired cylinder code, selecting step by step the characteristics and options required. The configurator guarantees free access to technical documentation and 3D view of the selected cylinders. Users registered in MyAtos area have free access to 3D models export, which can be used to complete mechanical assembly drawings of hydraulic machineries and systems.

Main configurator features :

- Visualisation and export of 3D models in STEP format
- Technical documentation of products and spare parts
- Configuration summary in PDF format
 Configurations storing within the trolley to create parts lists and quotation requests.

Register in MyAtos area to have full access to configurator functionalities and contents.

DISCOVER THE ATOS CYLINDERS CONFIGURATOR

2 HYDRAULIC FORCES AND DYNAMIC LIMITS

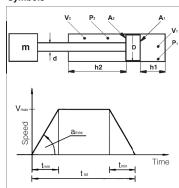
2.1 Hydraulic forces

To ensure the correct cylinder functioning it is necessary to check that the hydraulic force $\mbox{ F}_{\mbox{\scriptsize P}}$ is upper than the algebraic sum of all the counteracting forces acting on the cylinder:

$$F_p \ge m \cdot a + F_f + m \cdot g$$

Frare the friction forces of the system, ma the inertial forces and mg the weight force (only for vertical loads). For gravity acceleration consider $g=9.8~\text{m/s}^2$. For F_P values refers to section $\boxed{3}$, otherwise F_P , A_1 , A_2 and speed V can be calculated as follow:

Hydraulic force Pushing area $F_p = |p_1 \cdot A_1 - p_2 \cdot A_2| \cdot 10$ [N] $A_{\scriptscriptstyle 1} = \frac{\pi \cdot D^{\scriptscriptstyle 2}}{4 \cdot 100} \; [cm^{\scriptscriptstyle 2}]$ Cylinder speed $V = \frac{10 \cdot Q}{A \cdot 60} \left[\frac{m}{sec} \right]$


2.2 Dynamic limits due to oil elasticity

The calculation of the pulsing value ω_{o} of the cylinder-mass system allows to define the minimum accleration/deceleration time t_{min} , the max. speed V_{max} and the min. acceleration/deceleration space S_{min} to not affect the functional stability of the system. Calculate ω_{o} , t_{min} , V_{max} and S_{min} with the below formulas. Flexible piping or long distances between the directional valve and the cylinder may affect the stiffness of the system, thus the calculated values may not be reliable.

$$\omega_0 = \sqrt{\frac{40 \cdot E \cdot A_1}{c \cdot m}} \cdot \frac{1 + \sqrt{\frac{A_2}{A_1}}}{2} \begin{bmatrix} \text{rad} \\ \text{s} \end{bmatrix} \qquad \qquad \text{tmin} = \frac{35}{\omega_\circ} \quad \text{[s]}$$

$$V_{\text{max}} = \frac{c}{\text{ttot - tmin}} \quad \text{[mm/s]} \qquad \qquad S_{\text{min}} = \frac{V_{\text{max}} \cdot \text{tmin}}{2} \quad \text{[mm]}$$

Note: for mineral oil consider E = 1,4•107 kg/cm·s²

Symbols

Quantity	Unit	Symbol
Force	N	Fp
Pressure	bar	р
Section	cm ²	Α
Bore size	mm	D
Rod diameter	mm	d
Cylinder stroke	mm	С
Flow rate	l/min	Q
Speed	m/s	V
Acceleration	m/s²	а
Load mass	kg	m
Oil modulus of elasticity	kg/cm·s²	E
Total time at disposal	s	t tot

3 SIZING

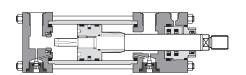
The table below reports the push/pull sections and forces for three different working pressures.

Once the push/pull forces are known, the size of the hydraulic cylinder can be choosen from the table below. The values have been determined using the

PULL FORCE [kN]

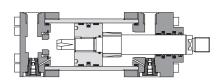
Bore	[mm]	2	25	3	2		40			50			63			80			100	
Rod	[mm]	12	18	14	22	18	22	28	22	28	36	28	36	45	36	45	56	45	56	70
A ₂ Pulling a	area [cm²]	3,8	2,4	6,5	4,2	10,0	8,8	6,4	15,8	13,5	9,5	25,0	21,0	15,3	40,1	34,4	25,6	62,6	53,9	40,1
D 11.6	p=100 bar	3,8	2,4	6,5	4,2	10,0	8,8	6,4	15,8	13,5	9,5	25,0	21,0	15,3	40,1	34,4	25,6	62,6	53,9	40,1
Pull force [kN]	p=160 bar	6,0	3,8	10,4	6,8	16,0	14,0	10,3	25,3	21,6	15,1	40,0	33,6	24,4	64,1	55,0	41,0	100,2	86,3	64,1
[[(14]	p=250 bar	9,4	5,9	16,3	10,6	25,1	21,9	16	39,6	33,7	23,6	62,5	52,5	38,2	100,2	85,9	64,1	156,6	134,8	100,1

Bore	Bore [mm]		125		140		160		180		200		25	50	32	20	40	00
Rod	[mm]	56	70	90	90	70	90	110	110	90	110	140	140	180	180	220	220	280
A ₂ Pulling a	area [cm²]	98,1	84,2	59,1	90,3	162,6	137,4	106,0	159,4	250,5	219,1	160,2	336,9	236,4	549,8	424,1	876,5	640,9
	p=100 bar	98,1	84,2	59,1	90,3	162,6	137,4	106,0	159,4	250,5	219,1	160,2	336,9	236,4	549,8	424,1	876,5	640,9
Pull force [kN]	p=160 bar	156,9	134,8	94,6	144,5	260,1	219,9	169,6	255,1	400,9	350,6	256,4	539,1	378,2	879,6	678,6	1.402,4	1.025,4
[1(14]	p=250 bar	245,2	210,6	147,8	225,8	406,4	343,6	265,1	398,6	626,4	547,8	400,6	842,3	591,0	1.374,4	1.060,3	2.191,3	1.602,2

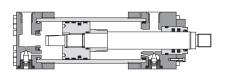

PUSH FORCE [kN]

Bore	[mm]	25	32	40	50	63	80	100	125	140	160	180	200	250	320	400
A ₁ Pushing	area [cm²]	4,9	8,0	12,6	19,6	31,2	50,3	78,5	122,7	153,9	201,1	254,5	314,2	490,9	804,2	1.256,6
D 1 (p=100 bar	4,9	8,0	12,6	19,6	31,2	50,3	78,5	122,7	153,9	201,1	254,5	314,2	490,9	804,2	1.256,6
Push force [kN]	p=160 bar	7,9	12,9	20,1	31,4	49,9	80,4	125,7	196,3	246,3	321,7	407,2	502,7	785,4	1.286,8	2.010,6
[1514]	p=250 bar	12,3	20,1	31,4	49,1	77,9	125,7	196,3	306,8	384,8	502,7	636,2	785,4	1.227,2	2.010,6	3.141,6

B015 CYLINDERS


4 CHOICE OF THE CYLINDER SERIES

SERIES CK/CH - tab. B137 - B140 to ISO 6020-2


- Nominal pressure 16 MPa (160 bar) max. 25 MPa (250 bar)
- Bore sizes from 25 to 200 mm
- Rod diameters from 12 to 140 mm

SERIES CN - tab. B180 to ISO 6020-1

- Nominal pressure 16 MPa (160 bar) max. 25 MPa (250 bar)
- Bore sizes from **50** to **200** mm Rod diameters from **28** to **140** mm

SERIES CH BIG BORE SIZE - tab. B160 to ISO 6020-3

- Nominal pressure 16 MPa (160 bar) max. 25 MPa (250 bar)
- Bore sizes from 250 to 400 mm
- Rod diameters from 140 to 220 mm

SERIES CC - tab. B241 to ISO 6022

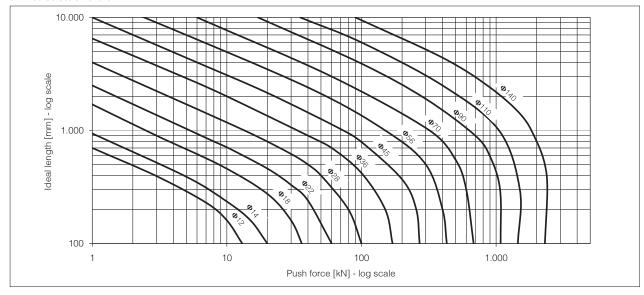
- Nominal pressure **25** MPa (250 bar) max. **32** MPa (320 bar)
- Bore sizes from **50** to **320** mm Rod diameters from **36** to **220** mm

5 CHECK OF THE BUCKLING LOAD

5.1 Calculation of the ideal lenght

Style	Rod end connection	Type of mounting	Fc
A, E, K, N, T, W, Y, Z	Fixed and rigidly guided		0,5
A, E, K, N, T, W, Y, Z	Pivoted and rigidly guided		0,7
B, P, V	Fixed and rigidly guided		1,0
G	Pivoted and rigidly guided		1,0
B, P, V, L	Pivoted and rigidly guided		1,5
A, E, K, N, T, W, Y, Z	Supported but not rigidly guided		2,0
C, D, H, S	Pivoted and rigidly guided		2,0
B, P, V	Supported but not rigidly guided		4,0
C, D, H, S	Supported but not rigidly guided		4,0

For cylinders working with push loads, the buckling load's checking has to be considered before choosing the rod size. This check is performed considering the fully extended cylinder as a bar having the same diameter of the cylinder rod (safety criteria):

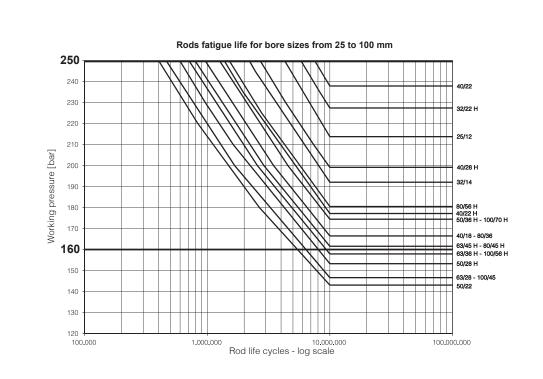

- 1. determine the stroke factor "Fc" depending to the mounting style and to the rod end connection, see table at side
- 2. calculate the "ideal lenght" from the equation:

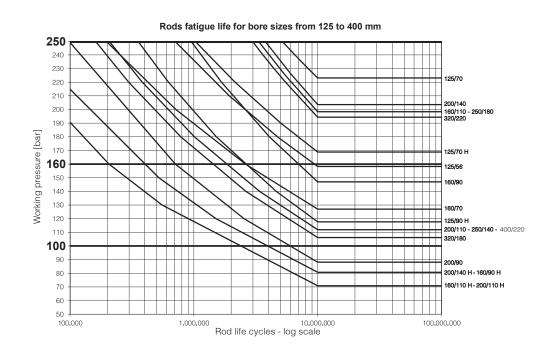
ideal length = Fc x stroke [mm]

If a spacer has been selected, the spacer's length must be added to the stroke

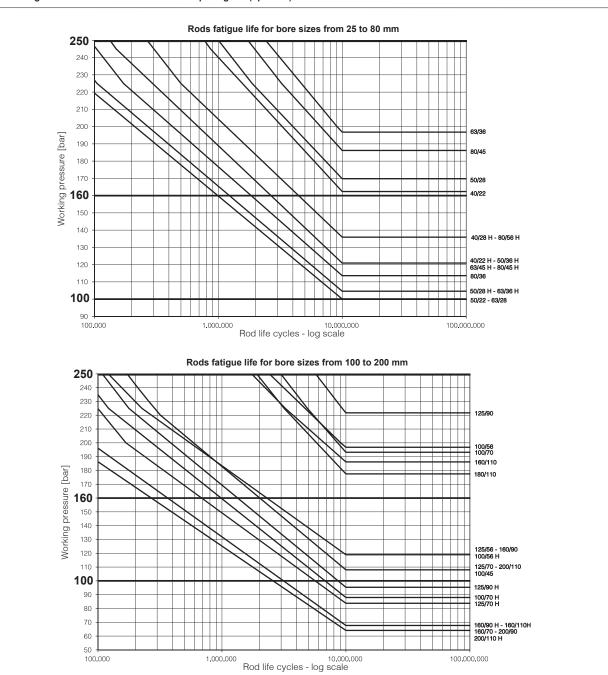
- 3. calculate the F_P push force as indicated in section 3 or using the formulae indicated in section 2
- 4. obtain the point of intersection between the push force and the ideal length using the rod selection chart 5.2
- **5.** obtain the minimum rod diameter from the curved line above the point of intersection

5.2 Rod selection chart


6 PREDICTION OF THE EXPECTED CYLINDER'S MECHANICAL WORKING LIFE


The rod thread is the cylinder's max critical part, thus the expected cylinder's working life can be evaluated by the prediction of the expected rod thread fatigue life. The fatigue rod fractures take place suddenly and without any warning, thus it is always recommended to check if the rod is subject to fatigue stress (not necessary if the cylinder works with push loads) and thus if the expected rod threads fatigue life may become an issue in relation to the required cylinder working life. The charts below do not include the rods which are fatigue-free for working pressures over 250 bar. The curves are referred to ideal working conditions and do not take into account misalignments and transversal loads that could decrease the predicted life cycles. The charts are intended valids for all the cylinders and servocylinders series with standard materials and sizes (section 6.2) or option **K** "Nickel and chrome plating" rods (section 6.3). For the evaluation of the expected fatigue life of stainless steel rods (CNX series), contact our technical office. For double rod executions the mechanical working life calculation does not apply to secondary rods since the thread is weaker than the primary rods.

6.1 Mechanical working life calculation procedure


- 1. Identify the curve of proper rods fatigue life graph according to the selected bore/rod size and rod treatment. Fatigue-free bore/rod couplings are not included in the graphs.
- 2. Intersect the working pressure with the curve corresponding to the rod under investigation and determine the expected rod life cycles. If the calculated rod fatigue life is lower than 500.000 cycles a careful analysis of our technical office is suggested.

6.2 Rods fatigue life charts for standard rod

Note: the curves are labelled according to the bore/rod size. The light male thread (option \bf{H}) is indicated by the "H" after the rod Example: label **125/90 H** means bore = 125 mm, rod = 90 mm and rod with option \bf{H}

Note: the curves are labelled according to the bore/rod size. The light male thread (option **H)** is indicated by the "H" after the rod Example: label **125/90 H** means bore = 125 mm, rod = 90 mm and rod with option **H**

7 CHECK OF THE HYDRAULIC CUSHIONING

7.1 Functioning features

Hydraulic cushioning act as "dumpers" to dissipate the energy of a mass connected to the rod and directed towards the cylinder stroke-ends, reducing its velocity before the mechanical contact, thus avoiding mechanical shocks that could reduce the average life of the cylinder and of the entire system.

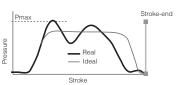
Cushioning proves to be effective as much as the pressure inside the cushioning chamber gets close to the ideal profile described in the diagram at side. The diagram compares the ideal profile with typical cylinders real pressure profile.

7.2 Application features

The following guidelines refer to CK, CH, CN and CC cylinders: for CH big bore sizes, contact our technical office. In order to optimize the performances of cushioning in different applications, three different cushioning versions have been developed:

- slow version, with cushioning adjustment, for speed - fast version, without adjustment, for speed

V ≤ 0,5 • Vmax V > 0,5 • Vmax


- fast version, without adjustment, for speed

V > 0,5 • Vmax

Adjustable cushioning are provided with needle valve to optimize the cushioning performances. The maximum permitted speed value Vmax depends to the cylinder size, see table below.

ø Bore [mm]	25	32	40	50	63	80	100	125	160	200
Vmax [m/s]	1	1	1	1	0,8	0,8	0,6	0,6	0,5	0,5

Pressure in the cushioning chamber

Speed during cushioning

7.3 Max energy calculation procedure

Check the max energy that can be absorbed by the selected cushioning as follow:

1. calculate the energy to be dissipated ${\bf E}$ by the algrebraic sum of the kinetic energy ${\bf E}_{{\bf c}}$ and the potential energy $\mathbf{E}_{\mathbf{p}}$ (for horizontal applications the potential energy is: $\mathbf{E}_{\mathbf{p}} = 0$)

$$E = E_c + E_p$$

- Ec (kinetic energy) due to the mass speed

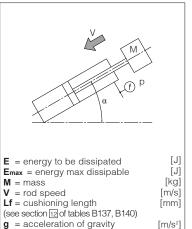
$$\mathbf{Ec} = 1/2 \cdot M \cdot V^2$$
 [Joule]

- E_p (potential energy) due to the gravity and related to the cylinder inclination angle α as shown at side

For front cushioning:

$$\mathbf{Ep} = -Lf \cdot \frac{\mathsf{M} \cdot \mathsf{g} \cdot \mathsf{sen} \ \alpha}{1000} \quad [\mathsf{Joule}]$$

$$\mathbf{E}_{p} = + Lf \cdot \frac{M \cdot g \cdot sen \alpha}{1000} \quad [Joule]$$


2. identify the proper cushioning chart depending to the rod type, the cushioning side (front or rear), and the cylinder series (section 7.4 for CK, CH, CN cylinders or section 7.5 for CC cylinders)

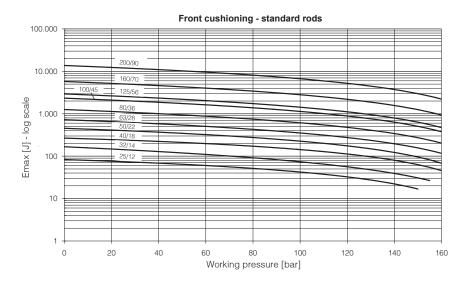
3. intersect the working pressure with the proper bore/rod size curve and extract the corresponding Emax value

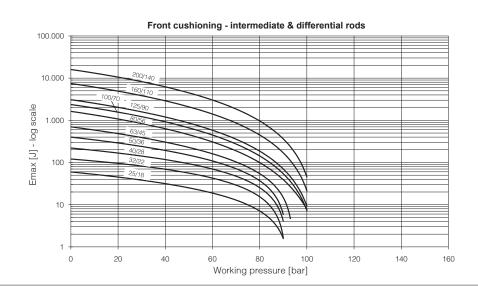
4. compare the E_{max} value with the energy to be dissipated E and verify that:

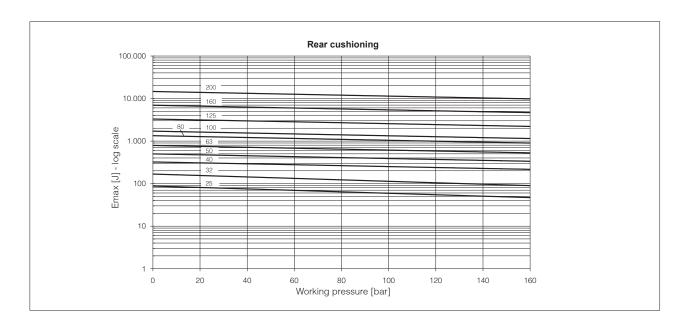
5. for critical applications with high speed and short cushioning strokes an accurate cushioning evaluation is warmly suggested, contact our technical office

Symbols

[°]

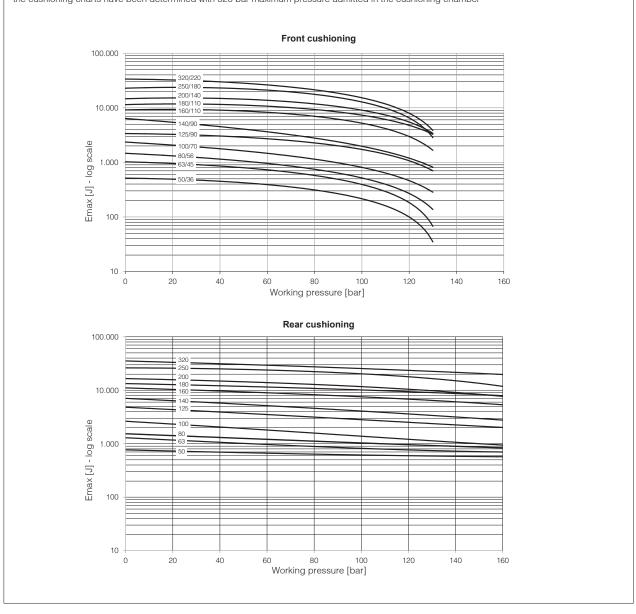

consider g=9,81 m/s2


 α = inclination angle


7.4 Cushioning charts for CK - CH - CN cylinders

Notes:

- the front cushioning graphs are labelled according to the bore/rod size, the rear cushioning graph is labelled according to the bore size the front cushioning graph is labelled according to the bore size the curves are intended valid for mineral oil ISO 46 and a fluid temperature of 40-50 °C: the use of water or water-based fluids and higher/lower temperature.
- ratures can affect the cushioning performance because of high viscosity variations respect to standard mineral oil for adjustable versions the E_{max} value is referred to cushioning cartridge fully closed, the max energy to be dissipated may be increased opening the cushioning cartridge, thus reducing the max pressure reached in the cushioning chamber
- the cushioning charts have been determined with 250 bar maximum pressure admitted in the cushioning chamber

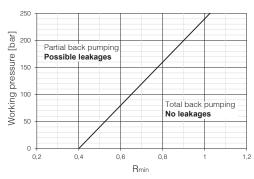


7.5 Cushioning charts for CC cylinders

- the front cushioning graphs are labelled according to the bore/rod size, the rear cushioning graph is labelled according to the bore size
 the front cushioning graphs are labelled according to the bore/rod size, the rear cushioning graph is labelled according to the bore size
 the curves are intended valid for mineral oil ISO 46 and a fluid temperature of 40-50 °C: the use of water or water-based fluids and higher/lower temperatures can affect the cushioning performance because of high viscosity variations respect to standard mineral oil
 for adjustable versions the E_{max} value is referred to cushioning cartridge fully closed, the max energy to be dissipated may be increased opening the cushioning cartridge, thus reducing the max pressure reached in the cushioning chamber
- the cushioning charts have been determined with 320 bar maximum pressure admitted in the cushioning chamber

8 SEALING FRICTION AND IN / OUT SPEED RATIO

Basic sealing performances reported in the cylinders technical tables are not sufficient for a comprehensive evaluation of the sealing system, the following sections report additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction.


8.1 In / out speed ratio

Applications with low in/out rod speed ratio may involve leakages caused by partial "back pumping" of the oil trapped between the rod seals, thus it is recommended to check the correct back pumping with the diagram reported below

1. Determine the in/out speed ratio R of the cylinder

$$R = \frac{V_{in}}{V_{out}} = \frac{Q_2 \cdot A_1}{A_2 \cdot Q_1}$$

2. Intersect the working pressure with the curve below and extract the corresponding R_{min} value admitted

3. Verify that

 $R \ge R_{min}$

If the equation above is not verified contact our technical office

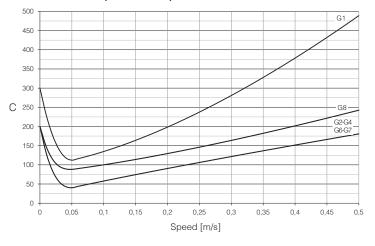
8.2 Static and dynamic sealing friction

Sealing systems may affect the smooth rod motion, thus the assessment of the sealing friction forces is recommended in several applications like:

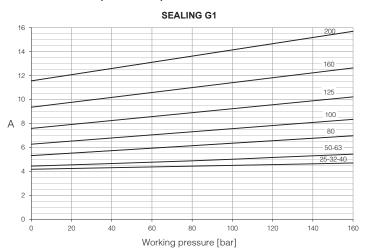
- Servoactuators with closed loop control
- Servocylinders where high accuracy in rod positioning is required
- Cylinders with low speeds (<0,05 m/s)
- Low pressure hydraulic systems (<10 bar) where sealing friction forces may have significant influence

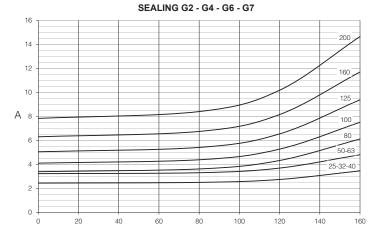
The following sections allow to calculate both static and dynamic sealing friction according to the sealing system selected for CK, CH and CK* servocylinders.

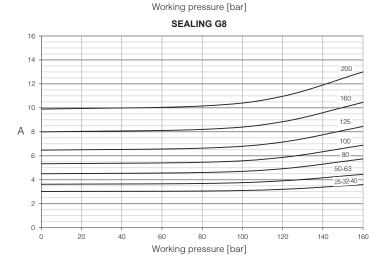
8.3 Sealing friction calculation procedure


Calculate the **dynamic** sealing friction as follow:

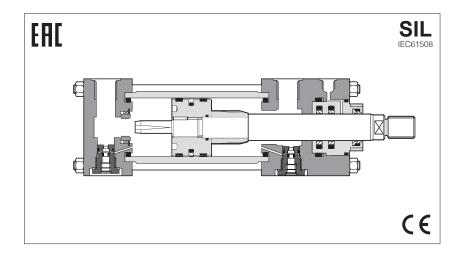
- 1. Intersect the speed with the proper curve depending to the sealing system from the chart in section 8.4.
- 2. Extract the corresponding C value
- 3. Identify the proper diagram according to the sealing system (section 8.5)
- **4.** Intersect the working pressure with the curve depending to the Bore size.
- ${\bf 5.}$ Extract the corresponding ${\bf A}$ value
- 6. F_{sf} = A · (D + d) + C [N] considering D= Bore size [mm]; d= Rod size [mm]


Calculate the **static** sealing friction as follow:

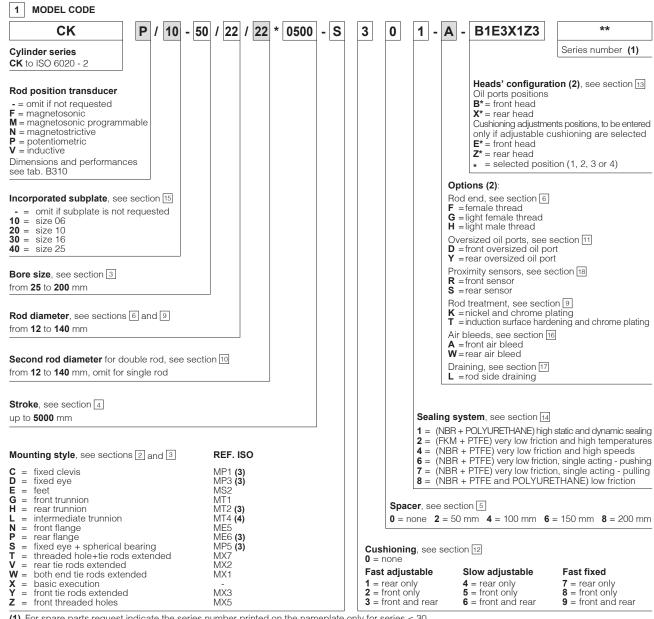

- 1. Extract the C value corresponding to speed V = 0 m/s in the chart in section 8.4
- 2. Identify the proper diagram according to the sealing system (section 8.5)
- 3. Intersect the working pressure with the curve depending to the Bore size.
- 4. Extract the corresponding ${\bf A}$ value
- 5. F_{sf} = A · (D + d) + C [N] considering D= Bore size [mm]; d= Rod size [mm]


8.4 Friction charts - C parameter vs speed

8.5 Friction charts - A parameter vs pressure



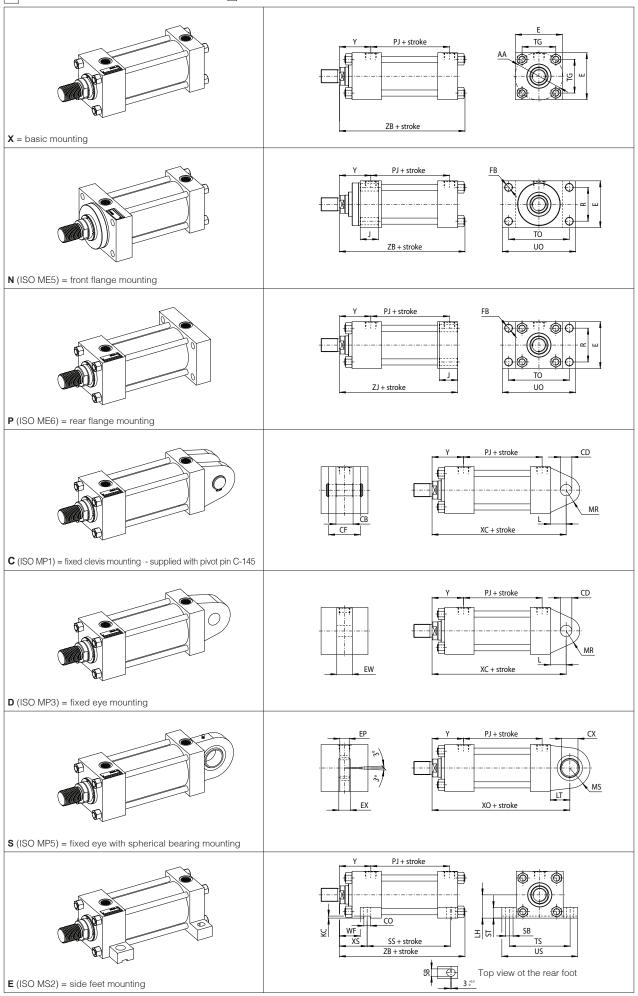
Hydraulic cylinders type CK - square heads with tie rods

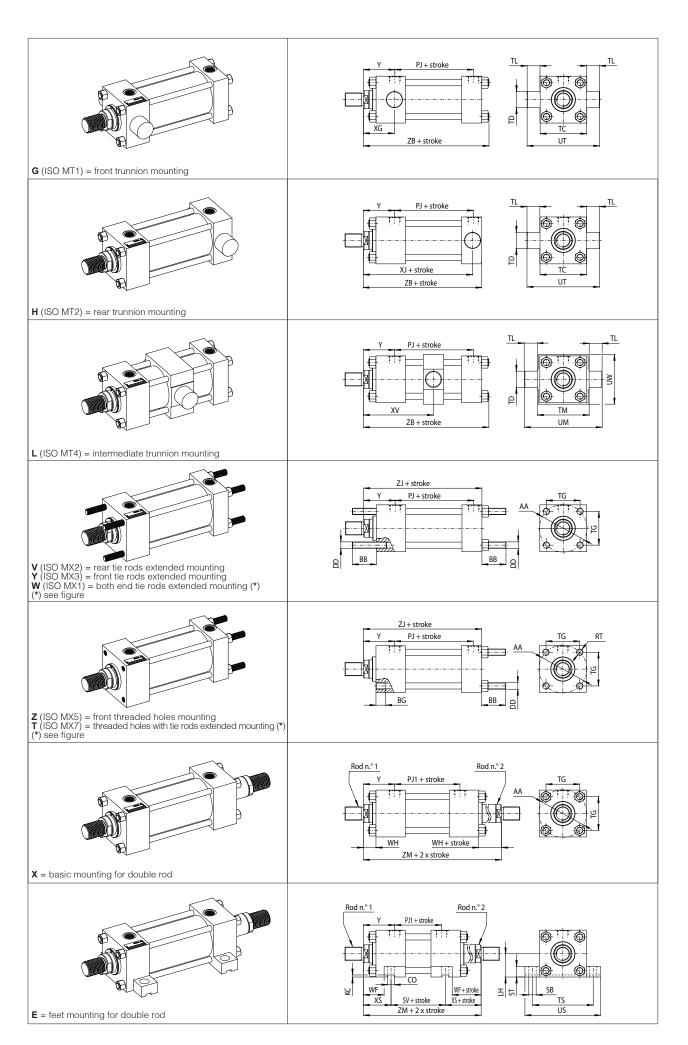

to ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

CK cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.

- Bore sizes from 25 to 200 mm
- Adjustable or fixed cushioning
- Optional built-in position transducer, see tab. B310
- · Attachments for rods and mounting styles, see tab. B800
- CKA available with ATEX certification see tab. BX500
- · CK cylinders are SIL compliance with IEC 61508 (TÜV certified), certification

For cylinder's choice and sizing criteria see tab. B015




(1) For spare parts request indicate the series number printed on the nameplate only for series < 30

(2) To be entered in alphabetical order (3) Not available for double rod (4) XV dimension must be indicated in the model code, see section 3

CYLINDERS

2 MOUNTING STYLE - for dimensions see section 3

3 INSTALLATION DIMENSIONS [mm] - see figures in section 2

3	INSTALLAT										
	Ø Bore	25	32	40	50	63	80	100	125	160	200
Б	standard	12	14	18	22	28	36	45	56	70	90
Ø Rod	intermediate	NA	NA	22	28	36	45	56	70	90	110
	differential	18	22	28	36	45	56	70	90	110	140
	AA	40	47	59	74	91	117	137	178	219	269
	BB +3/0	19	24	35	46	46	59	59	81	92	115
	BG min	8	9	12	18	18	24	24	27	32	40
	CB A13	12	16	20	30	30	40	50	60	70	80
	CD H9	10	12	14	20	20	28	36	45	56	70
	CF max	25	34	42	62	62	83	103	123	143	163
	CO N9	NA	NA	12	12	16	16	16	20	30	40
	value	12	16	20	25	30	40	50	60	80	100
СХ	tolerance	0 -0	,008			0 -0,012			0 -0	,015	0 -0,02
	DD 6g	M5x0,8	M6x1	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
	E (1)	40±1,5	45±1,5	63±1,5	75±1,5	90±1,5	115±1,5	130±2	165±2	205±2	245±2
	EP max	8	11	13	17	19	23	30	38	47	57
	EW h14	12	16	20	30	30	40	50	60	70	80
	EX									55 0/-0,15	
	FB H13	5,5	6,6	11 NA	14	14	18	18	22	26	33
	H (2) max	5	5	NA 00	NA 20	NA 20	NA 45	NA 45	NA 50	NA 50	NA 70
	J ref	25	25	38	38	38	45	45	58	58	76
	L min	13	19	19	32	32	39	54	57	63	82
	LH h10	19	22	31	37	44	57	63	82	101	122
	LT min	16	20	25	31	38	48	58	72	92	116
	KC min	NA	NA	4	4,5	4,5	5	6	6	8	8
	M (3)	1000	1200	1500	1800	2300	3000	3500	3500	3500	3500
	MR max	12	17	17	29	29	34	50	53	59	78
	MS max	20	22,5	29	33	40	50	62	80	100	120
	PJ (4) ±1,5 (6)	53	56	73	74	80	93	101	117	130	165
	PJ1 ±1,5 (6)	54	58	71	73	81	92	101	117	130	160
	PJ2 (4) ±1,5 (6)	53	57	73	76	80	93	99	121	143	167
	R js13	27	33	41	52	65	83	97	126	155	190
	RT	M5x0,8	M6x1	M8x1,25	M12x1,75	M12x1,75	M16x2	M16x2	M22x2,5	M27x3	M30x3,5
	SB H13	6,6	9	11	14	18	18	26	26	33	39
	SS ±1,25 (6)	72	72	97	91	85	104	101	130	129	171
	ST js13	8,5	12,5	12,5	19	26	26	32	32	38	44
	SV ±1,25 (6)	88	88	105	99	93	110	107	131	130	172
	TC h14	38	44	63	76	89	114	127	165	203	241
	TD f8	12	16	20	25	32	40	50	63	80	100
	TG js13	28,3	33,2	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
	TL js13	10	12	16	20	25	32	40	50	63	80
	TM h14	48	55	76	89	100	127	140	178	215	279
	TO js13	51	58	87	105	117	149	162	208	253	300
	TS js13	54	63	83	102	124	149	172	210	260	311
	UM ref	68	79	108	129	150	191	220	278	341	439
	UO max	65	70	110	130	145	180	200	250	300	360
	US max	72	84	103	127	161	186	216	254	318	381
	UT ref	58	68	95	116	139	178	207	265	329	401
	UW max	45	50	70	88	98	127	141	168	215	269
	XC ±1,5 (6)	127	147	172	191	200	229	257	289	308	381
	XG ±2 (6)	44	54	57	64	70	76	71	75	75	85
	XJ ±1,5 (6)	101	115	134	140	149	168	187	209	230	276
	XO ±1,5 (6)	130	148	178	190	206	238	261	304	337	415
	XS ±2 (6)	33	45	45	54	65	68	79	79	86	92
XV (5	style L minimum stroke	5	5	5	15	20	20	35	35	35	35
±2 (6	min	77	90	100	109	120	129	148	155	161	195
±c (0	max	75+stroke	86+stroke	99+stroke	98+stroke	100+stroke	115+stroke	117+stroke	134+stroke	141+stroke	166+stroke
	Y (4) ±2 (6)	50	60	62	67	71	77	82	86	86	98
	Y1 (4) ±2 (6)	49,5	59,5	63	65,5	70	75,5	83	84	79,5	97
	ZB max	121	137	166	176	185	212	225	260	279	336
	ZJ ±1 (6)	114	128	153	159	168	190	203	232	245	299
	ZM ±2 (6)	154	178	195	207	223	246	265	289	302	356
	.,	<u> </u>			L					<u> </u>	

NOTES TO TABLE 3

- (1) E If not otherwise specified in the figures in section 2, this value is the front and rear square heads dimension for all the mounting styles (see figure below)
- (2) H This additional dimension has to be considered only for bores 25 and 32

(3) M - For strokes longer than M, one or more intermediate tie rods supports ① are fitted on the cylinder housing to maintain the radial tension on the tie rods, thus keeping them rigidly fixed to the cylinder housing. The support has the same overall dimensions of the square heads as indicated in note (1)

- (4) When oversized oil ports are selected (see section 11 and 13 for dimensions and position) dimensions PJ and Y are respectively modified into PJ2 and Y1
- (5) $\boldsymbol{X}\boldsymbol{V}$ For cylinders with mounting style \boldsymbol{L} the stroke must always exceed the minimum values reported in the table.
 The requested XV value must be included between \boldsymbol{XV} \boldsymbol{min} and \boldsymbol{XV} \boldsymbol{max} and it must be always indicated, with dimension in millimeters, together with the cylinder

CK - 50 / 22 * 0500 - L301 - D - B1E3X1Z3 **XV = 200**

code. See the following example:

(6) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is given by the max stroke tolerance in section 4

4 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end.

Standard strokes to ISO 4393

25	50	80	100	125	160	200	250
320	400	500	630	800	1000	1250	

- Maximum stroke:
 2600 mm for bores up to 40 mm
- 5000 mm for other bores

Stroke tolerances:

- 0 +2 mm for strokes up to 1250 mm
 0 +5 mm for strokes from 1250 to 3150 mm
- 0 +8 mm for strokes over 3150 mm

5 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from over-loads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke dependent dimensions in section 3

RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer code	2	4	6	8
Length	50	100	150	200

6 ROD END DIMENSIONS [mm]

		Male t	hread	Female	thread												
Ø Bore	Ø Rod	KK	KK1 (option H)	KF (option F)	KF1 (option G)	A (KK or	A1 (KK1	В	СН	F	RD	VD	VE	VL	WF	WH	WL
_ Q	3	6g	6g	6H	6H	KF) (1)	KF1) (1)	f9	h14	max	f8		max	min	±2	±2	min
25	12	M10x1,25	NA	M8x1	NA	14	NA	24	10	10	38	6	16	3	25	15	5
	18	M14x1,5	M10x1,25	M12x1,25	M8x1	18	14	30	15	10	38	6	16	3	25	15	5
32	14	M12x1,25	NA	M10x1,25	NA	16	NA	26	12	10	42	12	22	3	35	25	5
	22	M16x1,5	M12x1,25	M16x1,5	M10x1,25	22	16	34	19	10	42	9	19	3	35	25	5
40	18	M14x1,5	NA	M12x1,25	NA	18	NA	30	15	10	62	6	16	3	35	25	5
	22 28	M16x1,5 M20x1,5	M14x1,5 M14x1,5	M16x1,5	NA M12x1,25	22 28	18 18	34 42	19 22	10 10	62 62	12 12	22	3	35 35	25 25	5 7
50	22 28	M16x1,5 M20x1,5	NA M16x1,5	M16x1,5 M20x1,5	NA NA	22	NA 22	34 42	19 22	16 16	74 74	9	25 25	4	41	25 25	5 7
	36	M27x2	M16x1,5	M27x2	M16x1,5	36	22	50	30	16	74	9	25	4	41	25	8
63	28	M20x1,5	NA	M20x1,5	NA	28	NA	42	22	16	75	13	29	4	48	32	7
	36	M27x2	M20x1,5	M27x2	NA	36	28	50	30	16	88	13	29	4	48	32	8
	45	M33x2	M20x1,5	M33x2	M20x1,5	45	28	60	39	16	88	13	29	4	48	32	10
80	36	M27x2	NA	M27x2	NA	36	NA	50	30	20	82	9	29	4	51	31	8
	45	M33x2	M27x2	M33x2	NA	45	36	60	39	20	105	9	29	4	51	31	10
	56	M42x2	M27x2	M42x2	M27x2	56	36	72	48	20	105	9	29	4	51	31	10
100	45	M33x2	NA	M33x2	NA NA	45	NA	60	39	22	92	10	32	5	57	35	10
	56 70	M42x2 M48x2	M33x2 M33x2	M42x2 M48x2	M33x2	56 63	45 45	72 88	48 62	22 22	125 125	10	32 32	5 5	57 57	35 35	10
125	56	M42x2	NA	M42x2	NA	56	NA	72	48	22	105	10	32	5	57	35	10
	70	M48x2	M42x2	M48x2	NA	63	56	88	62	22	150	7	29	5	57	35	10
	90	M64x3	M42x2	M64x3	M42x2	85	56	108	80	22	150	7	29	5	57	35	15
160	70	M48x2	NA	M48x2	NA	63	NA	88	62	25	125	7	32	5	57	32	10
	90	M64x3	M48x2	M64x3	NA MAG. 0	85	63	108	80	25	170	7	32	5	57	32	15
	110	M80x3	M48x2	M80x3	M48x2	95	63	133	100	25	170	7	32	5	57	32	15
200	90	M64x3	NA	M64x3	NA	85	NA	108	80	25	150	7	32	5	57	32	15
	110 140	M80x3 M100x3	M64x3 M64x3	M80x3 M100x3	NA M64x3	95 112	85 85	133 163	100 128	25 25	210 210	7	32	5	57 57	32	15 15
	140	IVITUUX3	1010433	IVITUUX3	1010433	112	80	103	128	25	210	_ ′	32		5/	32	15

Notes: (1) Dimensions A and A1 are according to ISO 4395 short type.

Tolerances: max for male thread; min for female thread

7 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "cold drawn and stressed steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra \leq 0,25 μ m.

8 TIE RODS FEATURES

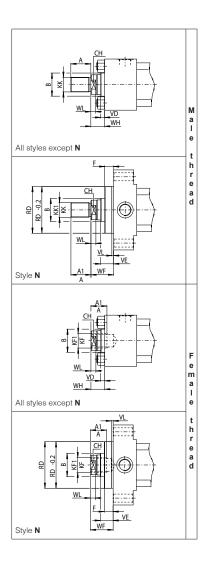
The cylinder's tie rods are made in "normalized automatic steel"; end-threads are rolled to improve the fatigue working life. They are screwed to the heads or mounted by means of nuts with a prefixed tightening torque MT, see the table at side.

9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7; roughness Ra \leq 0,25 μ m. Corrosion resistance of 200 h in neutral spray to ISO 9227 NSS

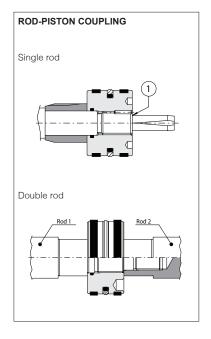
	a Dad	Material	Rs min	Chr	ome
	ø Rod	Waterial	[N/mm²]	min thickness [mm]	hardness [HV]
	12÷90	hardened and tempered alloy-steel	700	0.020	850-1150
ſ	110÷140	alloy steel□	450	0,020	030-1130

Rod diameters from 12 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table [6]. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing. **Contact our technical office** in case of heavy duty applications.


Rod corrosion resistance and hardness can be improved selecting the options \mathbf{K} and \mathbf{T} (option K affects the strength of standard rod, see \mathbf{tab} . $\mathbf{B015}$ for the calculation of the expected rod fatigue life): $\mathbf{K} = \text{Nickel}$ and chrome-plating (for rods from 22 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

- 500 h in acetic acid salt spray to ISO 9227 AASS
 1000 h in neutral spray to ISO 9227 NSS
- T = Induction surface hardening and chrome plating 56-60 HRC (613-697 HV) hardness

10 DOUBLE ROD


Double rod cylinders ensure the same pushing and pulling areas, thus the same speeds and forces. Rod2 (see figure at side) is screwed into the male thread of Rod1, consequently the Rod2 is weaker than the other and it is strongly recommended to use this one only to compensate the areas; the stronger rod is identified by the number '1' stamped on its end. For double rod cylinders, rod end dimensions indicated in section 6 are valid for both the rods.

B137

TIE RODS TIGHTENING TORQUES

Ø Bore	25	32	40	50	63
MT [Nm]	5	9	20	70	70
Wrench	8	10	13	19	19
Ø Bore	80	100	125	160	200
MT [Nm]	160	160	460	820	1160
Wrench	24	24	32	41	46

11 OIL PORTS AND ROD SPEEDS

The fluid speed in pipings connected to the cylinder oil ports should not exceed 6 m/s in order to minimize the turbolence flow, the pressure drop and water hammer. The table below shows the max recommended rod speed relative to 6 m/s flow velocity.

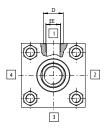
In high dynamic systems the rod can reach even higher speeds (after a careful check of dampable masses, **see tab. B015**): in these cases it is recommended to use piping's diameters larger than the cylinder oil ports and to introduce proper reductions just near the cylinder oil ports.

	_				_			
		Stand	dard oil ports			Oversized o	il ports D , Y op	otions
Ø Bore	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]
25	21	G 1/4	7,5	0,54	25	G 3/8	9	0,77
32	21	G 1/4	7,5	0,33	25	G 3/8	9	0,47
40	25	G 3/8	9	0,30	29	G 1/2	14	0,73
50	29	G 1/2	14	0,47	36	G 3/4	16	0,61
63	29	G 1/2	14	0,30	36	G 3/4	16	0,39
80	36	G 3/4	16	0,18	42	G 1	20	0,37
100	36	G 3/4	16	0,15	42	G 1	20	0,24
125	42	G 1	20	0,15	52	G 1 1/4	30	0,34
160	42	G 1	20	0,09	52 (1)	G 1 1/4 (1)	30	0,21
200	52	G 1 1/4	30	0,13	58	G 1 1/2	40	0,24

12 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessaty to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). Two types of cushioning are available depending to the rod speed V:

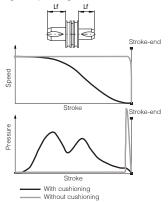
Slow version for V ≤ 0.5 • V_{max} Fast version for V > 0.5 • V_{max}


See the table below for V_{max} values and **tab. B015** for the max damping energy. When fast or slow adjustable versions are selected, the cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect).

In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore)	2	5	3	2	4	0	5	0	6	3	8	0	10	00	12	25	16	60	20	00
Ø Rod	l	12	18	14	22	18	22 28	22	28 36	28	36 45	36	45 56	45	56 70	56	70 90	70	90 110	90 140	110
Cushioning	Lf front	21	17	23	17	26	25	28	27	28	27	27	29	35	27	28	25	34	34	49	34
length [mm]	Lf rear	1	3	1	5	2	.7	2	:8	3	0	3	2	3	2	3	2	4	1	5	6
Vmax [m/s]		1	1		1		1		1	0	,8	0	,8	0,	,6	0	,6	0	,5	0	,5

Oil ports features are threaded according to ISO 1179-1 (GAS standards) with counterbo-re dimension D type N (narrow). Oil ports with SAE 3000 flanges are available


on request, contact our technical office.

Note to table:

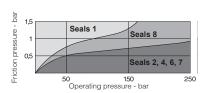
(1) For mounting styles C, D, E, N, P, S the dimension PJ2 reported in section 3 is modified, contact our technical office.

Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke.

13 POSITION COMBINATION FOR OIL PORTS AND CUSHIONING ADJUSTMENTS

FRONT HEAD: **B*** = oil port position; **E*** = cushioning adjustment position REAR HEAD: **X*** = oil port position; **Z*** = cushioning adjustment position The table below shows all the available configurations for the oil port and cushioning adjustment positions. Bolt characters identify the standard positions Each configuration for the front head can be variously combined with any one of the rear head. Cushioning adjustment positions **E***, **Z*** have to be entered only if adjustable cushioning are selected.

Example of model code: CK-50/22 *0100-S301 - A - **B2E3X1Z4**


	1		Mounting style				C, D,	S, L				E	E	(3	ŀ	1		N, P		Т,	V, W	, X, Y	, z
₫		FRONT	Oil port side	В	1	1	2	1	2	4	3	1	1	1	ı	1	2	1	1	2•	1	1	2	3
4-	((()) - 2	HEAD	Cushioning adjustment side E	E	3	2	3	4	4	3	1	2	4	3	3	3	4	3	2 ●	3	3	4	3	1
(€	• •	REAR	Oil port side	ĸ	1	1	2	1	2	4	3	1	1	1	2	•	1	1	1	2•	1	1	2	3
(a)	3	HEAD	Cushioning adjustment side 2	z	3	2	3	4	4	3	1	2	4	3	4	;	3	3	2 •	3	3	4	3	1

• Not available for bores 25 and 32. Dimensions **PJ, PJ2, Y** and **Y1** change compared to the values in section 3, contact our technical office (a) Front view rod side (rod n°1 for double rods)

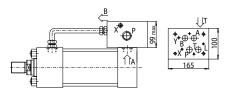
Contact our technical office for combinations not included in the table.

14 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015**. When single acting seals are selected (types **6** and **7**), the not pressurized cylinder's chamber must When single acting seals are selected (types & and Y), the hot pressures to the tank. Special sealing system for low temperatures, high frequencies (up to 20 Hz), long working life and heavy duty are available, see tab. TB020. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section . Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition. See section . For fluid requirements.

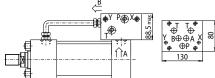
Sealing	Material	Features	Max	Fluid	Fluide competibility	ISO Standar	ds for seals
system	Waterial	reatures	speed [m/s]	temperature range	Fluids compatibility	Piston	Rod
1	NBR + POLYURETHANE	high static and dynamic sealing	0.5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 5597/1
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U,HFD-R	ISO 7425/1	ISO 7425/2
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
6 - 7	NBR + PTFE	very low friction single acting - pushing/pulling	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
8	PTFE + NBR + POLYURETHANE	low friction	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2

15 INCORPORATED SUBPLATE

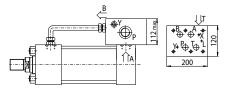

CK cylinders with oil ports positions 1 can be supplied with ISO (size 06, 10, 16 and 25) incorporated subplates for mounting of valves directly on the cylinder.

-06 ſια

10 = subplate with mounting surface 4401-03-02-0-05 (size 06) Oil ports P and T = G 3/8


For bores from 40 to 200 and strokes longer than 100 mm

For shorter strokes, the cylinder must be provided with suitable spacer



 ${\bf 30}=$ subplate with mounting surface 4401-07-07-0-05 (size 16) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 80 to 200 and strokes longer than 150 mm

For shorter strokes, the cylinder must be provided with suitable spacer

 $\bf 20=$ subplate with mounting surface 4401-05-05-0-05 (size 10) Oil ports P and T = G 3/4; X and Y = G 1/4 For bores from 40 to 200 and strokes longer than 150 mm For shorter strokes, the cylinder must be provided with suitable spacer

40 = subplate with mounting surface 4401-08-08-0-05 (size 25) Oil ports P and T = G 1; L, X and Y = G 1/4

For bores from 125 to 200 and strokes longer than 150 mm For shorter strokes, the cylinder must be provided with suitable spacer

Note: for the choice of suitable spacer see section [5]. The addition of spacer length and working stroke must be at least equal or upper than the minimum stroke indicated above, see the following example Subplate 20; working stroke = 70 mm; min. stroke = 150 mm → select spacer 4 (lenght = 100mm)

16 AIR BLEEDS

CODES: A = front air bleed; W = rear air bleed

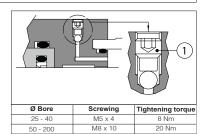
The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely. Air bleeds are usually positioned on the opposite side of the oil port except for front heads of mounting styles **N**, **G** (on side 3), rear heads of mounting styles **C**, **D**, **S**, **H**, **P** (on side 3) and for heads of mounting styles **E** (on side 2), see section [3]. For cylinders with adjustable cushioning the air bleeds are positioned on the same side of the cushioning adjustment screw. For Servocylinders, cylinders with incorporated subplates or proximity sensors, air bleeds are supplied as standard and they must not be entered in the model code. For cylinders with the model code. For cylinders with the model code. For cylinders with the model code. ders with proximity sensors, air bleeds A, W or AW are supplied respectively depending on the selected sensors R, S or RS. For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.

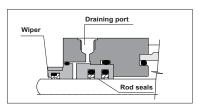
17 DRAINING

CODE: L = rod side draining

The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for servocylinders. The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side) and it can be supplied only with sealing system: 1, 2, 4, 7 and 8. It is recommended to connect the draining port to the tank without backpressure. Draining port is G1/8.

18 PROXIMITY SENSORS


CODES: R = front sensor; S = rear sensor


Proximity sensors functioning is based on the variation of the magnetic field, generated by the sen-Proximity sensors functioning is based on the variation of the magnetic field, generated by the sensor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off) of the sensors. The distance from the mechanical stroke-end of the cylinder, at which occurs the switching of the sensor's electrical contact, can be adjusted between 1 and 3 mm. For their regulation, it is necessary to position the rod where it is desired to obtain the contact switching and rotate the sensor until its LED switch-on (commutation occurred). The sensors tightening torque must be lower than 40 N/m to avoid damages. The sensors must always be coupled with fast adjustable cushioning, see section ☑ to avoid pressure peaks on stroke-end. They are positioned on side 4 and they can be coupled with the standard oil ports and cushioning adjustments positions in bolt characters, see section ☑. The coupling of the proximity sensors with the stroke-end cushioning characters, see section . The coupling of the proximity sensors with the stroke-end cushioning imposes particular executions with limitation of the damping masses and/or speeds compared to the executions with standard cushioning.

R, S options not available for cylinders with bores smaller then 40 mm.

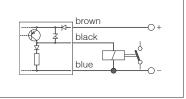
R option not available for G and N mounting styles; S option not available for P and H mounting styles.

Ø Bore	40	50	63	80	100	125	160	200
DB max	60	58	71	71	71	68	68	63
DC	50	67	62	67	62	64	63	63
=======================================		Done S				Connector ca	able lenght: 5m	1

SENSORS TECHNICAL DATA

The proximity sensors are inductive type, they supply a "NO" (Normally Open) output signal which status corresponds to the rod position:

R, S = close contact = 24 Volt at output contacts = rod positioned at stroke ends
 R, S = open contact = 0 Volt at output contacts


= rod not positioned at stroke ends

-20 +70°C Ambient temperature Nominal voltage 24 VDC Operating voltage 10...30 VDC 200 mA Max load Version PNP Output type NO Repeatability <5% Hysteresis <15%

Max pressure 25 MPa (250 bar)

IP68

16

SIL 19

IEC61508 compliance with IEC 61508: 2010

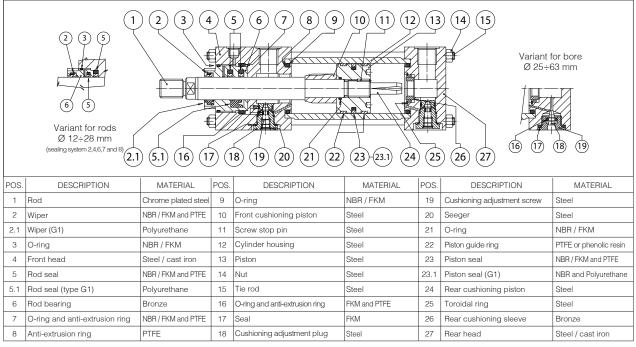
CK meets the requirements of:

- SC3 (systematic capability)
 max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
 max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)

B137 CYLINDERS

Protection

20 FLUID REQUIREMENTS


Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

21 CYLINDERS MASSES [kg] (tolerance ± 5%)

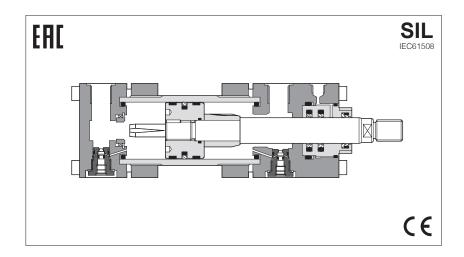
		X	R STYLES , Z le rod	X,	R STYLES , Z le rod				a	AI ccording		AL MASS ng styles		ns			
Ø Bore [mm]	Ø Rod [mm]	Stroke 100 mm	Each added 100 mm	Stroke 100 mm	Each added 100 mm	Style C	Style D	Style E	Style G	Style L	Style N	Style P	Style S	Style V Y	Style W	Each cushio- ning	Each 50 mm spacer
0.5	12	1,65	0,47	1,95	0,56	0.00	0.000	0.00	0.00	0.40	0.40	0.40	0.00	0.04	0.00	0.00	0.00
25	18	1,80	0,58	2,40	0,78	0,08	0,068	0,22	-0,02	0,19	0,18	0,18	0,08	0,01	0,02	0,03	0,38
	14	2,23	0,49	2,69	0,61	0.47	0.45	0.04	0.00		0.40	0.40					0.50
32	22	2,51	0,67	3,21	0,97	0,17	0,15	0,24	0,02	0,29	0,18	0,18	0,14	0,02	0,04	0,04	0,50
	18	4,90	0,79	6,78	0,99												
40	22	5,15	0,89	7,19	1,19	0,27	0,22	0,256	0,08	0,78	0,76	0,76	0,57	0,06	0,12	0,07	0,79
	28	5,40	1,07	7,60	1,55												
	22	6,40	1,18	7,85	1,48												
50	28	6,59	1,37	8,23	1,85	0,84	0,74	0,52	0,28	1,46	1,10	1,10	0,31	0,16	0,32	0,13	1,15
	36	7,20	1,68	9,45	2,48												
	28	8,70	1,62	11,08	2,10												
63	36	9,13	1,93	11,94	2,73	0,52	0,41	1,54	0,26	2,17	1,34	1,34	0,46	0,16	0,32	0,25	1,68
	45	9,80	2,39	13,64	3,64												
	36	17,00	2,96	20,45	3,76												
80	45	17,76	3,46	21,97	4,71	1,25	0,79	1,23	1,63	3,67	2,39	2,39	0,86	0,34	0,68	0,40	2,85
	56	18,10	4,09	23,90	6,02												
	45	23,80	3,90	29,85	5,15												
100	56	24,70	4,60	32,01	6,53	3,05	2,31	1,63	1,00	5,46	2,94	2,94	1,77	0,34	0,68	0,60	4,15
	70	26,00	5,68	35,20	8,70												
	56	43,60	6,15	53,60	8,08												
125	70	45,24	7,25	58,55	10,27	3,95	2,87	4,60	1,50	8,60	5,65	5,65	4,65	0,90	1,80	1,15	6,61
	90	49,62	9,21	72,88	14,20												
	70	74,55	8,75	85,96	11,77												
160	90	79,31	10,72	96,08	15,71	8,33	7,63	7,56	4,66	16,58	7,97	7,97	8,21	1,50	3,00	1,85	10,75
	110	83,90	13,18	106,20	20,64												
	90	123,60	12,50	136,52	17,49												
200	110	130,39	14,52	142,65	21,98	10,00	13,82	14,6	9,86	37,00	16,78	16,82	14,80	2,50	5,00	2,50	15,86
	140	137,19	19,14	148,78	31,22												

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

22 CYLINDER SECTION

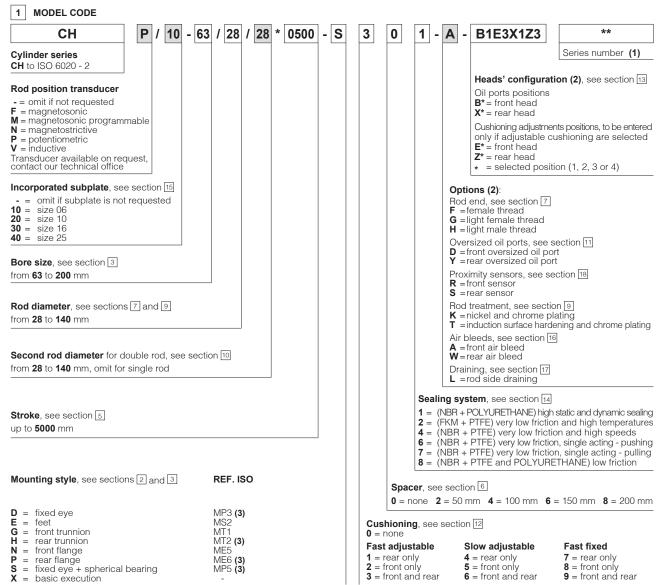
23 SPARE PARTS - SEE TABLE SP-B137

Example for seals spare parts code


	G	8	_	СК	-	50	1	22	1	22
Sealing system										Second rod diameter
Cylinder series										for double rod [mm] Omit if not requested
Bore size [mm]								Rod diame	ter [mm]	

11/23

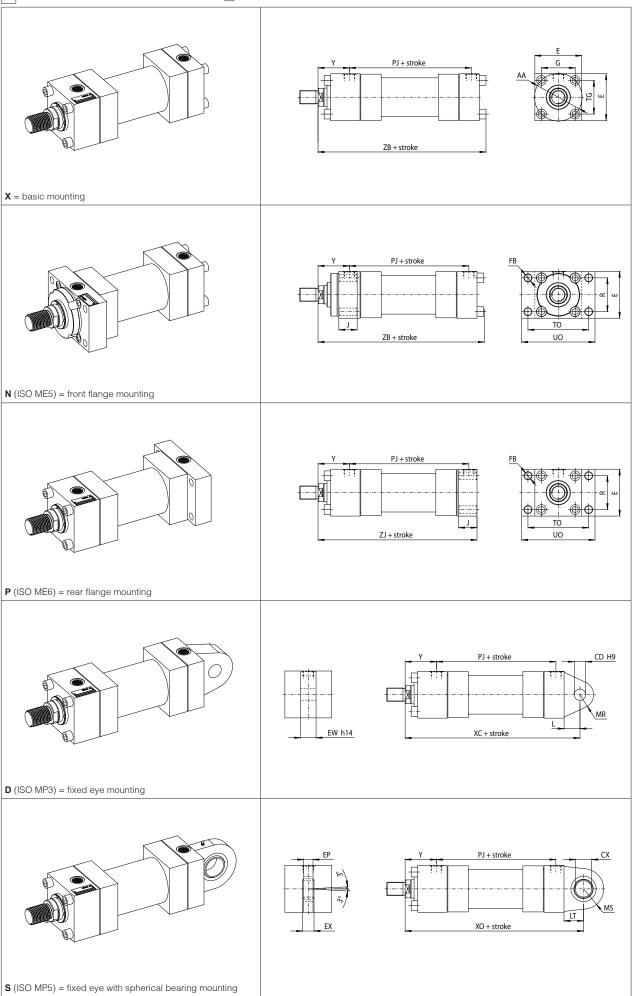
Hydraulic cylinders type CH - square heads with counterflanges

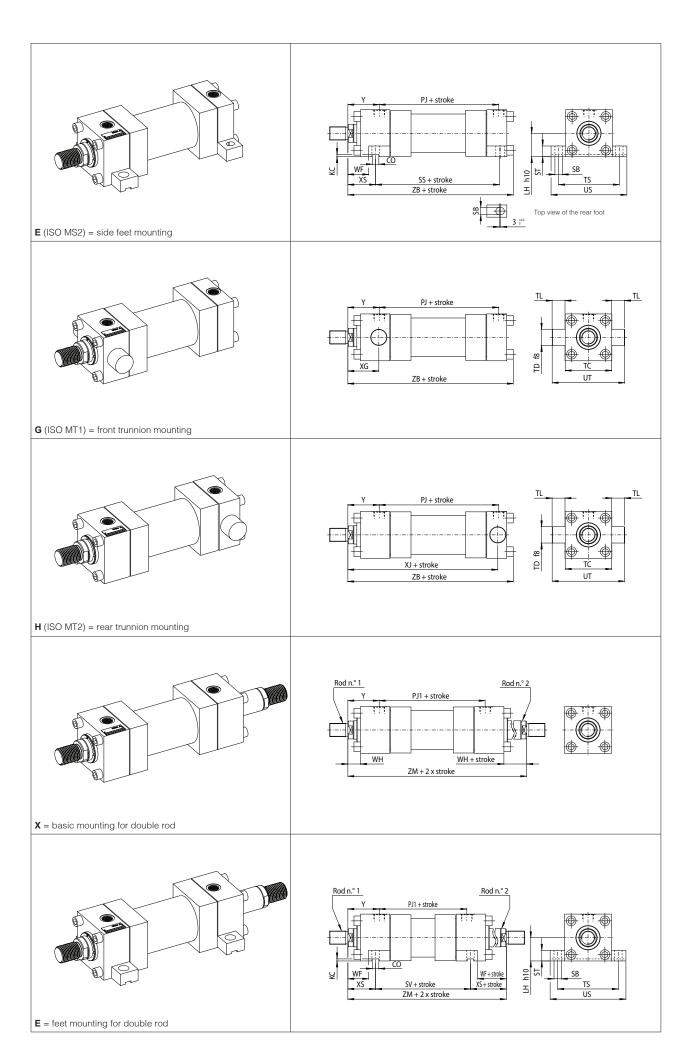

to ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

CH cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.

- Bore sizes from 63 to 200 mm
- · Adjustable or fixed cushioning
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B800
- CH cylinders are SIL compliance with IEC 61508 (TÜV certified), certification on request

For cylinder's choice and sizing criteria see tab. B015


(1) For spare parts request indicate the series number printed on the nameplate only for series < 30


(2) To be entered in alphabetical order

(3) Not available for double rod

B140 CYLINDERS

2 MOUNTING STYLE - for dimensions see section 3

3 INSTALLATION DIMENSION [mm] - see figures in section 2

	Ø Bore	63	80	100	125	160	200
	standard	28	36	45	56	70	90
Ø Rod	intermediate	36	45	56	70	90	110
Ø	differential	45	56	70	90	110	140
	AA	91	117	137	178	219	269
	CD H9	20	28	36	45	56	70
	CO N9	16	16	16	20	30	40
	value	30	40	50	60	80	100
сх		30		50		,015	
	tolerance	00:15	0 -0,012	100.0			0 -0,02
	E (1)	90±1,5	115±1,5	130±2	165±2	205±2	245±2
	EP max	19	23	30	38	47	57
	EW h14	30	40	50	60	70	80
	EX	22 0/-0,12	28 0/-0,12	35 0/-0,12	44 0/-0,15	55 0/-0,15	70 0/-0,2
	FB H13	14	18	18	22	26	33
	J ref	38	45	45	58	58	76
	L min	32	39	54	57	63	82
	LH h10	44	57	63	82	101	122
	LT min	38	48	58	72	92	116
	KC min	4,5	5	6	6	8	8
	MR max	29	34	50	53	59	78
	MS max	40	50	62	80	100	120
	PJ (2) ±1,5 (3)	80	93	101	117	130	165
	PJ1 ±1,5 (3)	81	92	101	117	130	160
	PJ2 (2) ±1,5 (3)	80	93	99	121	143	167
	R js13	65	83	97	126	155	190
	SB H13	18	18	26	26	33	39
	SS ±1,25 (3)	85	104	101	130	129	171
	ST js13	26	26	32	32	38	44
	SV ±1,25 (3)	93	110	107	131	130	172
	TC h14	89	114	127	165	203	241
	TD f8	32	40	50	63	80	100
	TG js13	64,3	82,7	96,9	125,9	154,9	190,2
	TL js13	25	32	40	50	63	80
	TO js13	117	149	162	208	253	300
	TS js13	124	149	172	210	260	311
	UO max	145	180	200	250	300	360
	US max	161	186	216	254	318	381
	UT ref	139	178	207	265	329	401
	XC ±1,5 (3)	200	229	257	289	308	381
	XG ±2 (3)	70	76	71	75	75	85
	XJ ±1,5 (3)	149	168	187	209	230	276
	XO ±1,5 (3)	206	238	261	304	337	415
	XS ±2 (3)	65	68	79	79	86	92
	Y (2) ±2 (3)	71	77	82	86	86	98
	Y1 (2) ±2 (3)	70	75,5	83	84	79,5	97
	ZB max	185	212	225	260	279	336
	ZJ ±1 (3)	168	190	203	232	245	299
	ZM ±2 (3)	223	246	265	289	302	356
		<u> </u>					<u> </u>

NOTES TO TABLE 3

(1) E - If not otherwise specified in the figures in section 2 this value is the front and rear square heads dimension for all the mounting styles (see figure below)



- (2) When oversized oil ports are selected (see section [1] and [3] for dimensions and positions) dimensions PJ and Y are respectively modified into PJ2 and Y1
- (3) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is given by the max stroke tolerance in section 5

4 SCREWS TIGHTENING TORQUES

Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9.

Ø Bore	63	80	100	125	160	200
MT [Nm]	70	160	160	460	820	1160
Screw	M12	M16	M16	M22	M27	M30

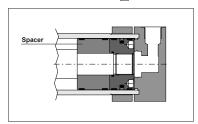
5 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end. The table below shows the minimum stroke depending to the bore.

Minimum stroke [mm]

Ø Bore	63	80	100	125	160	200
Minimum stroke	55	70	70	75	70	85

Maximum stroke:

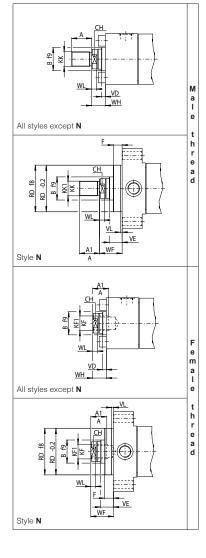

• 5000 mm

Stroke tolerances:

- 0 +2 mm for strokes up to 1250 mm
 0 +5 mm for strokes from 1250 to 3150 mm
 0 +8 mm for strokes over 3150 mm

6 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from over-loads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke dependent dimensions in section 3.



RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer code	2	4	6	8
Length	50	100	150	200

7 ROD END DIMENSIONS [mm]

		Male t	hread	Female	thread												
Bore	Rod	KK	KK1 (option H)	KF (option F)	KF1 (option G)	A (KK or	A1 (KK1 or	В	СН	F	RD	VD	VE	VL	WF	WH	WL
Ø	0	6g	6g	6H	6H		KF1) (1)	f9	h14	max	f8		max	min	±2	±2	min
	28	M20x1,5	NA	M20x1,5	NA	28	NA	42	22	16	75	13	29	4	48	32	7
63	36	M27x2	M20x1,5	M27x2	NA	36	NA	50	30	16	88	13	29	4	48	32	8
	45	M33x2	M20x1,5	M33x2	M20x1,5	45	28	60	39	16	88	13	29	4	48	32	10
	36	M27x2	NA	M27x2	NA	36	NA	50	30	20	82	9	29	4	51	31	8
80	45	M33x2	M27x2	M33x2	NA	45	NA	60	39	20	105	9	29	4	51	31	10
	56	M42x2	M27x2	M42x2	M27x2	56	36	72	48	20	105	9	29	4	51	31	10
	45	M33x2	NA	M33x2	NA	45	NA	60	39	22	92	10	32	5	57	35	10
100	56	M42x2	M33x2	M42x2	NA	56	NA	72	48	22	125	10	32	5	57	35	10
	70	M48x2	M33x2	M48x2	M33x2	63	45	88	62	22	125	10	32	5	57	35	10
	56	M42x2	NA	M42x2	NA	56	NA	72	48	22	105	10	32	5	57	35	10
125	70	M48x2	M42x2	M48x2	NA	63	NA	88	62	22	150	7	29	5	57	35	10
	90	M64x3	M42x2	M64x3	M42x2	85	56	108	80	22	150	7	29	5	57	35	15
	70	M48x2	NA	M48x2	NA	63	NA	88	62	25	125	7	32	5	57	32	10
160	90	M64x3	M48x2	M64x3	NA	85	NA	108	80	25	170	7	32	5	57	32	15
	110	M80x3	M48x2	M80x3	M48x2	95	63	133	100	25	170	7	32	5	57	32	15
	90	M64x3	NA	M64x3	NA	85	NA	108	80	25	150	7	32	5	57	32	15
200	110	M80x3	M64x3	M80x3	NA	95	NA	133	100	25	210	7	32	5	57	32	15
	140	M100x3	M64x3	M100x3	M64x3	112	85	163	128	25	210	7	32	5	57	32	15
					l												\Box

Notes: (1) Dimensions A and A1 are according to ISO 4395 short type. Tolerances: max for male thread; min for female thread

8 CYLINDER'S HOUSING FEATURES

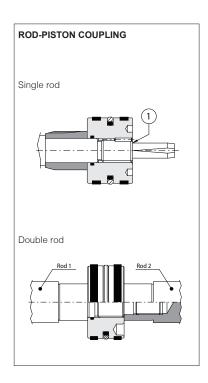
The cylinder's housings are made in "cold drawn and stressed steel"; the internal surfaces are lapped; diameter tolerance H8, roughness Ra \leq 0,25 μm .

9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerance f7, roughness Ra \leq 0,25 μ m. Corrosion resistance of 200h in neutral spray to ISO 9227 NSS.

a Dad	Material	Rs min	Chr	ome
ø Rod	Waterial	[N/mm²]	min thickness [mm]	hardness [HV]
28÷90	hardened and tempered alloy-steel	700	0.020	850-1150
110÷140	alloy steel□	450	0,020	030-1130

Rod diameters from 28 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table [7]. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing. **Contact our technical office** in case of heavy duty applications.


Rod corrosion resistance and hardness can be improved selecting the options ${\bf K}$ and ${\bf T}$ (option K affects the strength of standard rod, see tab. B015 for the calculation of the expected rod fatigue life): **K** = Nickel and chrome-plating (for rods up to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

- 500 h in acetic acid salt spray to ISO 9227 AASS1000 h in neutral spray to ISO 9227 NSS
- T = Induction surface hardening and chrome plating
- 56-60 HRC (613-697 HV) hardness

10 DOUBLE ROD

Double rod cylinders ensure the same pushing and pulling areas, thus the same speeds and forces. Rod2 (see figure at side) is screwed into the male thread of Rod1, consequently the Rod2 is weaker than the other and it is strongly recommended to use this one only to compensate the areas; the stronger rod is identified by the number '1' stamped on its end. For double rod cylinders, rod end dimensions indicated in section $\boxed{7}$ are valid for both the rods.

B140

22

CYLINDERS

11 OIL PORTS AND ROD SPEEDS

The fluid speed in pipings connected to the cylinder oil ports should not exceed 6 m/s in order to minimize the turbolence flow, the pressure drop and water hammer. The table below shows the max recommended rod speed relative to 6 m/s flow velocity.

In high dynamic systems the rod can reach even higher speeds (after a careful check of dampable masses, **see tab. B015**): in these cases it is recommended to use piping's diameters larger than the cylinder oil ports and to introduce proper reductions just near the cylinder oil ports.

		Stan	dard oil ports		Oversized oil ports D, Y options							
Ø Bore	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]	D [mm]	EE 6g	Internal pipe Ø[mm] min	Rod speed V [m/s]				
63	29	G 1/2	14	0,30	36	G 3/4	16	0,39				
80	36	G 3/4	16	0,18	42	G 1	20	0,37				
100	36	G 3/4	16	0,15	42	G 1	20	0,24				
125	42	G 1	20	0,15	52	G 1 1/4	30	0,34				
160	42	G 1	20	0,09	52 (1)	G 1 1/4	30	0,21				
200	52	G 1 1/4	30	0,13	58	G 1 1/2	40	0,24				

Note to table: (1) For mounting styles D, E, N, P, S the dimension **PJ2** reported in section 3 is

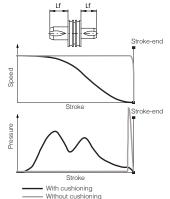
Oil ports features are threaded according to ISO 1179-1 (GAS standards) with counterbo-re dimension D type N (narrow). Oil ports with SAE 3000 flanges are available

on request, contact our technical office.

modified, contact our technical office.

12 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). Two types of cushioning are available depending to the rod speed V:


Slow version for V ≤ 0.5 • V_{max} for $V > 0.5 \cdot V_{max}$ Fast version

See the table below for V_{max} values and **tab. B015** for the max damping energy. When fast or slow adjustable versions are selected, the cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect).

In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore	Э	63		8	0	100		1:	25	16	60	200	
Ø Rod	l	28	36 45	36	45 56	45	56 70	56	70 90	70	90 110	90 140	110
Cushioning	Lf front	28	27	27	29	35	27	28	25	34	34	49	34
length [mm]	Lf rear	3	0	3	2	3	32	3	2	4	1	5	0
Vmax [m/s]		0,	,8	0	,8	0,	6	0,	6	0	,5	0	,5

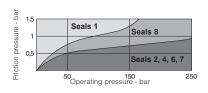
Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke.

13 POSITION COMBINATION FOR OIL PORTS AND CUSHIONING ADJUSTMENTS

FRONT HEAD: **B*** = oil port position; **E*** = cushioning adjustment position REAR HEAD: **X*** = oil port position; **Z*** = cushioning adjustment position The table below shows all the available configurations for the oil port and cushioning adjustment positions. Bolt characters identify the standard positions. Each configuration for the front head can be variously combined with any one of the rear head. Cushioning adjustment positions **É***, **Z*** have to be entered only if adjustable cushioning are selected.

Example of model code: CH-63/28 *0100-S301 - A - B2E3X1Z4

	1		Mounting style			D,	S				E	=	(3	H	1		N, P)	(
		FRONT	Oil port side B	1	1	2	1	2	4	3	1	1		ı	1	2	1	1	2 ●	1	1	2	3
	4-(HEAD	Cushioning adjustment side E	3	2	3	4	4	3	1	2	4	:	3	3	4	3	2	3	3	4	3	1
	\oplus \oplus	REAR	Oil port side X	1	1	2	1	2	4	3	1	1	1	2	1	I	1	1	2 ●	1	1	2	3
((a) 3	HEAD	Cushioning adjustment side Z	3	2	3	4	4	3	1	2	4	3	4	3	3	3	2	3	3	4	3	1


• Dimensions **PJ, PJ2, Y** and **Y1** change compared to the values in section 3, contact our technical office (a) Front view rod side (rod n°1 for double rods)

Contact our technical office for combinations not included in the table.

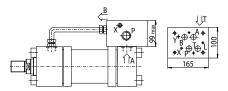
14 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015**.

When single acting seals are selected (types 6 and 7), the not pressurized cylinder's chamber must be connected to the tank. Special sealing system for low temperatures, high frequencies (up to 20 Hz), long working life and heavy duty are available, see tab. TB020. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section 2. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition. See section 20 for fluid requirements

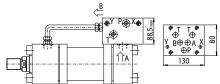
Sealing	Material	Features	Max speed	Fluid temperature	Fluids compatibility	ISO Standar	ds for seals
system	Material	reatures	[m/s]	range	ridius companionity	Piston	Rod
1	NBR + POLYURETHANE	high static and dynamic sealing	0.5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 5597/1
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U,HFD-R	ISO 7425/1	ISO 7425/2
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
6 - 7	NBR + PTFE	very low friction single acting - pushing/pulling	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2
8	PTFE + NBR + POLYURETHANE	low friction	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2

15 INCORPORATED SUBPLATE

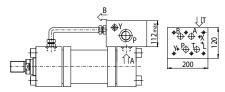

CH cylinders with oil ports positions 1 can be supplied with ISO (size 06, 10, 16 and 25) incorporated subplates for mounting of valves directly on the cylinder.

-00

10 = subplate with mounting surface 4401-03-02-0-05 (size 06) Oil ports P and T = G 3/8


For bores from 63 to 200 and strokes longer than 100 mm

For shorter strokes, the cylinder must be provided with suitable spacer



 ${\bf 30}=$ subplate with mounting surface 4401-07-07-0-05 (size 16) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 80 to 200 and strokes longer than 150 mm

For shorter strokes, the cylinder must be provided with suitable spacer

 $\bf 20 = {\rm subplate}$ with mounting surface 4401-05-05-0-05 (size 10) Oil ports P and T = G 3/4; X and Y = G 1/4 For bores from 63 to 200 and strokes longer than 150 mm For shorter strokes, the cylinder must be provided with suitable spacer

40 = subplate with mounting surface 4401-08-08-0-05 (size 25) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 125 to 200 and strokes longer than 150 mm

For shorter strokes, the cylinder must be provided with suitable spacer

Note: for the choice of suitable spacer see section . The addition of spacer length and working stroke must be at least equal or upper than the minimum stroke indicated above, see the following example:

Subplate 20; working stroke = 70 mm; min. stroke = 150 mm

select spacer 4 (length = 100mm)

16 AIR BLEEDS

CODES: A = front air bleed; W = rear air bleed

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely. Air bleeds are usually positioned on the opposite side of the oil port except for front heads of mounting styles \mathbf{N} , \mathbf{G} (on side 3), rear heads of mounting styles \mathbf{D} , \mathbf{S} , \mathbf{H} , \mathbf{P} (on side 3) and for heads of mounting style \mathbf{E} (on side 2), see section \mathbf{B} . For cylinders with adjustable cushioning the air bleeds are positioned on the same side of the cushioning adjustment screw. For Servocylinders, cylinders with incorporated subplates or proximity sensors, air bleeds are supplied as standard and they must not be entered in the model code. For cylinders with proximity sensors, air bleeds A, W or AW are supplied respectively depending on the selected sensors R, S or RS. For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.

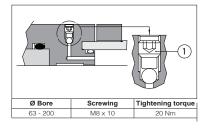
17 DRAINING

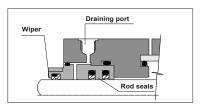
CODE: **L** = rod side draining

The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side) and it can be supplied only with sealing system: 1, 2, 4, 7 and 8. It is recommended to connect the draining port to the tank without backpressure. Draining port is G1/8.

18 PROXIMITY SENSORS


CODES: **R** = front sensor; **S** = rear sensor

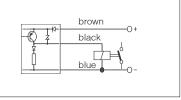

Proximity sensors functioning is based on the variation of the magnetic field, generated by the sensor sor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off) of the sensors. The distance from the mechanical stroke-end of the cylinder, at which occurs the switching of the sensor's electrical contact, can be adjusted between 1 and 3 mm. For their regulation, it is necessary to position the rod where it is desired to obtain the contact switching and rotate the sensor until its LED switch-on (commutation occurred). The sensors tightening torque must be lower than 40 N/m to avoid damages. The sensors must always be coupled with fast adjustable cushioning, see section [2] to avoid pressure peaks on stroke-end. They are positioned on side 4 and they can be coupled with the standard oil ports and cushioning adjustaments positions in bolt characters, see section [3]. The coupling of the proximity sensors with the stroke-end cushioning imposes particular executions with limitation of the damping masses and/or speeds compared to the executions with standard cushioning.

Limitations

R option not available for G and N mounting styles; S option not available for P and H mounting styles.

	_	5 ,	, - 1			5 ,
Ø Bore	63	80	100	125	160	200
DB max	71	71	71	68	68	63
DC	62	67	62	64	63	63
80	De per	a la	2		Connector cable	e lenght: 5m

SENSORS TECHNICAL DATA


The proximity sensors are inductive type, they supply a "NO" (Normally Open) output signal which status corresponds to the rod position:

- R, S = close contact = 24 Volt at output contacts = rod positioned at stroke ends
- R, S = open contact = 0 Volt at output contacts

= rod not positioned at stroke ends temperature -20 +70°C

Ambient temperature Nominal voltage 24 VDC 10...30 VDC Operating voltage Max load 200 mA Version PNP Output type NO Repeatability <5% <15% Hysteresis Protection IP68

25 MPa (250 bar) Max pressure

SIL IEC61508

compliance with IEC 61508: 2010

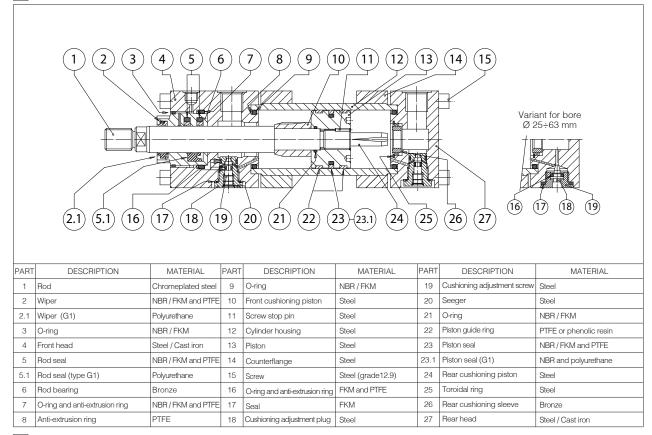
CH meets the requirements of:

- SC3 (systematic capability)
- max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied) max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)

B140

CYLINDERS

20 FLUID REQUIREMENTS


Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

21 CYLINDERS MASSES [kg] (tolerance ± 5%)

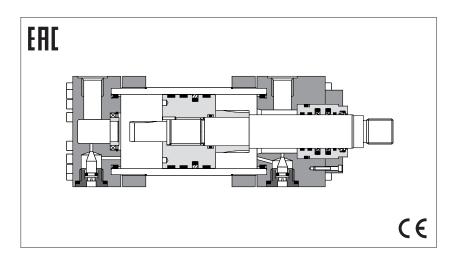
			R STYLES , Z le rod	MASS FOR STYLES X, Z Double rod		ADDITIONAL MASSES according to mounting styles and options											
Ø Bore [mm]	Ø Rod [mm]	Stroke 100 mm	Each added 100 mm	Stroke 100 mm	Each added 100 mm	Style D	Style E	Style G	Style N	Style P	Style S	Each cushioning	Each 50 mm spacer				
	28	9,65	1,54	12,03	2,03												
63	36	10,17	1,85	12,98	2,65	0,41	1,54	0,26	1,34	1,34	0,46	0,25	1,68				
	45	10,84	2,31	14,68	3,56												
	36	19,24	2,82	22,69	3,62												
80	45	20,00	3,32	24,21	4,57	0,79	1,23	1,63	2,39	2,39	0,86	0,40	2,85				
	56	20,34	3,95	26,14	5,88												
	45	25,89	3,76	31,94	5,01												
100	56	26,79	4,46	34,10	6,39	2,31	1,63	1,00	2,94	2,94	1,77	0,60	4,15				
	70	28,09	5,54	37,29	8,56												
	56	48,38	5,88	58,38	7,81												
125	70	50,02	6,98	63,33	10,00	2,87	4,60	1,50	5,65	5,65	4,65	1,15	6,61				
	90	54,40	8,94	77,66	13,93												
	70	80,74	8,34	92,15	11,36												
160	90	85,50	10,31	102,27	15,31	7,63	7,56	4,66	7,97	7,97	8,21	1,85	10,75				
	110	90,09	12,77	112,39	20,23												
	90	135,62	12,00	148,54	17,00												
200	110	142,41	14,01	154,67	21,47	13,82	14,60	9,86	16,78	16,82	14,80	2,50	15,86				
	140	149,21	18,63	160,80	30,72												

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

22 CYLINDER SECTION

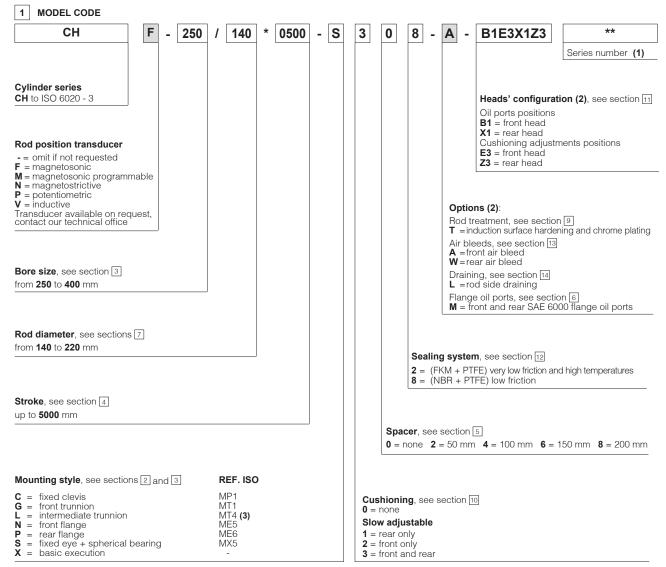
23 SPARE PARTS - SEE TABLE SP-B140

Example for seals spare parts code


	G	8	 СК	-	63	1	28] /	28
Sealing system									Second rod diameter for double rod [mm]
Cylinder series									Omit if not requested
Bore size [mm]							Rod diame	eter [mm]	

11/23 25

Hydraulic cylinders type CH - big bore sizes


to ISO 6020-3 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

CH big bore cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.

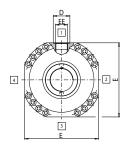
- Bore sizes from 250 to 400 mm
- Adjustable cushioning
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B800

For cylinder's choice and sizing criteria see tab. B015

- (1) For spare parts request indicate the series number printed on the nameplate only for series < 20
- (2) To be entered in alphabetical order
- (3) XV dimension must be indicated in the model code, see section 3

B160 CYLINDERS

L (ISO MT4) = intermediate trunnion mounting


XV ZB + stroke

3 INSTALLATION DIMENSIONS [mm] - see figures in section 2

Ø Bore	250	320	400
Ø Rod	140	180	220
B f9 (4)	163	205	245
CB A13	90	110	140
CD H9	90	110	140
CX H7	125	160	200
D (1)	58	58	69
E (2) max	320	400	500
EE (1)	G 1 1/2	G 1 1/2	G 2
EP	102	130	162
EX	125	160	200
F max (4)	75	75	75
FB	30	36	45
L min	125	152	195
LT min	160	200	250
ME ref	94	114	140
MR max	100	120	160
MS max	160	200	250
MT (3) [Nm]	350	680	1060
PJ ±1,5 (6)	218	252	320
R js13	235	283	340
RD f8 (4)	280	325	380
TC h14	320	400	500
TD f8	125	160	200
TF	380	472	588
TL js13	100	125	160
TM h14	380	485	605
UB	180	220	280
UG max	445	549	683
UM ref	580	735	925
UT ref	520	650	820
UW max	480	600	750
VD (4)	8	8	8
VE max (4)	83	83	83
WF ±2	110	110	110
XC ±1,5 (6)	545	627	775
XG ±2 (6)	178	195	215
XO ±1,5 (6)	580	675	830
style L	30	35	26
(V (5) minimun stroke	275	312	358
2 (6) max	255+stroke	273+stroke	332+stroke
Y ±2 (6)	157	167	180
Y1 ±2 (6)	199	223	260
ZB max (6)	460	520	625
ZB1 max (6)	505	580	685
ZJ ±1 (6)	420	475	580

NOTES TO TABLE 3

(1) **D, EE** - Oil ports and drain are threaded according to GAS standard with counterbore dimension **D** according to ISO 1179-1 (see figure below)

- (2) E If not otherwise specified in the figures in section 2, this value is the front and rear round heads dimension for all the mounting styles (see figure above)
- (3) MT Screws tightening torque. Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9
- (4) See figures in section [7]
- (5) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table.The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CH - 250 / 140 * 0500 - L308 - A - B1E3X1Z3 **XV = 300**

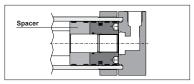
(6) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is given by the max stroke tolerance in section 4

4 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end. The table below shows the minimum stroke depending to the bore.

Minimum stroke [mm]

Ø Bore	250	320	400
Minimum stroke	65	70	40

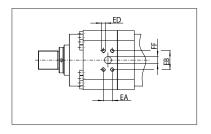

Maximum stroke:

• 5000 mm

- Stroke tolerances:
 0 +2 mm for strokes up to 1250 mm
- 0 +5 mm for strokes from 1250 to 3150 mm
 0 +8 mm for strokes over 3150 mm

5 SPACER

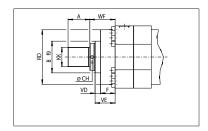
For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from over-loads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke dependent dimensions in section 3


RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer code	2	4	6	8
Length	50	100	150	200

SAE 6000 FLANGE OIL PORTS(*) - DIMENSIONS TO ISO 6162-2 [mm]

Ø Bore	DN	EA ±0,25	EB ±0,25	ED 6g	FF 0 / -1,5
250	38	36,5	79,3	M16	38
320	00	00,0	70,0	WITO	00
400	51	44,5	96,8	M20	51



7 ROD END DIMENSIONS [mm]

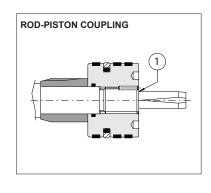
Ø Bore	250	320	400
Ø Rod	140	180	220
A	112	125	160
CH (*)	15	15	15
кк	M100x3	M125x4	M160x4

(*) n°2 holes per key

Note: for B, F, RD, VD, VE and WF dimensions see section 3

8 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "hot rolled steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra \leq 0,25 μ m.


9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7; roughness Ra \leq 0,25 μ m. Corrosion resistance of 200h in neutral spray to ISO 9227 NSS.

ø Rod	Material	Rs min [N/mm²]	Chro min thickness [mm]	ome hardness [HV]
140	alloy-steel	450	0,020	850-1150
180÷220	carbon steel□	360	0.045	030-1130

The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table $\boxed{7}$. See **tab. B015** for the calculation of the expected rod fatigue life. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin 1 avoids the piston unscrewing. **Contact our technical office** in case of heavy duty applications.

Rod hardness can be improved selecting the option T: T = Induction surface hardening and chrome plating (only for rod 140) \cdot 56-60 HRC (613-697 HV) hardness

10 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side).

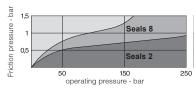
The cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect). In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore	Ø Bore 250		320	400	
Ø Rod	ı	140	180	220	
Cushioning length	Lf front	50	60	70	
[mm]	Lf rear	56	64	64	

POSITION OF THE OIL PORTS AND CUSHIONING ADJUSTMENTS

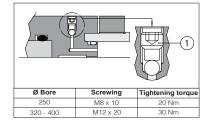
FRONT HEAD: **B1** = oil port position; **E3** = cushioning adjustment position REAR HEAD: **X1** = oil port position; **Z3** = cushioning adjustment position. The oil ports and cushioning adjustment positions are only available, respectively, on sides 1 and 3 (see the figure at side)

Example of model code: CH-250/140 *0100-S301 - A - **B1E3X1Z3**


Lf is the total cushioning lenght. When the LT is the total cusnioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke during the operating stroke.

12 SEALING SYSTEM FEATURES

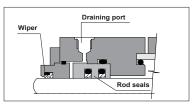
The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed is warmly suggested, see tab. B015.


Special sealing system for low temperatures, high frequencies (up to 20 Hz), long working life and heavy duty are available, see tab. TB020. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section [19]. Contact our technical office for the compatibility with other fluids not mentioned below and specific type and expensive. patibility with other fluids not mentioned below and specify type and composition. See section for fluid requirements.

Sealing	Material	Features	Max speed	Fluid temperature	Fluids compatibility	ISO Standar	
system			[m/s]	range		Piston	Rod
2	FKM + PTFF	very low friction	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2
	FRIVI + FIFE	and high temperatures	4	-20 0 10 120 0	fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U,HFD-R	130 /423/1	100 /423/2
8	PTFF + NBR	low friction	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2
	I II L + NOI1	IOW INCTION	'	-20 0 10 65 0	fire resistance fluids HFA, HFC (water max 45%), HFD-U	100 /423/1	100 / 423/2

13 AIR BLEEDS

CODES: **A** = front air bleed; **W** = rear air bleed
The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely.
Air bleeds are positioned on side 3, see section [1].
For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.



14 DRAINING

CODE: L = rod side draining
The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for

servocylinders.

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side). It is recommended to connect the draining port to the tank without backpressure. Draining port is G1/8.

15 FLUID REQUIREMENTS

Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

16 CYLINDERS MASSES [kg] (tolerance ± 5%)

			R STYLE X e rod				DITIONAL MAS			
Ø Bore [mm]	Ø Rod [mm]	Stroke 100 mm	Each 100 mm more	Styles C, S	Style G	Style L	Styles N, P	Front cushioning	Rear cushioning	Each 50 mm spacer
250	140	324	27	55	9	110	83	8,5	19	28
320	180	485	41	82	16	160	142	11	27	44
400	220	902	71	155	34	360	275	17	45	72,4

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

17 CYLINDER SECTION 8 4 6 10) [^]13 [^]18 13 24) (26) (25 11 (22) 2 3 9 5 20 21 16 27 28 12 19 14 23 29 30 DESCRIPTION DESCRIPTION DESCRIPTION MATERIAL POS. MATERIAL POS. MATERIAL POS. 1 Rod Chrome plated steel 11 Screw Steel (grade 12.9) 21 Piston guide ring PTFE 2 Wiper NBR / FKM + PTFE 12 Anti-extrusion ring PTFE 22 Cylinder housing Steel 3 Rod guide ring PTFE 13 O-ring NBR + PTFE Toroidal ring Steel 4 Rod seal NBR + PTFE Counterflange Steel Rear cushioning sleeve Bronze 5 Rod guide ring PTFE Front cushioning piston Steel Rear head 6 O-Ring + Anti-extrusion ring NBR / FKM + PTFE Rear cushioning piston Steel Screw Steel (grade 12.9) Flange Steel 17 Steel 27 O-Ring + Anti-extrusion ring NBR / FKM + PTFE Screw stop pin 8 Rod bearing Steel Piston Steel 28 18 Screw Steel (grade 12.9) 19 O-Ring + Anti-extrusion ring NBR / FKM + PTFE Cushioning adjustment plug

18 SPARE PARTS - SEE TABLE SP-B160

Steel

Example for seals spare parts code

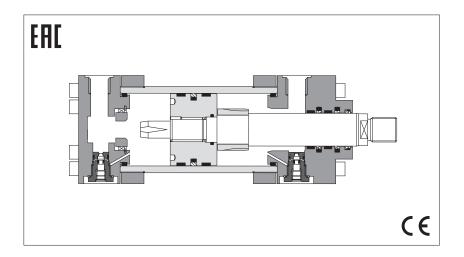
10

Front head

	G	8	-	СН	_	250	1	140
Sealing system								
Cylinder series								
Bore size [mm]								Rod diameter [mm

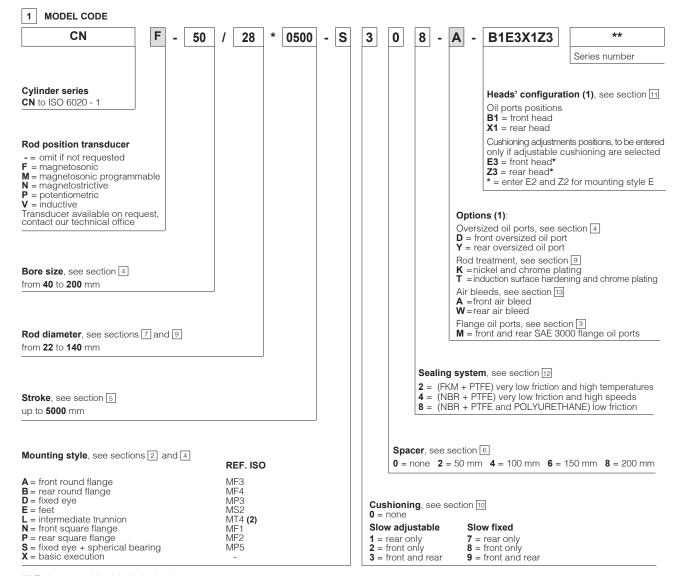
NBR / FKM + PTFE

Cushioning adjustment screw

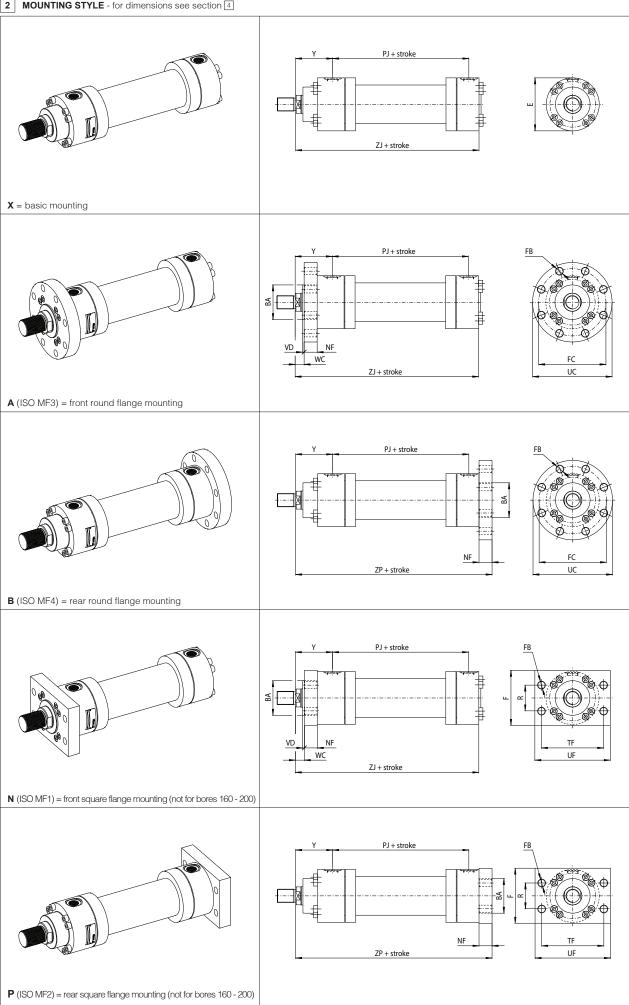

Piston seal

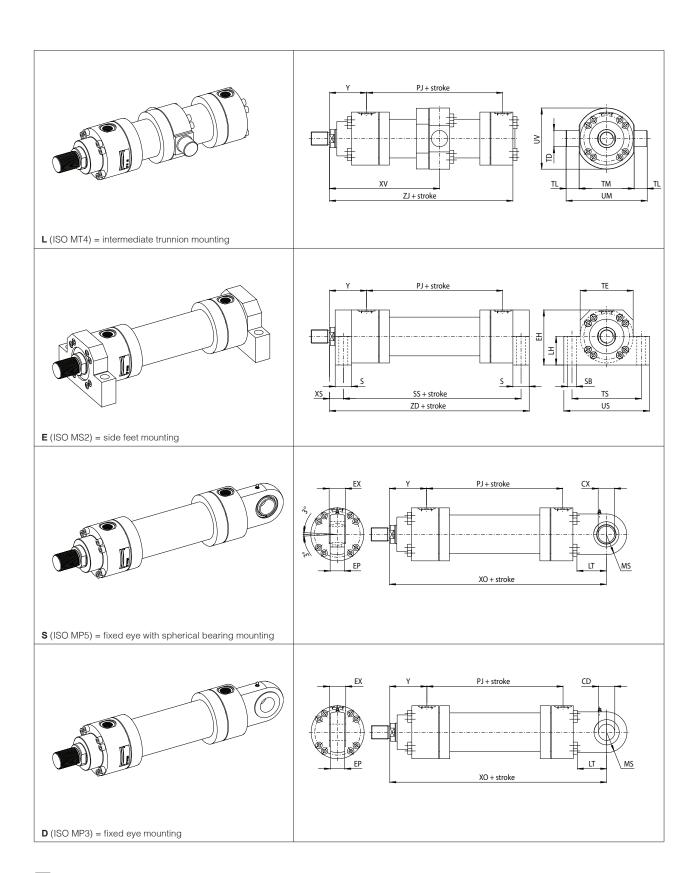
11/23

Hydraulic cylinders type CN - round heads with counterflanges


to ISO 6020-1 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

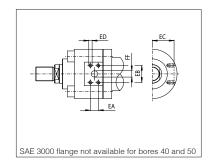
CN cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.


- Bore sizes from 40 to 200 mm
- · Adjustable or fixed cushioning
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B800


For cylinder's choice and sizing criteria see tab. B015

- (1) To be entered in alphabetical order
- (2) XV dimension must be indicated in the model code, see section 4

B180 CYLINDERS 32



B180

3 SAE 3000 FLANGE OIL PORTS - DIMENSIONS TO ISO 6162-1 [mm]

Ø Bore	DN	EC	EA ±0,25	EB ±0,25	ED 6g	FF 0 / -1,5
63	13 -	50	17.5	38.1	M8x1.25	13
80		58				
100	19	71	22.3	47.6	M10x1.5	19
125	13	89				
160	25	113	26.2	52.4	M10x1.5	25
200		137				

34

CYLINDERS

4 INSTALLATION DIMENSIONS [mm] - see figures in section 2

ØВ	ore	40	50	63	80	100	125	160	200
7	Standard	22	28	36	45	56	70	90	110
Ø Rod	Differential	28	36	45	56	70	90	110	140
B / I	B A f8/H8	50	60	70	85	106	132	160	200
	/ CX H9/H7	20	25	32	40	50	63	80	100
D (1) min	29	29	36	36	42	42	52	52
D1	(1) min	36	36	42	42	52	52	58	58
E (2	2) max	78	95	116	130	158	192	238	285
EE	(1)	G 1/2	G 1/2	G 3/4	G 3/4	G 1	G 1	G 1 1/4	G 1 1/4
EE1	(1)	G 3/4	G 3/4	G 1	G 1	G 1 1/4	G 1 1/4	G 1 1/2	G 1 1/2
EH	max	82	100	120	135	161	196	238	288
EP		18	22	27	35	40	52	66	84
EX	h12	20	25	32	40	50	63	80	100
F ma	ЭХ	80	100	120	135	160	195	NA	NA
FB	H13	9	11	13.5	17.5	22	22	22	26
FC		106	126	145	165	200	235	280	340
LH	h10	43	52	62	70	82	100	119	145
LT r	nin	25	32	40	50	63	71	90	112
MS		25	32	40	50	63	71	90	112
	[Nm] (3)	40	78	137	78	137	226	471	471
NF		16	20	25	32	32	32	36	40
PJ (97	111	117	134	162	174	191	224
R js	-	40.6	48.2	55.5	63.1	76.5	90.2	NA	NA
S js		25	32	32	40	50	56	60	72
	H13	11	14	18	22	26	33	33	39
SS		183	199	211	236	293	321	364	447
TD		20	25	32	40	50	63	80	100
TE		78	95	116	130	158	192	238	285
TFi		98	116.4	134	152.5	184.8	217.1	NA	NA
TL j		16	20	25	32	40	50	63	80
TM		90	105	120	135	160	195	240	295
TS	s13	100	120	150	170	205	245	295	350
UC		125	148	170	195	238	272	316	385
UF	max	115	140	160	185	225	255	NA	NA
UM		122	145	170	199	240	295	366	455
US	max	120	145	180	210	250	300	350	415
UV		90	108	124	150	180	219	280	333
VD		3	4	4	4	5	5	5	5
wc	(5)	16	18	20	22	25	28	30	35
хо	(5)	231	257	289	332	395	428	505	615
xs	(5)	19.5	22	29	34	32	32	36	39
v	minimum stroke for style L	55	55	85	90	110	135	170	190
XV (4	min	155	160	190	215	255	290	340	420
(5)	max	100+stroke	105+stroke	105+stroke	125+stroke	145+stroke	155+stroke	170+stroke	230+stroke
Υ (5	5)	71	72	82	91	108	121	143	190
ZD		215	237	256	290	350	381	430	522
ΖP	(5)	206	225	249	282	332	357	406	490
ZJ	(5)	190	205	224	250	300	325	370	450

7 ROD END DIMENSIONS [mm]

, KOD LIND I	THE LIFE DIMENSIONS [IMM]								
Ø Bore	40	50	63	80	100	125	160	200	
VE max	19	24	29	36	37	37	41	45	
WF	32	38	45	54	57	60	66	75	
Ø Rod Standard	22	28	36	45	56	70	90	110	
A max	22	28	36	45	56	63	85	95	
СН	19	22	30	39	48	62	80	100	
KK 6g	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3	
Ø Rod Differential	28	36	45	56	70	90	110	140	
A max	28	36	45	56	63	85	95	112	
СН	22	30	39	48	62	80	100	128	
KK 6g	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3	M100x3	

NOTES TO TABLE 4

(1) D, EE - Oil ports are threaded according to GAS standard with counterbore dimension **D** according to ISO 1179-1 (see figure below). When oversized oil ports are selected (**D** = front oversized oil ports, **Y** = rear oversized oil ports) dimensions **D** and **EE** are respectively modified its **D**4 and **EE**4. into **D1** and **EE1**

- 2) E If not otherwise specified in the figures in section 2, this value is the front and rear round heads dimension for all the mounting styles (see figure above)
- (3) MT Screws tightening torque. Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9
- (4) ${\bf XV}$ For cylinders with mounting style ${\bf L}$ the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CN - 50 / 28 * 0500 - L308 - A - B1E3X1Z3 XV = 200

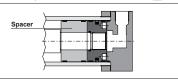
(5) The tolerance is according to the table below

Mountir	ng dimensions	ZJ, ZP, XO, SS, PJ	WF, WC, XV, XS, Y
str	oke < 1250	±1,5	±2
1250 >	stroke < 3150	±3	±4
str	oke > 3150	±5	±8

5 STROKE SELECTION

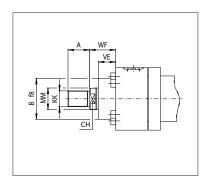
Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end.

Maximum stroke:


• 5000 mm

Stroke tolerances:

- 0 +2 mm for strokes up to 1250 mm
 0 +5 mm for strokes from 1250 to 3150 mm
- \bullet 0 +8 mm for strokes over 3150 mm


6 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and 'piston guide and to protect them from overloads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' length has to be added to all stroke dependent dimensions in section 4.

RECOMMENDED SPACERS [mm]

KECOWIN	KECOMINIENDED SPACEKS [IIIIII]									
	1001	1501	2001	2501						
Stroke	÷	÷	÷	÷						
	1500	2000	2500	5000						
Spacer code	2	4	6	8						
code	_	-	·	۰						

8 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "cold drawn and stressed steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra ≤ 0,25 µm.

RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7, roughness Ra \leq 0,25 μm . Corrosion resistance of 200 h in neutral spray to ISO 9227 NSS.

	, ,					
ø Rod	Material	Rs min	Chrome			
ø Rou	Material	[N/mm²]	min thickness [mm]	hardness [HV]		
22÷90	hardened and tempered alloy-steel	ed and tempered alloy-steel 700		850-1150		
110÷140	allov steel□	450	0,020	030-1130		

Rod diameters from 22 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. Contact our technical office in case of heavy duty applications.

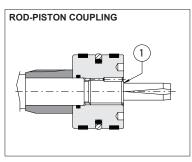
Rod corrosion resistance and hardness can be improved selecting the options ${\bf K}$ and ${\bf T}$ (option K affects the strength of standard rod, see ${\bf tab}$. ${\bf B015}$ for the calculation of the expected rod fatigue life): **K** = Nickel and chrome-plating (for rods from 22 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

- 500 h in acetic acid salt spray to ISO 9227 AASS
 1000 h in neutral spray to ISO 9227 NSS
- T = Induction surface hardening and chrome plating56-60 HRC (613-697 HV) hardness

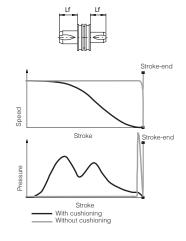
10 CUSHIONING

Cushioning are recommended for applications where: \bullet the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). See the **tab. B015** for the max damping energy. When fast adjustable versions are selected, the cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect).

In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.


Ø Bore		4	10	5	0	6	3	8	0	10	00	12	:5	16	60	20	00
Ø Rod	I	22	28	28	36	36	45	45	56	56	70	70	90	90	110	110	140
Cushioning	Lf	25	25	29	29	29	29	27	27	26	26	27	27	34	34	34	49
length [mm]	Lf rear	3	0	3	0	3	2	3	2	3	2	4	1	5	i6	5	6

11 POSITION OF THE OIL PORTS AND CUSHIONING ADJUSTMENTS


FRONT HEAD: **B1** = oil port position; \mathbf{E}^* = cushioning adjustment position REAR HEAD: $\mathbf{X}\mathbf{1}$ = oil port position; \mathbf{Z}^* = cushioning adjustment position. The oil ports and cushioning adjustments positions are available, respectively, on sides 1 and 3 for all styles except E (see the figure at side): the style E has the cushioning adjustments on side 2. Cushioning adjustment positions E*, Z* have to be entered only if adjustable cushioning are selected

Example of model code: CN-50/28 *0500-S308 - A - B1E3X1Z3

The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table 7. The piston is screwed to the rod by a pre-fixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing.

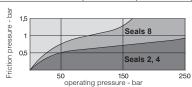
Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke.

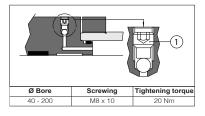
12 SEALING SYSTEM FEATURES

Sealing	Material	Features	Max	Fluid temperature	Fluids compatibility	ISO Standards for seals		
system	wateriai	reatures	[m/s]		Fidius compatibility	Piston	Rod	
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%) HFD-U, HFD-R	ISO 7425/1	ISO 7425/2	
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2	
8	NBR + PTFE + POLYURETHANE	low friction	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2	

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out

regularing requerities, find type and temperature. Additional verifications about minimum inyout rod speed is warmly suggested, see **tab. B015**. Special sealing system for low temperature, high frequencies (up to 20 Hz), long working life and heavy duty are available, see **tab. TB020**. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section [7]. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition. See section 14 for fluid requirements


13 AIR BLEEDS


CODES: **A** = front air bleed; **W** = rear air bleed

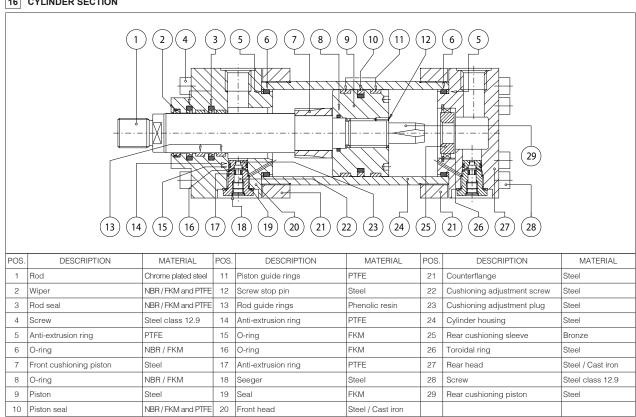
The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely.

Air bleeds are positioned on side 3 for all styles except E: the style E has the air bleeds on side 2, see section 11

For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.

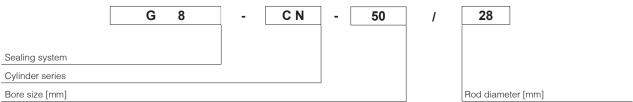
36

14 FLUID REQUIREMENTS


Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

15 CYLINDERS MASSES [kg] (tolerance ± 5%)

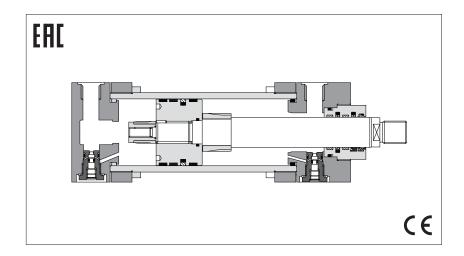
			OR STYLE			accord	ADDITIONA ding to mounting		options		
Ø Bore [mm]	Ø Rod [mm]	Stroke 100 mm	Each 100 mm more	Styles A, B	Style E	Style L	Styles N, P	Styles D, S	Front cushioning	Rear cushioning	Each 50 mm spacer
	22	7,36	1,18	1.10	1.16	1.50	0.00	0.00	0.00	0,50	0,93
40	28	7,60	1,36	1,16	1,10	1,58	0,82	0,29	0,09	0,50	0,93
50	28	12	1,55	. 2	3,80	2,87	1,54	0,64	0,20	0,80	1,30
50	36	12,50	1,86	1 -	0,00	2,07	1,04	0,04	0,20	0,00	1,00
63	36	19,50	2,30	3 28	3,28 5,80		2,70	1,32	0,30	1	1,97
03	45	20	2,75	0,20	0,00	4,54	2,10	1,02	0,00		1,01
80	45	28	2,87	5,26	9,04	6,79	4,30	2,36	0,50	1	2,78
	56	28,50	3,55	-,		-,	.,	_,	,		_,
100	56	48,50	4,65	7,76	15,72	10,36	5,96	4,76	0.80	1,50	4,43
	70	49,50	5,73	7,70	10,72	10,00	0,00	4,70	5,00	.,	.,
125	70	76,50	7,26	9,76	24,68	18,14	8,08	7,28	1,20	2	6,93
	90	78,50	9,23	0,70	24,00	10,14	0,00	7,20	1,20	_	0,00
160	90	126	11,47	14,54	38,16	35	NA	15,64	1,70	3	11,13
	110	128,50	13,93	1-1,04	55,10	33	14/7	10,04	1,70		11,10
200	110	233,50	18,31	22,66	63,36	58,88	NA	32.20	2,50	5	17,75
	140	238	22,94	22,00	00,00	30,00	14/4	NA 32,20			17,75


Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

16 CYLINDER SECTION

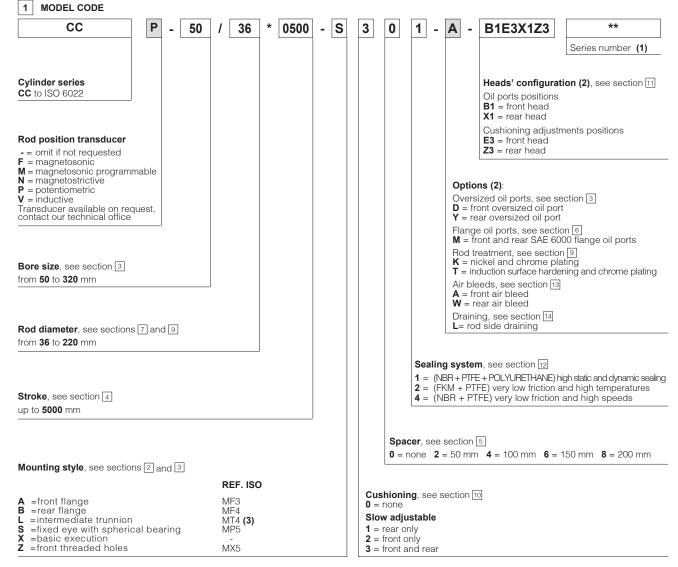
17 SPARE PARTS - SEE TABLE SP-B180

Example for seals spare parts code



11/23 37

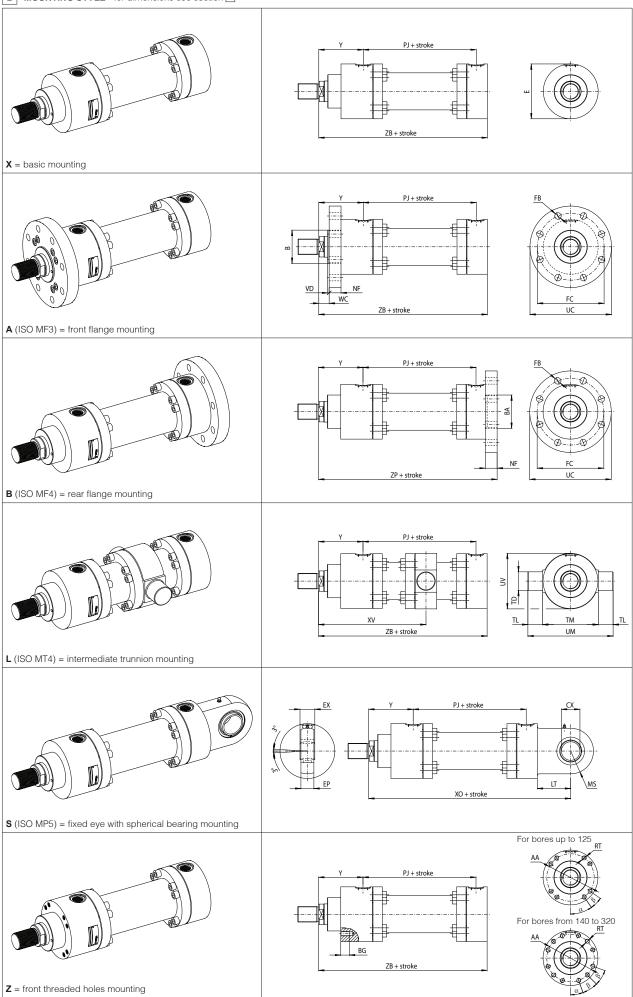
Hydraulic cylinders type CC - round heads with counterflanges


to ISO 6022 - nominal pressure 25 MPa (250 bar) - max 32 MPa (320 bar)

CC cylinders have engineered double acting construction, designed to suit the requirements of industrial heavy duty applications: top reliability, high performances and long working life.

- Bore sizes from 50 to 320 mm
- · Adjustable cushioning
- Rod guide rings for low wear
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B800

For cylinder's choice and sizing criteria see tab. B015



- (1) For spare parts request indicate the series number printed on the nameplate only for series < 20
- (2) To be entered in alphabetical order
- (3) XV dimension must be indicated in the model code, see section 3

B241 CYLINDERS

38

2 MOUNTING STYLE - for dimensions see section 3

3 INSTALLATION DIMENSIONS [mm] - see figures in section 2

Ø Bo	re	50	63	80	100	125	140	160	180	200	250	320
Ø Ro	d	36	45	56	70	90	90	110	110	140	180	220
α, β		32,5°, 25°	32°, 26°	35°, 20°	35°, 20°	35°, 20°	27,5°, 17,5°	25°, 20°	25°, 20°	25°, 20°	27°, 18°	25°, 20°
AA		90	105	128	152	188	215	241	275	295	365	458
В/В	A f8/H8 (4)	63	75	90	110	132	145	160	185	200	250	320
BG m	nin	20	23	23	30	33	33	43	40	40	58	70
схн	17	32	40	50	63	80	90	100	110	125	160	200
D (1)		29	36	36	42	42	52	52	52	52	58	58
D1 (1)	36	42	42	52	52	58	58	58	58	69	69
E max	< (2)	108	124	148	175	214	255	270	315	330	412	510
EE (1) 6g	G 1/2	G 3/4	G 3/4	G 1	G 1	G 1 1/4	G 1 1/4	G 1 1/4	G 1 1/4	G 1 1/2	G 1 1/2
EE1	(1) 6g	G 3/4	G1	G 1	G 1 1/4	G 1 1/4	G 1 1/2	G 1 1/2	G 1 1/2	G 1 1/2	G2	G2
EP		27	35	40	52	66	65	84	88	102	130	162
EX h	12	32	40	50	63	80	90	100	110	125	160	200
FB H	13	13,5	13,5	17,5	22	22	26	26	33	33	39	45
FC js	13	132	150	180	212	250	300 (7)	315	365 (7)	385	475	600
LT mi	in	40	50	63	71	90	113	112	135	160	200	250
MS m	nax	40	50	63	71	90	113	112	118	160	200	250
1] TM	lm] (3)	30	50	85	152	255	255	304	370	490	950	1750
NF js	13	25	28	32	36	40	40	45	50	56	63	80
PJ (6)	120	133	155	171	205	208	235	250	278	325	350
RT		n°8 holes M8	n°8 holes M10	n°8 holes M12	n°8 holes M14	n°8 holes M16	n°12 holes M16	n°12 holes M18	n°12 holes M20	n°12 holes M22	n°12 holes M27	n°12 holes M33
TD f8	3	32	40	50	63	80	90	100	110	125	160	200
TL js	13	25	32	40	50	63	70	80	90	100	125	160
TM h	12	112	125	150	180	224	265	280	320	335	425	530
UC m	ax	160	180	215	260	300	340	370	425	455	545	680
UM		162	189	230	280	350	405	440	500	535	675	850
UV m	ax	108	124	150	180	219	260	280	315	333	412	510
VD		4	4	4	5	5	5	5	5	5	8	8
VE m	ax (4)	29	32	36	41	45	45	50	55	61	71	88
WC (6)	22	25	28	32	36	36	40	45	45	50	56
WF (4	1) (6)	47	53	60	68	76	76	85	95	101	113	136
XO (5)	305	348	395	442	520	580	617	690	756	903	1080
V\/ :-	minimum stroke for style L	175	185	150	160	245	250	260	350	390	460	560
XV (5) (6)	min	260	285	290	320	410	440	465	540	590	690	820
(0)	max	85 + stroke	100 + stroke	140 + stroke	160 + stroke	165 + stroke	190 + stroke	205 + stroke	190 + stroke	200 + stroke	230 + stroke	260 + stroke
Y ±2		98	112	120	134	153	181	185	205	220	260	310
ZB m	ax	244	274	305	340	396	430	467	505	550	652	764
ZP (6)	265	298	332	371	430	465	505	550	596	703	830

NOTES TO TABLE 3

(1) **D, EE** - Oil ports and drain are threaded according to GAS standard with counterbore dimension **D** according to ISO 1179-1 (see figure below).

I (see ligure below).

When oversized oil ports are selected (**D** = front oversized oil ports, **Y** = rear oversized oil ports) dimensions **D** and **EE** are respectively modified into **D1** and **EE1**

- (2) E If not otherwise specified in the figures in section 2 this value is the front and rear round heads dimension for all the mounting styles (see figure above)
- (a) MT Screws tightening torque. Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9
- (4) B, VE, WF See figure in section 7
- (5) XV For cylinders with mounting style L the stroke must always exceed the mini-

mum values reported in the table.
The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CC - 50 / 36 * 0500 - L308 - A -B1E3X1Z3 **XV = 300**

(6) The tolerance is according to the table

Mounting dimensions	PJ, ZP, XO	WF, WC, XV
stroke < 1250	±1,5	±2
1250 > stroke < 3150	±3	±4
stroke > 3150	±5	±8

(7) The dimension is not according to ISO 6022

4 STROKE SELECTION

Stroke has to be selected a few mm longer stroke has to be selected a few minimorger than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end. The table below shows the minimum stroke depending to the bore.

Minimum stroke [mm]

Ø Bore	50	63	80	100	125	140
Minimum stroke	70	70	20	25	50	50
Ø Bore	160	180	200	250	320	
Minimum stroke	50	70	70	80	120	

Maximum stroke:

• 5000 mm

Stroke tolerances:

- 0 +2 mm for strokes up to 1250 mm
 0 +5 mm for strokes from 1250 to 3150 mm • 0 +8 mm for strokes over 3150 mm

5 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from overloads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke dependent dimensions in section 3.

RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer code	2	4	6	8
Length	50	100	150	200

40

6 SAE 6000 FLANGE OIL PORTS - DIMENSIONS TO ISO 6162-2 [mm]

Ø Bore	DN	EC	EA ±0,25	EB ±0,25	ED 6g	FF 0 / -1,5
50 (*)	13	46	18,2	40,5	M8x1,25	13
63 (*)	19	51	23,8	50,8	M10x1,5	19
80	19	65	20,0	30,0	WITOX 1,5	19
100	25	77	27,8	57,2	M10v1 75	25
125	25	99	21,0	31,2	M12x1,75	23
140		118				
160	32	126	31,6	66,6	M14x2	32
180	32	150	31,0	00,0	(**)	32
200		158				
250	38	195	36,7	79,3	M16x2	38
320	51	245	44,5	96,8	M20x2,5	51

SAE flange not available for style B (ISO MF4)

(*) SAE flange not available for su (**) Not compliance to ISO 6162-2

7 ROD END DIMENSIONS [mm]

Ø Bore 63 80 100 125 140 160 180 200 250 320 Ø Rod 36 45 56 70 90 90 110 110 140 180 220 36 45 63 85 90 95 125 160 56 105 112 A max СН 30 39 48 62 80 75 100 100 128 20 (*) **KK** 6g M27x2 M33x2 M42x2 M48x2 M64x3 M80x3 M90x3 M100x3 M125x4 M160x4 M72x3 **WL** min 8 10 15 15 15 15 10

(*) n° 2 holes per key

8 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in different materials depending to the bore; the internal surfaces are lapped: diameter tolerance H8, roughness Ra \leq 0,25 μ m.

ø Bore	Material	Rs min [N/mm²]
50÷200	Cold drawn and stressed steel	450
250-320	Hot rolled steel	355

9 RODS FEATURES and options

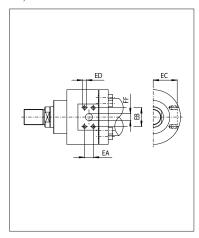
The rods materials have high strength, which provide safety coefficients higher than 4 in static

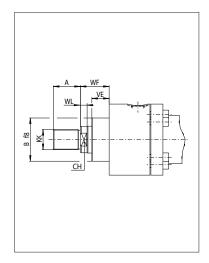
stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7, roughness Ra \leq 0,25 μ m. Corrosion resistance of 200h in neutral spray to ISO 9227 NSS.

- Ded	Matarial	Rs min	Chro	ome	
ø Rod	Material	[N/mm ²]	min thickness [mm]	hardness [HV]	
36÷110	Hardened and tempered alloy-steel	700	0.020	850-1150	
140	Alloy steel□	450	0,020	030-1130	
180÷220	Carbon steel	360	0,045	850-1150	

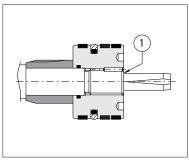
Rod diameters from 36 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life.

Contact our technical office in case of heavy duty applications.


Rod corrosion resistance and hardness can be improved selecting the options ${\bf K}$ and ${\bf T}$ (option K affects the strength of standard rod, see tab. B015 for the calculation of the expected rod fatigue life):


K = Nickel and chrome-plating (for rods from 36 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

500 h in acetic acid salt spray to ISO 9227 AASS
 1000 h in neutral spray to ISO 9227 NSS
 T = Induction surface hardening and chrome plating (for rods up to 140 mm)
 56-60 HRC (613-697 HV) hardness

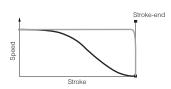

CODE: **M** = Front and rear SAE 6000 flange oil ports

Flange oil port allows an easy cylinder's connection to the piping system and it can work up to the maximum pressure 32 MPa (320

ROD-PISTON COUPLING

The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table [7]. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing the piston unscrewing.

10 CUSHIONING


Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). See the tab. B015 for the max damping energy. The cylinder is provided with needle valve to optimize cushioning performances in different appli-

cations. The regulating screws are supplied fully screwed in (max cushioning effect). In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore		50	63	80	100	125	140	160	180	200	250	320
Ø Rod		36	45	56	70	90	90	110	110	140	180	220
Cushioning	Lf front	29	40	45	50	60	60	64	64	64	80	100
length [mm]	Lf rear	35	38	45	50	60	60	64	64	64	64	64

Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the opera-ting one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke.

With cushioning Without cushioning

Seals 1

150 operating pressure - bar

Seals 2.

11 POSITION OF THE OIL PORTS AND CUSHIONING ADJUSTMENTS

FRONT HEAD: B1 = oil port position; E3 = cushioning adjustment position REAR HEAD: X1 = oil port position; Z3 = cushioning adjustment position. The oil ports and cushioning adjustment positions are only available, respectively, on sides 1 and 3 (see figure at side).

Example of model code: CC-200/140 *0100-S301 - A - B1E3X1Z3

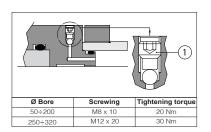
12 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out

rod speed is warmly suggested, see **tab. B015**.

Special sealing system for low temperature, high frequencies (up to 20 Hz), long working life and heavy duty are available, see **tab. TB020**. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section 📵. Contact our technical office for the com-

patibility with other fluids not mentioned below and specify type and composition. See section [5] for fluid requirements

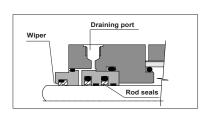

Trailer To	una requiremento.						
Sealing Material		Features	Max speed	Fluid temperature	Fluids compatibility	ISO Standards for seal	
system	tem reactives speed temperature [m/s] range		r idids companishing	Piston	Rod		
1	NBR + PTFE + POLYURETHANE	high static and dynamic sealing	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 5597/1
2	FKM + PTFE	very low friction and high temperatures	4		Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U, HFD-R	ISO 7425/1	ISO 7425/2
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2

13 AIR BLEEDS

CODES: **A** = front air bleed; **W** = rear air bleed

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely. Air bleeds are positioned on side 3, see section [1]. For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for

hexagonal head screws, bleed-off the air and retighten as indicated in table at side.



14 DRAINING

CODE: L = rod side draining

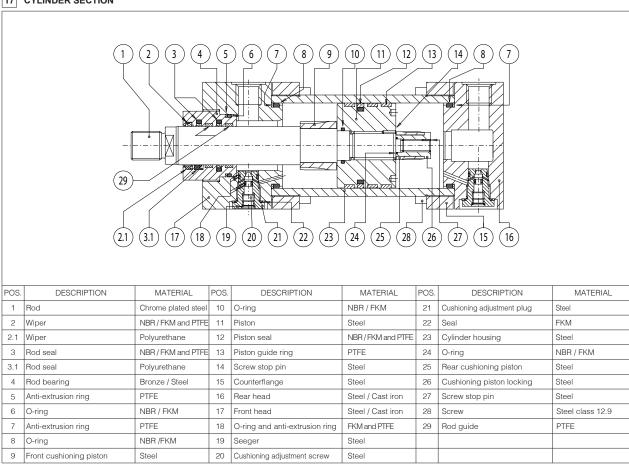
The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side). It is recommended to connect the draining port to the tank without backpressure Draining port is G1/8.

42

15 FLUID REQUIREMENTS

Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.


B241

16 CYLINDERS MASSES [kg] (tolerance ± 5%)

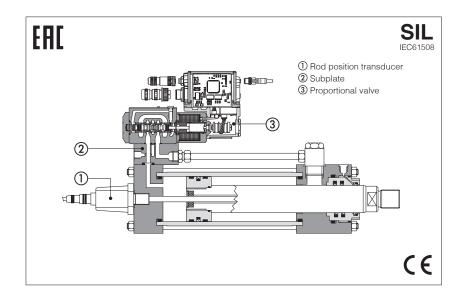
	MASS FOR STYLE X for single rod			ADDITIONAL MASSES depending on mounting styles and options					
Ø Bore [mm]	Ø Rod [mm]	for 100 mm stroke	each 100 mm more	Styles A, B	Style L	Style S	front cushioning	rear cushioning	each 50 mm spacer
50	36	18	1,9	2,77	3,15	1	0,2	1	1,3
63	45	20,1	2,75	3,96	4,64	2,58	0,3	1	2
80	56	35,5	4,15	7,17	7,81	4,54	0,5	1	3,08
100	70	58	6,5	11,14	13,38	7,18	0,8	1,5	4,81
125	90	100	10,17	16	23,68	14,02	1,2	2	7,40
140	90	144	10,73	22,5	41,09	23	1,2	2	8,90
160	110	189	15,12	29,92	47,92	27,5	1,7	5	11,72
180	110	262	17,32	41,66	70,16	45,9	2,5	5	14,92
200	140	335	22,94	54,22	81,12	69	2,5	5	17,75
250	180	660	42,62	86,01	167	116	2,5	5	30,58
320	220	1230	65,35	166	304	250	2,8	5	49,32

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

17 CYLINDER SECTION

18 SPARE PARTS - SEE TABLE SP-B241

Example for seals spare parts code


	G	1	-	CC	-	50	1	36
Sealing system								
Cylinder series								
Bore size [mm]								Rod diameter [mm]

11/23

Servocylinders type CK* with built-in position transducer

to ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

CK* electrohydraulic servocylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.

Their compact construction allows high flexibility for use in all applications. The rod position transducer ① is well protected against shocks or external dirt, and maintenance is reduced to a minimum.

- Derived from cylinders series CK according to ISO 6020-2, see tab. B137
- Integral position transducers: Magnetosonic analog or digital, Magnetostrictive, Potentiometric and Inductive
- Bore sizes from 40 to 200 mm
- Rod draining and air bleeds supplied
- Available with incorporated subplates ② for on-board on/off or proportional valves 3 to achieve the max hydraulic strenght, fast response time and repeatability
- Servocylinders are SIL compliance with IEC 61508 (TÜV certified), certification on request

For cylinder's choice and sizing criteria see tab. B015

1 MODEL CODE P / 10 - 63 / 45 * 0500 - S 2 0 CK Cylinder series CK to ISO 6020 - 2, see tab. B137 See section 29 for other cylinder series Rod position transducer, see section 17 = magnetosonic M = magnetosonic programmable N = magnetostrictive P = potentiometric Incorporated subplate, see section 26 = omit if subplate is not requested 10 = size 06 20 = size 10 30 = size 16 size 25 Bore size, see section 5, 9 and 14 from 40 to 200 mm Rod diameter, see sections 5 9 and 14 from 28 to 140 mm Stroke, see section 17 and 18 Mounting style, see sections [5], [7], [9], [11], [14] and [16]REF. ISO MP1 **(4)** MP3 **(4)** MS2 fixed clevis D = E = G = fixed eye feet front trunnion intermediate trunnion MT1 MT4 = front flange rear flange ME5 ME6 (4) MP5 (4) fixed eye + spherical bearing basic execution front tie rods extended front threaded holes MX3 MX5 Spacer, see section 19 Cushioning, see section 23 option 2 is only available for bores from 63 to 200 2 = front adjustable cushioning **0** = none **2** = 50 mm **4** = 100 mm **6** = 150 mm **8** = 200 mm 0 = without cushioning

8 - K **B1E3X1** Series number (1) Heads' configuration (2), see section 24 Oil ports positions B1 = front head X1= rear head Cushioning adjustments positions, to be entered only if adjustable cushioning are selected **E3** = front head * * enter E2 only for mounting style E Options (2) (3): Rod end, see section 6, 10 and 15 **H** = light male thread Rod treatment, see section 22 K = nickel and chrome plating
 T = induction surface hardening and chrome plating Oversized oil ports, see section 5 and 6 D = front oversized oil port Y = rear oversized oil port Output for CKF, CKM, CKN, CKV, see sections 2, 3, 8 and 13 **A** = current output (4÷20 mA) V = voltage output (0÷10V) Digital SSI output for CKF, CKM, see section 2 and 3 Q = binary 24 bit R = binary 25 bit **S** = gray 24 bit Fieldbus output, see section 4 C = PROFINET P = PROFIBUS DP Connector output, see section 2, 3, 8, 12 and 13 M = 90° female connector Sealing system, see section 25 2 = (FKM + PTFE) very low friction and high temperatures 4 = (NBR + PTFE) very low friction and high speeds 8 = (NBR + PTFE and POLYURETHANE) low friction

For spare parts request indicate the series number printed on the nameplate only for series < 40

(2) To be entered in alphabetical order
(3) Rod draining and air bleeds supplied as standard, see sections 27 and 28
(4) Not available for CKF and CKM

B310 CYLINDERS

2 SERVOCYLINDERS TYPE CKF

2.1 Magnetosonic transducers - basic working principles

The magnetosonic transducer is composed by: a waveguide element ① fixed to the cylinder's body, a permanent magnet 2 rigidly connected to the cylinder's rod and an integral electronics signal conditioning 3 located on the rear head.

The position measurement is based upon the magnetostriction phenomenon: the electronics signal conditioning ③ generates a short current pulse that travels through the waveguide ①. When this pulse meets the magnetic field of the permanent magnet ②, a torsional wave is generated and it travels back to the electronics signal conditioning.

The position of the moving magnet is thus accurately determined by measuring the elapsed time between the application of the current pulse and the arrival of the torsional wave, thanks to their constant ultrasonic speed. Sensor electronics signal conditioning transforms this measurement into the analogic output feedback signal.

The contactless construction of the position transducer ensures a long working life and allows its use even in hard environmental conditions (shocks, vibrations etc.) or high working frequencies.

The transducer can be replaced without disassembling the cylinder,

providing a great advantage of easy and quick maintenance.

Magnetosonic transducers, particularly simple and cost-effective, makes the CKF servocylinders commonly used as alternatives to external absolute encoders or to potentiometric transducers.

2.2 Output signal

The transducer integral electronics is available with the following configurations:

Analog	Digital SSI
A = 4-20 mA V = 0-10 V	Q = Binary 24 bit R = Binary 25 bit S = Gray 24 bit
	U = Gray 25 hit

Example of model code: CKF-63/45*0500-X008 -A-B1X1

Digital SSI output is available on request, for other output signals contact our technical office

2.3 Transducer features

CKF are equipped with "MTS"'s magnetosonic transducers, whose main features are shown in the table at side.

2.4 Electronic connections

The 5 or 8 pin male connector M12 is located on the transducer rear head. The straight female cable connector 4 is included in the supply:

CON031 5 pin female connector for analog version 370694 8 pin female connector for digital SSI version The 90° female connector can be supplied selecting option M:

CON041 5 pin 90° female connector for analog version 370699 8 pin 90° female connector for digital SSI version

See the tables at side for electronic connections.

For other connector types or cable outputs, contact our technical office.

From 50 to 2500 mm by increments of 5 mm.

If a not standard stroke is required, contact our technical office.

2.6 Cylinder features

See sections 5, 6 and 7 for sizes, mounting style and dimensions. See sections from 18 to 26 for materials and options.

2.7 Fluid requirements

CKF servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion - 90-95% water and 5-10% oil, HFB water in oil emulsion - 40% water, HFC water glycol - max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters)

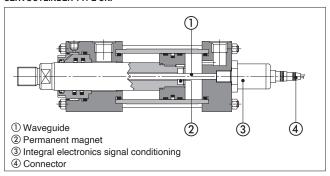
For the proper choice of the sealing system, in relation to the fluid characteristics, see section 25.
Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s
- Temperature range: 0 ÷ 70°C
- Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

2.8 Start-up notes

During the start-up it is necessary to bleed off the air from the servocylinder as indicated in section 27

For other details refer to the start-up instructions included in the supply.


2.9 Warnings

Ensure that the servocylinder and wirings are kept away from strong magnetic field and electrical noise to prevent noises on the feedback signal. Check the electronic connections and switch-off the power supply before connecting or disconnecting the position transducer to avoid electronic damages.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

For other types of resolution contact our technical office.

SERVOCYLINDER TYPE CKF

TRANSDUCER FEATURES

	Analog	Digital SSI		
Power supply	24 VDC (±15%)			
Outputs signal	0÷10 VDC/ 4÷20 mA	SSI RS 422/485 Standard		
Data format (SSI)	NA	Binary / Gray		
Data length (SSI)	NA	24 / 25 bit		
Resolution	infinite, restricted by the output ripple	50 μm		
Linearity	< ± 0,02% F.S	S (min ± 60 μm)		
Repeatability	< ± 0,005% F.S	S. (min ± 20 μm)		
Data speed (only for digital)	70kBd÷1MBd (depending to cables lenght)			
Update frequency	< 3 kHz	1,2÷3,7 kHz (depending to the stroke)		
Connection type	5 pin connector M12	8 pin connector M12		
Protection degree	IP67 to DIN 40050			
Shock resistance	100g (single shock) / IEC Standard 60068-2-27			
Vibration resistance	15g/10÷2000 Hz / IEC Standard 60068-2-6			
Polarity protection	up to -30 VDC			
Operating temperature	-20 ÷ +75°C			
Measuring range	50 to 2500 mm (increments of 5 mm)			
Maximum speed	1 m/s			

ELECTRONIC CONNECTIONS - ANALOG

5 PIN female connector (to solder)	PIN	SIGNAL	NOTES
	1	V+	Input - power supply 24 VDC (±15%)
2 (1)	2	OUTPUT	Output - analog signal
(3)(4)	3	VO	Gnd - power supply 0 VDC
	4	NC	Do not connect
CON031 (Transducer view)	5	AGND	Gnd - analog signal

ELECTRONIC CONNECTIONS - DIGITAL SSI

8 PIN female connector (to solder)	PIN	SIGNAL	NOTES
	1	CLOCK +	Output -serial syncronous clock (+)
	2	CLOCK -	Input - serial syncronous clock (-)
(2) (1)	3	DATA +	Output - serial position data (+)
(3 8 7)	4	DATA -	Input - serial position data (-)
(4)(5)(6)	5	NC	Do not connect
	6	NC	Do not connect
	7	V+	Input - power supply 24 VDC (±15%)
370694 (Transducer view)	8	V0	Gnd- power supply 0 VDC

3 SERVOCYLINDERS TYPE CKM - PROGRAMMABLES

3.1 Magnetosonic transducers - basic working principles

The magnetosonic transducer is composed by: a waveguide element ① fixed to the cylinder's body, a permanent magnet 2 rigidly connected to the cylinder's rod and an integral electronics signal conditioning 3 located on the rear head.

The position measurement is based upon the magnetostriction phenomenon: the electronics signal conditioning 3 generates a short current pulse that travels through the waveguide ①. When this pulse meets the magnetic field of the permanent magnet 2, a torsional wave is generated and it travels back to the electronics signal conditioning.

The position of the moving magnet is thus accurately determined by measuring the elapsed time between the application of the current pulse and the arrival of the torsional wave, thanks to their constant ultrasonic speed. Sensor electronics signal conditioning transforms this measurement into the output feedback signal.

The contactless construction of the position transducer ensures a long working life and allows its use even in hard environmental conditions

(shocks, vibrations etc.) or high working frequencies.
The transducer can be replaced without disassembling the cylinder, providing a great advantage of easy and quick maintenance.

Additionally, the only electronics signal conditioning can be easily removed and replaced without removing its case; in this way the cylinder could keep on working avoiding any production-stop time.

CKM servocylinders are characterized by high performances and they are considered to product the production of the country to product the product of the country to product the pr

are availables in several versions.

3.2 Output signal

The transducer integral electronics is available with the following config-

Analog	Digital SSI
A = 4-20 mA	Q = Binary 24 bit
V = 0-10 V	R = Binary 25 bit
	S = Gray 24 bit
	$\mathbf{U} = \text{Gray } 25 \text{ bit}$

Example of model code: CKM-63/45*0500-X008 -AD-B1X1

ETHERNET, I/O LINK and POWERLINK output are available on request, for other output signals contact our technical office.

3.3 Transducer features

CKM are equipped with "MTS"'s magnetosonic transducers, whose main features are shown in the table at side. The integral position tranducer is also available with an explosion-proof housing, ATEX certified, for use in explosion-hazardous environments and SIL certified.

Other integral position transducers brands are available on request, contact our technical office.

3.4 Electronic connections

The 6 or 7 pin male connector M16 is located on the transducer rear head. The straight female cable connector 4 is included in the supply:

STCO9131-D06-PG7 6 pin female connector for analog version STCO9131-D07-PG9 7 pin female connector for digital SSI version The 90° female connector can be supplied selecting option M:

STCO9131-6-PG7 6 pin 90° female connector for analog version STC09131-7-PG9 7 pin 90° female connector for digital SSI version

See the tables at side for electronic connections.

For other connector types or cable outputs, contact our technical office.

From 25 to 3000 mm by increments of 5 mm.

If a not standard stroke is required, contact our technical office.

3.6 Cylinder features

See sections [5], [6] and [7] for sizes, mounting style and dimensions. See sections from [6] to [6] for materials and options.

3.7 Fluid requirements

For the suitable fluids and the proper choice of the sealing system, in relation to the fluid characteristics, see sections 25. Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s
- Temperature range: 0 ÷ 70°C Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

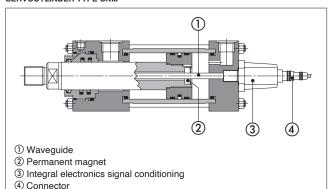
3.8 Start-up notes

The output signal of the CKM analog or digital SSI versions is programmable by using proper programming tools to be ordered separately:

253-124 for zero/span setting of analog version

253-135 for complete re-programming of the transducers parameters (resolution, output format, length etc.) of digital SSI version

The sensor electronics case is equipped with two LED that indicate the transducer status, allowing a quick recognition of main possible faults (magnet not detected or out of set-up range).


During the start-up it is necessary to bleed off the air from the servocylinder as indicated in section [27]

For other details refer to the start-up instructions included in the supply.

Ensure that the servocylinder and wirings are kept away from strong magnetic field and electrical noise to prevent noises on the feedback signal. Check the electronic connections and switch-off the power supply before connecting or disconnecting the position transducer to avoid electronic damages.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

SERVOCYLINDER TYPE CKM

TRANSDUCER FEATURES

	Analog	Digital SSI			
Power supply	24 Vpc (±15%)			
Outputs signal	0÷10 VDC/ 4÷20 mA	SSI RS 422/485 Standard			
Data format (SSI)	NA	Binary / Gray			
Data length (SSI)	NA	24 / 25 bit			
Resolution	16 bit; 0,0015% (min. 1 μm)	5 μm			
Linearity	<±0,01% F.S. (min ±50 μm)	<±0,01% F.S. (min ±40 μm)			
Repeatability	<±0,001% F.S. (min ±1 μm)				
Hysteresis	< 4 μm				
Data speed (only for digital)	70 kBd÷1MBd (depending to cables lenght)				
Update frequency	0,5÷2kHz (depending to the stroke)	0,5÷3,7kHz (depending to the stroke)			
Temperature coefficient	< 30 ppm/°C	< 15 ppm/°C			
Connection type	6 pin connector M16 to DIN45322	7 pin connector M16 to DIN45329			
Protection degree	IP67 to DIN 40050				
Shock resistance	100g (single hit) / IEC Standard 60068-2-27				
Vibration resistance	15g/10÷2000 Hz / IEC Standard 60068-2-6				
Polarity protection	up to -30 VDC				
Operating temperature	-20 ÷ +75°C				
Measuring range	25 to 3000 mm (increments of 5 mm)				
Maximum speed	2 m/s				

ELECTRONIC CONNECTIONS - ANALOG

6 PIN female connector (to solder)	PIN	SIGNAL	NOTES
	1	OUTPUT	Output - analog signal
(1) (5)	2	AGND	Gnd - analog signal
$\left(\begin{array}{c} 3 \\ 2 \\ 4 \end{array}\right)$	3	NC	Do not connect
(3)	4	NC	Do not connect
	5	V+	Input - power supply 24 VDC (±15%)
STCO9131-D06-PG7 (Transducer view)	6	VO	Gnd - power supply 0 VDC

ELECTRONIC CONNECTIONS - DIGITAL SSI

7 PIN female connector (to solder)	PIN	SIGNAL	NOTES
	1	DATA -	Input - serial position data (-)
	2	DATA +	Output - serial position data (+)
(6) (7)	3	CLOCK +	Output -serial syncronous clock (+)
425	4	CLOCK -	Input - serial syncronous clock (-)
	5	V+	Input - power supply 24 VDC (±15%)
	6	V0	Gnd - power supply 0 VDC
STCO9131-D07-PG9 (Transducer view)	7	NC	Do not connect

B310 CYLINDERS

SERVOCYLINDERS TYPE CKM - PROGRAMMABLES with fieldbus interface PROFIBUS DP or PROFINET

4.1 Working basic principles

CKM servocylinders (see section 3 for magnetosonic working principle) are also available with fieldbus communication interface. Field communication networks allow to exchange a great amount of data among all the devices installed on the machines and industrial plants (servocylinders, valves, pumps, motors, etc.) by means of just one cable. It is so possible to connect all the devices of the system to the machine control unit (fieldbus master) avoiding expensive wirings and start-up costs.

Fieldbus provides also a more efficient connection that can speed up the installation task as well as prevent wiring errors.

The possibility to perform system level diagnostics on each node or device in the system represents an optimum maintenance tool and it has a positive impact on the system performances.

The remarkable aspect of these communication networks is the common standardized language ("interface") of all the connected devices, making the control and monitoring of the whole machine very easy.

4.2 Output signal

The available feedback interface are:

C = PROFINET according to IEC 61158

P = PROFIBUS DP according to EN 50 170 (ISO 74498)

Example of model code: CKM-63/45*0500-X008 -DP-B1X1

Other feedback interface are available on request, contact our technical office

4.3 Transducer features

CKM are equipped with "MTS"'s magnetosonic transducers whose features are shown in the table at side. Other integral position transducers brands are available on request, contact our technical office.

4.4 Electronic connections

Male and female connectors are located on the transducer rear head. The cable connectors are included in the supply:

370523 5 pin male M12 connector for input and output CON-031 5 pin female M12 connector for power supply

PROFIBUS DP- 4 connectors

560884 5 pin male M12 connector for bus input 5 pin female M12 connector for bus output 560885 5 pin female M12 for bus terminator 560886 4 pin female M8 connector for power supply

See the table at side for electronic connections. For other connector types, contact our technical office.

4.5 Strokes

From 25 to 3000 mm by increments of 5 mm.

If a not standard stroke is required, contact our technical office.

See sections 5, 6 and 7 for sizes, mounting style and dimensions. See sections from 18 to 26 for materials and options.

4.7 Fluid requirements

For the suitable fluids and the proper choice of the sealing system, in relation to the fluid characteristics, see sections 🗵

Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s Temperature range: 0 ÷ 70°C
- Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

4.8 Start-up notes

The transducer's fieldbus configuration files and the manual for start-up are included in the supply.

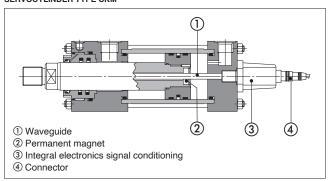
The setup of the transducer's slave address is usually done by the bus standard service of the system: if the fieldbus master does not support this service, the setting and diagnostics can be done by a proper wi-fi tool to be separately ordered:

TL-1-0-EM12 for PROFINET interface for PROFIBUS DP interface 252-173-D52

The sensor electronics case is equipped with two LED that indicate the transducer status, allowing a quick recognition of main possible faults (magnet not detected or out of set-up range).

During the start-up it is necessary to bleed off the air from the servo-

cylinder as indicated in section 27.

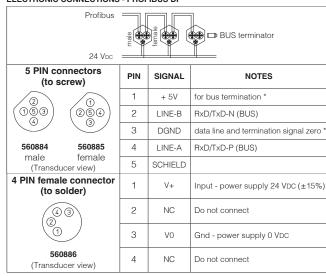

For other details refer to the start-up instructions included in the supply.

4.9 Warnings

Ensure that the servocylinder and wirings are kept away from strong magnetic field and electrical noise to prevent noises on the feedback signal. Check the electronic connections and switch-off the power supply before connecting or disconnecting the position transducer to avoid electronic damages.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

SERVOCYLINDER TYPE CKM


TRANSDUCER FEATURES

THANSDUCEN FEATURES	
Power supply	24 VDC (±15%)
Data transmission rate (with cable L < 25 m and 1 node)	PROFINET: max. 100 MBit/s PROFIBUS DP: max. 12 MBit/s
Cycle time	1 ms with stroke up to 2000 mm
Resolution	0,5 µm for PROFINET ; 1 µm for PROFIBUS DP
Linearity	<±0,01% F.S. (min ±50 μm)
Repeatability	<±0,001% F.S. (min ±2,5 μm)
Hysteresis	< 4 µm
Temperature coefficient	< 15 ppm/°C
Shock resistance	150g (single hit) / IEC Standard 60068-2-27 for PROFINET 100g (single hit) / IEC Standard 60068-2-27 for PROFIBUS DP
Vibration resistance	15g/10÷2000 Hz / IEC Standard 60068-2-6
Overvoltage protection	Up to 36 VDC
Protection degree	IP67 to DIN 40050
Operating temperature	-20 \div +85°C for PROFINET ; 20 \div +75°C for PROFIBUS DP
Measuring range	25 to 3000 mm (increments of 5 mm)
Maximum speed	2 m/s

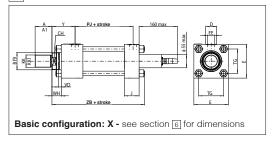
ELECTRONIC CONNECTIONS - PROFINET

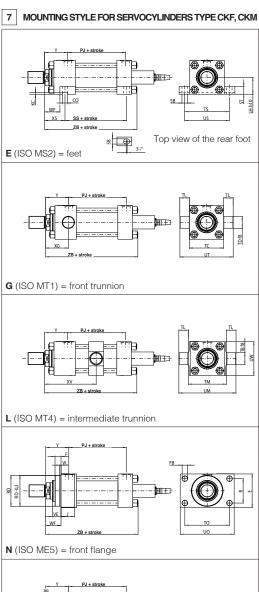
5 PIN f	5 PIN female connectors (to screw)		PIN	SIGNAL	NOTES
	_		1	Tx (+)	Transmitter
(¹)	$\binom{2}{3}$ (2	Rx (+)	Receiver
	50		3	Tx (-)	Transmitter
3705		370523	4	Rx (-)	Receiver
	(D-codec) (D-codec) (Transducer view)		Housing	SHIELD	Shield
5 PIN	5 PIN female connector (to screw)		1	V+	Input - power supply 24 VDC (±15%)
	<u> </u>		2	NC	Do not connect
	$\begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}$		3	VO	Gnd - power supply 0 VDC
			4	NC	Do not connect
(T	CON-031 (Transducer view)		5	NC	Do not connect

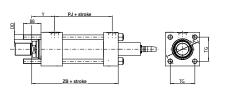
ELECTRONIC CONNECTIONS - PROFIBUS DP

5 INSTALLATION DIMENSIONS [mm] FOR SERVOCLINDERS TYPE CKF, CKM

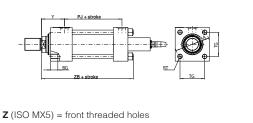
Ø Bore	40	50	63	80	100	125	160	200
Ø Rod	28	36	45	56	70	90	110	140
A max	28	36	45	56	63	85	95	112
A1 (option H) max	18	22	28	36	45	56	63	85
AA	59	74	91	117	137	178	219	269
B f9	42	50	60	72	88	108	133	163
BB +3 / 0	35	46	46	59	59	81	92	115
BG min	12	18	18	24	24	27	32	40
CH h14	22	30	39	48	62	80	100	128
CO N9	12	12	16	16	16	20	30	40
DD 6g	M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
D (1)	25	29	29	36	36	42	42	52
D1 (1)	29	NA	NA	42	42	52	52	58
E	63±1,5	75±1,5	90±1,5	115±1,5	130±2	165±2	205±2	245±2
EE (1) 6g	G 3/8	G 1/2	G 1/2	G 3/4	G 3/4	G 1	G 1	G 1 1/4
EE1(1) 6g	G 1/2	NA	NA	G 1	G 1	G1 1/4	G1 1/4	G 1 1/2
F max	10	16	16	20	22	22	25	25
FB H13	11	14	14	18	18	22	26	33
J	38	38	38	45	45	58	58	76
KC min	4	4,5	4,5	5	6	6	8	8
KK standard 6g	M20 x 1,5	M27 x 2	M33 x 2	M42 x 2	M48 x 2	M64 x 3	M80 x 3	M100 x 3
KK1 option H 6g	M14 x 1,5	M16 x 1,5	M20 x 1,5	M27 x 2	M33 x2	M42 x 2	M48 x 2	M64 x 3
LH h10	31	37	44	57	63	82	101	122
PJ ±1,5 (3)	85	74	80	93	101	117	130	165
PJ1 ±1,5 (1) (3)	87,5	NA	NA	93	99	121	143	167
R js13	41	52	65	83	97	126	155	190
RD f8	62	74	88	105	125	150	170	210
RT	M8x1,25	M12x1,75	M12x1,75	M16x2	M16x2	M22x2,5	M27x3	M30x3,5
SB H13	11	14	18	18	26	26	33	39
SS ±1,25 (3)	109	91	85	104	101	130	129	171
ST js13	12,5	19	26	26	32	32	38	44
TC h14	63	76	89	114	127	165	203	241
TD f8	20	25	32	40	50	63	80	100
TG js13	41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
TL js13	16	20	25	32	40	50	63	80
TM h14	76	89	100	127	140	178	215	279
TO js13	87	105	117	149	162	208	253	300
TS js13	83	102	124	149	172	210	260	311
UM	108	129	150	191	220	278	341	439
UO max	110	130	145	180	200	250	300	360
US max	103	127	161	186	216	254	318	381
UT	95	116	139	178	207	265	329	401
UW max	80	100	110	140	150	200	240	300
VD	12	9	13	9	10	7	7	7
VE max	22	25	29	29	32	29	32	32
VL min	3	4	4	4	5	5	5	5
WF ±2	35	41	48	51	57	57	57	57
WH ±2	25	25	32	31	35	35	32	32
XG ±2 (3)	57	64	70	76	71	75	75	85
XS ±2 (3)	45	54	65	68	79	79	86	92
Minimum stroke	5	15	20	20	35	35	35	35
XV (2) min	100	109	120	129	148	155	161	195
±2 (3) max	99+stroke	98+stroke	100+stroke	115+stroke	117+stroke	134+stroke	141+stroke	166+stroke
Y ±2	62	67	71	77	82	86	86	98
Y1 ±2 (1)	61,5	NA	NA	75,5	83	84	79,5	97
ZB max	178	184	192	212	225	260	279	336


NOTES TO TABLE


- (1) Oil ports are threaded according to ISO 1179-1 (GAS standards) with counterbore dimension D. When oversized oil ports are selected, dimensions D, EE, PJ and Y are respectively modified into D1, EE1, PJ1 and Y1. For bore 160 with mounting styles E, N the dimension PJ1 reported in the table is modified, contact our technical office.
- (2) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:


CKM-50/36*0500-L208 - D - B1E3X1 XV = 200

(3) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is the max stroke tolerance reported in section [3]


6 BASIC CONFIGURATION

Y (ISO MX3) = front tie rods extended

48

B310 CYLINDERS

8 SERVOCYLINDERS TYPE CKN

8.1 Magnetostrictive transducers - basic working principles

The magnetostrictive transducer is composed by: a waveguide element ① fixed to the cylinder's body, a permanent magnet ② rigidly connected to the cylinder's rod and an integral electronics signal conditioning 3 located inside the rear head.

The position measurement is based upon the magnetostriction phenomenon: the electronics signal conditioning @ generates a short current pulse that travels through the waveguide ①. When this pulse meets the magnetic field of the permanent magnet 2, a torsional wave is generated and it travels back to the electronics signal conditioning.

The position of the moving magnet is thus accurately determined by measuring the elapsed time between the application of the current pulse and the arrival of the torsional wave, thanks to their constant ultrasonic speed. Sensor electronics signal conditioning transforms this measurement into the analogic output feedback signal.

The contactless construction of the position transducer ensures a long working life and allows its use even in hard environmental conditions

(shocks, vibrations etc.) or high working frequencies. The small size of this magnetostrictive transducer allows the installation completely inside the cylinder, providing a very compact construction and a reduction of the overall dimensions respect to CKF and CKM servocylinders. These features make CKN servocylinders the best alternative to external absolute encoders, potentiometric and inductive transducers.

8.2 Output signal

The transducer integral electronics is available with the following configurations:

Analog

A = 4 - 20 mAV = 0,1 - 10,1 V

The option ${\bf A}$ or ${\bf V}$ for the output signal has to be always entered in the cylinder code

8.3 Transducer features

CKN are equipped with "GEFRAN"'s magnetostrictive transducers whose features are shown in the tables at side

8.4 Electronic connections

The 6 pin male connector M16 is mounted on side 4 of the cylinder rear

The straight female cable connector ④ STCO9131-D06-PG7 is included in the supply. The 90° female connector STCO9131-6-PG7 can be supplied selecting option M. See the table at side for electronic connections

From 100 to 3000 mm by increments of 100 mm.

If a not standard stroke is required, contact our technical office.

8.6 Cylinder features

See sections 9, 10 and 11 for sizes, mounting style and dimensions. See sections from 18 to 26 for materials and options.

8.7 Fluid requirements

CKN servocylinders are suitable for operation with mineral oils with or without additives ($\bf HH,\ HLP,\ HLP-D,\ HM,\ HV$), fire resistant fluids (HFA oil in water emulsion - 90-95% water and 5-10% oil, HFB water in oil emulsion - 40% water, **HFC** water glycol - max 45% water) and synthetic fluids (**HFD-U** organic esters, **HFD-R** phosphate esters).

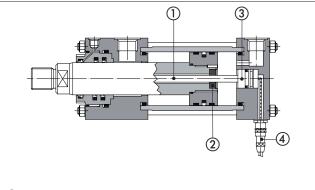
For the proper choice of the sealing system, in relation to the fluid characteristics, see section 25.

Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s
- Temperature range: 0 ÷ 70°C
- Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

8.8 Start-up notes

CKN servocylinders are supplied with the zero/span values adjusted to the cylinder's mechanical stroke ends.


During the start-up it is necessary to bleed off the air from the servocylinder as indicated in section 27.

For other details refer to the start-up instructions included in the supply.

Ensure that the servocylinder and wirings are kept away from strong magnetic field and electrical noise to prevent noises on the feedback signal. Check the electronic connections and switch-off the power supply before wiring, connecting or disconnecting the position transducer to avoid electronic damages.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

SERVOCYLINDER TYPE CKN

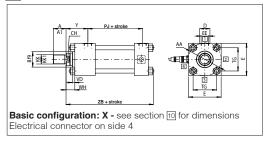
- (1) Wavequide
- 2 Permanent magnet
- ③ Integral electronics signal conditioning
- 4 Connector

TRANSDUCER FEATURES

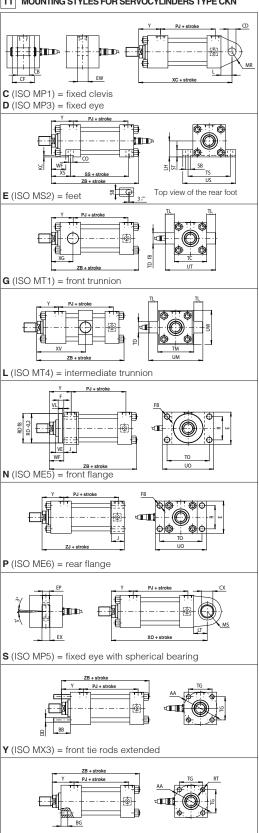
Power supply	18 - 30 VDC (±15%)
Output signal	0,1 ÷10,1 VDC / 4 ÷20 mA
Resolution	infinite, restricted by the output ripple
Linearity	< ± 0,02% F.S (min ± 60 μm)
Repeatability	< ± 0,01 mm (hysteresis< ± 0,005% F.S.)
Cycle time	1 ms (1,5 for 1100 < strokes < 2000; 2 for strokes > 2000 mm)
Temperature coefficient	50 ppm/°C
Operating temperature	-20 ÷ +90°C (+70°C for strokes > 2500 mm)
Connection type	6 pin connector M16 to DIN 45322
Protection degree	IP67 to DIN 40050
Shock resistance	100g (single hit) / IEC Standard 60068-2-27
Vibration resistance	20g / 10÷2000 Hz / IEC Standard 60068-2-6
Measuring range	100 to 3000 mm (increments of 100 mm)
Maximum speed	1 m/s
	-

ELECTRONIC CONNECTIONS - OPTION A,V

6 PIN female connector (to solder)	PIN	SIGNAL	NOTES
	1	V+	Input - power supply 24 VDC (±15%)
(1) (5)	2	VO	Gnd - power supply 0 VDC
(264)	3	OUTPUT	Output - analog signal
(3)	4	AGND	Gnd - analog signal
	5	NC	Not connect
STCO9131-D06-PG7 (Transducer view)	6	NC	Not connect


9 INSTALLATION DIMENSIONS [mm] FOR SERVOCLINDERS TYPE CKN

Ø Bore		40	50	63	80	100	125	160	200
Ø Rod	,								
A max		28 28	36 36	45	56	70 63	90 85	110 95	140 112
A1 option	. ш								
	I n max	NA 50	NA	NA	36	45	56	63	85
AA ref		59	74	91	117	137	178	219	269
B f9		42	50	60	72	88	108	133	163
BB +3 / 0		35	46	46	59	59	81	92	115
BG min		12	18	18	24	24	27	32	40
CB A13		20	30	30	40	50	60	70	80
CD H9		14	20	20	28	36	45	56	70
CF max		42	62	62	83	103	123	143	163
CH h14		22	30	39	48	62	80	100	128
CO N9		12	12	16	16	16	20	30	40
value		20	25	30	40	50	60	80	100
сх —	ance	20		0 -0,012		- 00		0,015	0 -0,02
	ance	05	1			00			
D (1)		25	29	29	36	36	42	42	52
DD		M8x1		M12x1,25		M16x1,5	M22x1,5	M27x2	M30x2
E		63±1,5	75±1,5	90±1,5	115±1,5	130±2	165±2	205±2	245±2
EE (1) 6g		G 3/8	G 1/2	G 1/2	G 3/4	G 3/4	G 1	G 1	G 1 1/4
EP max		13	17	19	23	30	38	47	57
EW h14		20	30	30	40	50	60	70	80
EX		16 0/-0,12	20 0/-0,12	22 0/-0,12	28 0/-0,12	35 0/-0,12	44 0/-0,15	55 0/-0,15	70 0/-0,2
F max		10	16	16	20	22	22	25	25
FB H13		11	14	14	18	18	22	26	33
J ref		38	38	38	45	45	58	58	76
KC min		4	4,5	4,5	5	6	6	8	8
KK 6g		M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3	M100x3
KK1 optio	on H 6a	M14x1,5	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x2
L min	Jii II og	19	32	32	39	54	57	63	82
LH h10		31	37	44	57	63	82	101	122
LT min		25	31	38	48	58	72	92	116
MR max		17	29	29	34	50	53	59	78
MS max		29	33	40	50	62	80	100	120
PJ ±1,5 (3)	85	74	80	143	151	167	180	190
R js13		41	52	65	83	97	126	155	190
RD f8		62	74	88	105	125	150	170	210
RT		M8x1,25	M12x1,75	M12x1,75	M16x2	M16x2	M22x2,5	M27x3	M30x3,5
SB H13		11	14	18	18	26	26	33	39
SS ±1,25 ((3)	109	91	85	154	151	180	179	196
ST js13		12,5	19	26	26	32	32	38	44
TC h14		63	76	89	114	127	165	203	241
TD f8		20	25	32	40	50	63	80	100
TG js13		41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
TL js13			20		32	40	50		80
		16		25				63	
TM h14		76	89	100	127	140	178	215	279
TO js13		87	105	117	149	162	208	253	300
TS js13		83	102	124	149	172	210	260	311
UM ref		108	129	150	191	220	278	341	439
UO max		110	130	145	180	200	250	300	360
US max		103	127	161	186	216	254	318	381
UT ref		95	116	139	178	207	265	329	401
UW max		80	100	110	140	150	200	240	300
VD		12	9	13	9	10	7	7	7
VE max		22	25	29	29	32	29	32	32
VL min		3	4	4	4	5	5	5	5
WF ±2		35	41	48	51	57	57	57	57
WH ±2		25	25	32	31	35	35	32	32
XC ±1,5 (3	1)	237	256	265	279	307	339	358	406
	,	57	64	70	76	71	75	75	85
XG ±2 (3)									
XO ±1,5 (3	5)	243	255	271	288	311	354	387	440
XS ±2 (3)	Minim	45	54	65	68	79	79	86	92
	Minimum stroke	5	15	20	20	35	35	35	35
XV (2)	min	100	109	120	129	148	155	161	195
±2 (3)	max	99+stroke	98+stroke	100+stroke	115+stroke	117+stroke	134+stroke	141+stroke	166+stroke
Y ±2		62	67	71	77	82	86	86	98
ZB max		231	241	250	262	275	310	329	361
ZJ ±1 (3)		218	224	233	240	253	282	295	324
(-/			· ·						


NOTES TO TABLE

- (1) Oil ports with dimension EE are threaded according to ISO 1179-1 (GAS standards) with counterbore dimension D.
- (2) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:
 - CKN-50/36*0500-L208 AK B1E3X1 **XV = 200**
- (3) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is the max stroke tolerance reported in section [18].

10 BASIC CONFIGURATION

11 MOUNTING STYLES FOR SERVOCYLINDERS TYPE CKN

50

Z (ISO MX5) = front threaded holes

B310

12 SERVOCYLINDERS TYPE CKP

12.1 Potentiometric transducers - basic working principles

The potentiometric transducer is composed by two resistive tracks ① and a wiper 2 which realizes the sliding contact through two metallic brushes. The resistive track is an aluminium element with a conductive plastic coating fixed to the cylinder's rear head. The wiper is mounted on the piston rod and moves together with it.

The tracks of the potentiometer have to be connected to a stabilized DC voltage to allow a small current flow. The two brushes of the wiper close the electronic circuit with the tracks (see figure at side), changing the resistance value and thus the voltage output proportionally to the rod position (principle of potential divider).

CKP servocylinders present the best price/performance ratio. Their compact construction allows the easy application of servocylinders in place of a standard cylinders without transducer.

12.2 Transducer features

For all the transducer features see the table at side.

12.3 Electronic connections

The 4 pin male connector is mounted on side 4 of the cylinder rear head for all mounting styles except style E (ISO MS2), where it is mounted along the cylinder axis, see section 16

The straight female cable connector 3 STC09131-D04-PG7 is included in the supply. The 90° female connector STCO9131-4-PG7 can be supplied selecting option M.

See the table at side for electronic connections.

12.4 Strokes

From 100 to 700 mm by increments of 100 mm.

If a not standard stroke is required, contact our technical office.

12.5 Cylinder features

See sections 14, 15 and 16 for sizes, mounting style and dimensions. See sections from 18 to 26 for materials and options.

12.6 Fluids requirements

CKP servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV) not compatible with glycol water and water based fluids.

For the proper choice of the sealing system, in relation to the fluid

characteristics, see section 25.
Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s
- Temperature range: 0 ÷ 70°C Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

12.7 Start-up notes

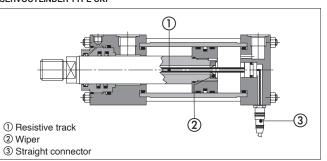
During the start-up it is necessary to bleed off the air from the servocylinder. The air bleed is located on the rod end, see figure at side. For a proper use of the air-bleed unlock the grub screw 4 M8 x 10 with

a wrench for hexagonal head screws, moves the cylinder for the necessary cycles to bleed-off the air and retighten by a torque of 20 Nm.

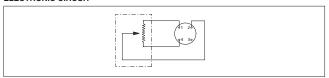
Take care to completely bleed off the air from the inside because the compressibility effects of the air trapped-in may compromise the contact between the brushes and the resistive tracks.

Ensure to bleed off the air after every long time stop of the servocylinder. For other details refer to the start-up instructions included in the supply.

12.8 Warnings


For a correct functioning, the transducer must be exclusively used as a potential divider.

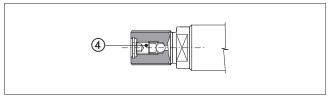
Ensure to observe the maximum rating power indicated in the table "transducer features" to avoid any component damage.
The power supply must be stabilized: variations on the voltage provided


have direct influence on the output values.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

SERVOCYLINDER TYPE CKF

ELECTRONIC CIRCUIT


TRANSDUCER FEATURES

Supply reference	10 Vpc recommended (max 30 Vpc)
Dissipation	3 W at 40°C, 0 W at 120°C
Linearity	±0,1% F.S.
Repeatability	0,01 mm
Total resistance	10 kΩ at full stroke
Insulation resistance	> 100 MΩ to 500 Vpc
Wiper current	Recommended: a few μA (10mA max)
Temperature limits	-20 ÷ + 100°C
Connection type	4 pin connector to Mil-C-26482
Protection degree	IP67 to DIN 40050
Measuring range	100 to 700 mm (increments of 100 mm)
Maximum speed	0,5 m/s

ELECTRONIC CONNECTIONS

4 PIN female connector (to solder)	PIN	SIGNAL	NOTES
(1) (2)	1	VO	Gnd - power supply 0 VDC
(4 3)	2	OUTPUT	Output - 0 - 10 V
	3	NC	Do not connect
STCO9131-D04-PG7 (Transducer view)	4	Vref	Input - power supply 10 VDC

ROD AIR BLEED

13 SERVOCYLINDERS TYPE CKV

13.1 Inductive transducers - basic working principles

The transducer is composed by a single coil-winding ① and a ferromagnetic core 2. The coil-winding is integrated into a tube fixed to the cylinder's rear head, the core is fixed to the piston rod and moves together with it.

When the core moves together with the piston, the inductance of the coil-winding changes proportionally to the core position. The separate electronic conditioning card sends a sinusoidal signal to the primary coil-winding, it reads the corresponding signal of the secondary coilwinding and, from their difference, it calculates the inductance and computes the analog output feedback signal.

The contactless principle of the transducer ensures a long working life and its ruggedness construction allows to withstand high frequencies or dynamical stresses (i.e. simulators, vibropresses etc.).
The compact construction of CKV allows the easy application of the ser-

vocylinders in place of cylinders without transducer.

The separate conditioning card makes the inductive transducer ideal for all applications with high temperatures: in this case the max temperature is limited by the sealing system.

13.2 Transducer features

CKV are equipped with "Penny & Giles"'s ICT inductive transducers whose features are shown in the table at side.

The performances of the transducer indicated in the table at side refer exclusively to the use with its proper conditioning card.

13.3 Electronic conditioning card

The performance of the table on the side is guaranteed by the electronic conditioning card provided with one of the following configurations:

A = 4 - 20 mA **V** = 0 - 10 V

Other output ranges are available on request, contact our technical office.

The electronic conditioning card allows to adjust the zero and gain references by a screwdriver.

The card format fits to DIN EN50022 or EN50035 rails or allows a wall mounting by 4 screws M5x30.

13.4 Electronic connections

The 4 pin male connector is mounted on side 4 of the cylinder rear head for all mounting styles except style E (ISO MS2), where it is mounted along the cylinder's axis, see section 16.

The straight female cable connector ③ STC09131-D04-PG7 is supplied with a cable 3 m long connected to the electronic conditioning card by wire clamp IP66 and screw terminals. The 90° female connector STCO9131-4-PG7 can be supplied selecting option M.

See the table at side for electronic connections.

13.5 Strokes

From 30 to 1000 mm by increments of 10 mm.

If a not standard stroke is required, contact our technical office.

13.6 Cylinder features

See sections 14, 15 and 16 for sizes, mounting style and dimensions. See sections from 18 to 26 for materials and options

13.7 Fluid requirements

CKV servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion - 90-95% water and 5-10% oil, HFB water in oil emulsion - 40% water, HFC water glycol - max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters)

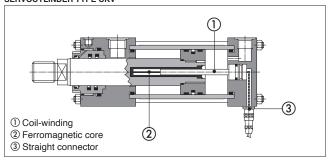
For the proper choice of the sealing system, in relation to the fluid characteristics, see section 25

Recommended fluid characteristics:

- Viscosity: 15 ÷ 100 mm²/s
- Temperature range: 0 ÷ 70°C
- Fluid contamination class: for normal operation ISO4406 class 18/16/13 NAS1638 class 7. Longer life class 16/14/11 NAS1638 class 5; see also filter section at www.atos.com or KTF catalog.

13.8 Start-up notes

CKV servocylinders are supplied with zero/span values adjusted to the cylinder's mechanical stroke ends. During the start-up it is necessary to bleed off the air from the servocylinder as indicated in section [27].

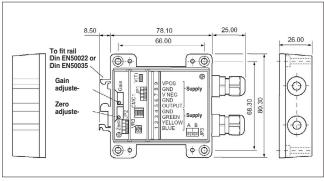

For other details refer to the start-up instructions included in the supply.

13.9 Warnings

Ensure that the maximum distance between the servocylinder and the conditioning card is lower than the recommended one: 10 m.

It is recommended to connect the draining port, supplied as standard, to the tank without back pressure, see section 28 for details.

SERVOCYLINDER TYPE CKV


TRANSDUCER FEATURES

Linearity	±0,2%
Repeatability	±0,05%
Insulation resistance	>50 MΩ to 50 VDC
Temperature coefficient	±200 ppm/°C from -20 to +100°C
Operating temperature	-20 ÷ +120°C
Connection type	4 pin connector to Mil-C-26482
Protection degree	IP67 to DIN 40050
Measuring range	30 to 1000 mm (increments of 10 mm)
Maximum speed	1 m/s

ELECTRONIC CONNECTIONS

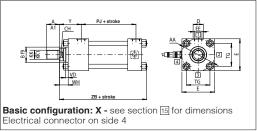
ELECTRONIC CONNECTIONS								
4 PIN female connector (to solder)	PIN	SIGNAL	NOTES					
(1) (2)	1	Ve+	Coil V+					
4 3	2	Ve-	Coil V-					
	3	NC	Do not connect					
STCO9131-D04-PG7 (Transducer view)	4	V0	Sensor ground					

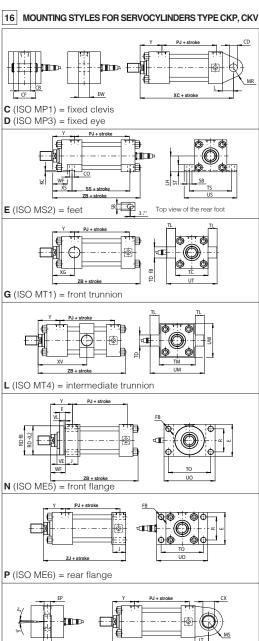
ELECTRONIC CONDITIONING CARD

	Analog output A	Voltage output V			
Supply voltage	from 10 to 30 VDC	from 13,5 to 30 VDC			
Supply current	12,6 mA max	19 mA max			
Output	4÷20 mA	0÷10 VDC			
Zero adjustment range	-10% to +60% of spa	an			
Gain adjustment range	+40% to +110% of sp	oan			
Output ripple	< 5 mV rms				
Output load	10 kΩ min.				
Operating temperature	0 ÷ +70°C (storage -	40 ÷ +85°C)			
Temperature coefficient	300 ppm/°C				
Protection degree	IP66 to DIN 40050	IP66 to DIN 40050			

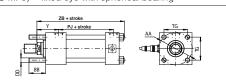
14 INSTALLATION DIMENSIONS [mm] FOR SERVOCLINDERS TYPE CKP, CKV

Ø Bore)	40	50	63	80	100	125	160	200
Ø Rod		28	36	45	56	70	90	110	140
A max		28	36	45	56	63	85	95	112
A1 option	n H max	NA	NA	NA	36	45	56	63	85
AA ref		59	74	91	117	137	178	219	269
B f9		42	50	60	72	88	108	133	163
BB +3 / 0		35	46	46	59	59	81	92	115
BG min		12	18	18	24	24	27	32	40
CB A13		20	30	30	40	50	60	70	80
CD H9		14	20	20	28	36	45	56	70
CF max		42	62	62	83	103	123	143	163
CH h14		22	30	39	48	62	80	100	128
CO N9		12	12	16	16	16	20	30	40
cx value	е	20	25	30	40	50	60	80	100
	ance			0 -0,012			0 -0),015	0 -0,02
D (1)		25	29	29	36	36	42	42	52
DD 6g		M8x1	M12x1,25	M12x1,25	M16x1,5	M16x1,5	M22x1,5	M27x2	M30x2
E		63±1,5	75±1,5	90±1,5	115±1,5	130±2	165±2	205±2	245±2
EE (1) 6g		G 3/8	G 1/2	G 1/2	G 3/4	G 3/4	G 1	G 1	G 1 1/4
EP max		13	17	19	23	30	38	47	57
EW h14		20	30	30	40	50	60	70	80
EX		16 0/-0,12	20 0/-0,12	22 0/-0,12	28 0/-0,12	35 0/-0,12	44 0/-0,15	55 0/-0,15	70 0/-0,2
F max		10	16	16	20	22	22	25	25
FB H13		11	14	14	18	18	22	26	33
J ref		38	38	38	45	45	58	58	76
KC min		4	4,5	4,5	5	6	6	8	8
KK 6g		M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x3	M80x3	M100x3
KK1 optio	on H 6g	M14x1,5	M16x1,5	M20x1,5	M27x2	M33x2	M42x2	M48x2	M64x2
L min		19	32	32	39	54	57	63	82
LH h10		31	37	44	57	63	82	101	122
LT min		25	31	38	48	58	72	92	116
MR max		17	29	29	34	50	53	59	78
MS max		29	33	40	50	62	80	100	120
PJ ±1,5 (3	i)	85	74	80	93	101	117	130	165
R js13		41	52	65	83	97	126	155	190
RD f8		62	74	88	105	125	150	170	210
RT		M8x1,25	M12x1,75	M12x1,75	M16x2	M16x2	M22x2,5	M27x3	M30x3,5
SB H13		11	14	18	18	26	26	33	39
SS ±1,25	(3)	109	91	85	104	101	130	129	171
ST js13		12,5	19	26	26	32	32	38	44
TC h14		63	76	89	114	127	165	203	241
TD f8		20	25	32	40	50	63	80	100
TG js13		41,7	52,3	64,3	82,7	96,9	125,9	154,9	190,2
TL js13		16	20	25	32	40	50	63	80
TM h14		76	89	100	127	140	178	215	279
TO js13		87	105	117	149	162	208	253	300
TS js13		83	102	124	149	172	210	260	311
UM ref		108	129	150	191	220	278	341	439
UO max		110	130	145	180	200	250	300	360
US max		103	127	161	186	216	254	318	381
UT ref		95	116	139	178	207	265	329	401
UW max		80	100	110	140	150	200	240	300
VD		12	9	13	9	10	7	7	7
VE max		22	25	29	29	32	29	32	32
VL min		3	4	4	4	5	5	5	5
WF ±2		35	41	48	51	57	57	57	57
WH ±2		25	25	32	31	35	35	32	32
XC ±1,5 (3		184	191	200	229	257	289	308	381
XG ±2 (3)		57	64	70	76	71	75	75	85
XO ±1,5 (3	3)	190	190	206	238	261	304	337	415
XS ±2 (3)	Minimum	45	54	65	68	79	79	86	92
	stroke	5	15	20	20	35	35	35	35
XV (2)	min	100	109	120	129	148	155	161	195
±2 (3)	max	99+stroke				117+stroke		141+stroke	
Y ±2		62	67	71	77	82	86	86	98
ZB max		178	184	192	212	225	260	279	336
ZJ		165	159	168	190	203	232	245	299

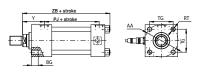

NOTES TO TABLE


- (1) Oil ports with dimension EE are threaded according to ISO 1179-1 (GAS standards) with counterbore dimension D.
- (2) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CKP-50/36*0500-L208 - K - B1E3X1 XV = 200


(3) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is the max stroke tolerance reported in section [18].

15 BASIC CONFIGURATION



S (ISO MP5) = fixed eye with spherical bearing

Y (ISO MX3) = front tie rods extended

Z (ISO MX5) = front threaded holes

17 MAIN CHARACTERISTICS OF TRANSDUCERS

Code	CKF section 2	CKM section 3	CKN section 8	CKP section 12	CKV section 13
Transducer type	Magnetosonic, analog	Magnetosonic, programmable	Magnetostrictive	Potentiometric	Inductive
Linearity error (1)	< ± 0,02%	< ± 0,01%	< ± 0,02%	± 0,1%	± 0,2%
Repeatability	< ± 0,001% (1)	< ± 0,001% (1)	< ± 0,005% (1)	0,01 mm	± 0,05% (1)
Strokes	50 to 2500	25 to 3000	100 to 3000	100 to 700	30 to 1000
Interface	Analog: 0 ÷ 10 V, 4 ÷ 20 mA Digital: SSI	Analog: 0 ÷ 10 V, 4 ÷ 20 mA Digital: SSI, PROFINET, PROFIBUS DP	Voltage: 0,1 ÷ 10,1 V Current: 4 ÷ 20 mA	Voltage 0 ÷ 10 V	Voltage: 0 ÷ 10 V Current: 4 ÷ 20 mA
Typical applications	Sawing or bending machines	Steel plants, plastic and rubber	Foundry and energy	Various	Simulators and energy
Temperature limits	-20°C to +75°C	-20°C to +75°C	-20°C to +90°C	-20°C to +100°C	-20°C to +120°C

(1) Percentage of the total stroke

18 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke to prevent the use of the cylinder heads as mechanical stroke-end. The stroke tolerances are reported in the table at side.

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from overloads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' length has to be added to all stroke dependent dimensions in sections 5, 9 and 14.

20 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "cold drawn and stressed steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra ≤ 0,25 μm.

21 TIE RODS FEATURES

The cylinder's tie rods are made in "normalized automatic steel"; end-threads are rolled to improve the fatique working life. They are screwed to the heads or mounted by means of nuts with a prefixed tightening torque MT, see the table at side.

22 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7; roughness Ra ≤ 0,25 µm. Corrosion resistance of 100 h in neutral spray to ISO 9227 NSS

ø Rod	Material	Rs min [N/mm²]	Chro	
28÷90	hardened and tempered alloy-steel	700	0.020	850-1150
110÷140	allov steel	450	0,020	000-1100

Rod diameters from 28 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the tables [6], [0] and [5]. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing. **Contact our** technical office in case of heavy duty applications.

Rod corrosion resistance and hardness can be improved selecting the options ${\bf K}$ and ${\bf T}$ (option K affects the strength of standard rod, see ${\bf tab.~B015}$ for the calculation of the expected rod fatigue

 $\boldsymbol{K}=$ Nickel and chrome-plating (for rods from 28 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

- 500 h in acetic acid salt spray to ISO 9227 AASS
 1000 h in neutral spray to ISO 9227 NSS
- T = Induction surface hardening and chrome plating:
 56-60 HRC (613-697 HV) hardness

23 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is required to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). See **tab. B015** for the max damping energy. The cylinder is provided with needle valve to optimize cushioning performances in different appli-

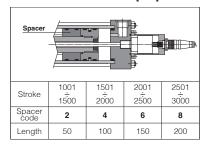
cations. The regulating screws are supplied fully screwed in (max cushioning effect). In case of high masses and/or very high operating speeds we recommend to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity

Ø Bore	63	80	100	125	160	200	
Ø Rod		45	56	70	90	110	140
Cushioning length [mm]	Lf	27	29	27	25	34	34

24 POSITION OF THE OIL PORTS AND CUSHIONING ADJUSTMENTS

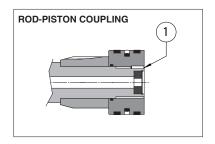
FRONT HEAD: B1 = oil port position; $E^* = \text{cushioning adjustment position}$ REAR HEAD: X1 = oil port position. The oil ports and cushioning adjustment positions are available, respectively,

on sides 1 and 3 for all styles except E (see the figure at side): the style E has the cushioning adjustment on side 2

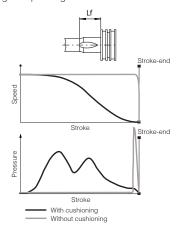

B310

Example of model code: CKM/00-50/22 *0500-S201 - D - B1E3X1

STROKE TOLERANCES

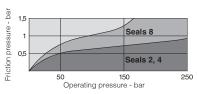

- 0 +2 mm for strokes up to 1250 mm
- 0 +5 mm for strokes from 1250 to 3150 mm
 0 +8 mm for strokes over 3150 mm

RECOMMENDED SPACERS [mm]



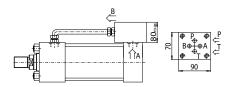
TIE RODS TIGHTENING TORQUES

Ø Bore	40	50	63	80	
MT [Nm]	20	70	70	160	
Wrench	13	19	19	24	
Ø Bore	100	125	160	200	
MT [Nm]	160	460	820	1160	
Wrench	24	32	41	46	

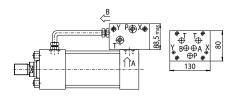

Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylin-der and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke

25 SEALING SYSTEM FEATURES

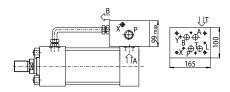
The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015**. Seals **2** and **4** not available for CKP since they are not compatible with glycol water and water


Special sealing system for low temperature, high frequencies (up to 20 Hz), long working life and heavy duty are available, see **tab. TB020**. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see **tab. B137**. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition.

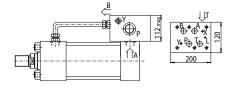
Sealing Material		Features	Max Fluid speed temperature		Fluids compatibility	ISO Standards for seals		
system	Waterial	reatures	[m/s]	range	Fidius companismty	Piston	Piston	
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U,HFD-R	ISO 7425/1	ISO 7425/2	
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2	
8	NBR + PTFE + POLYURETHANE	low friction	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 7425/2	


26 INCORPORATED SUBPLATE

CK* cylinders with oil ports positions 1 can be supplied with ISO (size 06, 10, 16 and 25) incorporated subplates for mounting of valves directly on the cylinder.



10 = subplate with mounting surface 4401-03-02-0-05 (size 06) Oil ports P and T = G 3/8 For bores from 40 to 200 and strokes longer than 100 mm


For shorter strokes, the cylinder must be provided with suitable spacer

20 = subplate with mounting surface 4401-05-05-0-05 (size 10) Oil ports P and T = G 3/4; X and Y = G 1/4 For bores from 40 to 200 and strokes longer than 150 mm For shorter strokes, the cylinders must be provided with suitable spacer

30 = subplate with mounting surface 4401-07-07-0-05 (size 16) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 80 to 200 and strokes longer than 150 mm For shorter strokes, the cylinders must be provided with suitable spacer

 ${\bf 40}$ = subplate with mounting surface 4401-08-08-0-05 (size 25) Oil ports P and T = G 1; L, X and Y = G 1/4 For bores from 125 to 200 and strokes longer than 150 mm For shorter strokes, the cylinders must be provided with suitable spacer

Note: for the choice of suitable spacer see section 19. The addition of spacer length and working stroke must be at least equal or upper than the minimum stroke indicated above, see the following example:
Subplate 20; working stroke = 70 mm; min. stroke = 150 mm → select spacer 4 (lenght = 100 mm)

27 AIR BLEEDS

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's

motion: air bleed valves realize this operation easily and safely.

Air bleeds are positioned on side 3 except for rear heads of CKV, CKP cylinders with bores from 80 to

200 mm (on side 2) and for heads of mounting style **E** (on side 2), see section [24]. For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, moves the cylinder for the necessary cycles to bleed-off the air and retighten as indicated in table at side.

Screwing Ø Bore Tightening torque 40 M5 x 4 8 Nm

Draining port Wiper Rod seals

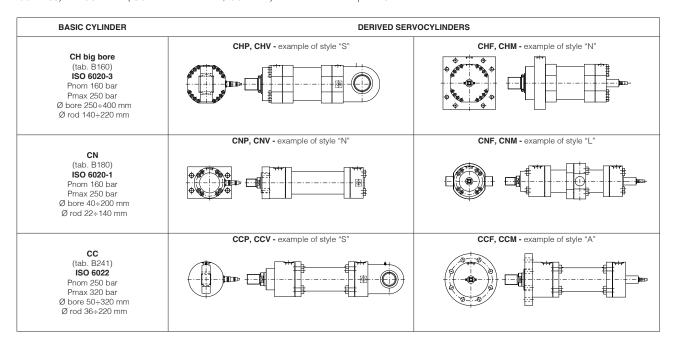
28 DRAINING

The rod side draining reduces the seals friction and increases their reliability.

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side).

It is recommended to connect the draining port to the tank without backpressure Draining port is G1/8.

29 IFC61508


compliance with IEC 61508: 2010

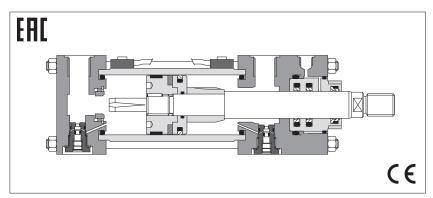
Servocylinders meets the requirements of:

- SC3 (systematic capability)
- max SIL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
- max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied)

30 SERVOCYLINDERS DERIVED FROM SERIES CH, CN, CC

Servocylinders derived from CH (ISO 6020-2 P = 160 bar; **tab. B140**), CH big bores (ISO 6020-3 P = 160 bar; **tab. B160**), CN (ISO 6020-1 P = 160 bar; **tab. B180**) and CC series (ISO 6022 P = 250 bar; **tab. B241**) are available on request. Contact our technical office for details.

31	SPARE PARTS - SEE TABLE SP-B310
O I	SPANE PANTS - SEE TABLE SP-0310


Example for seals spare parts code

	G 8	_	CKF	-	125	/	90
Sealing system							
Cylinder series							
Bore size [mm]							Rod diamet

Hydraulic cylinders type CKS - with adjustable proximity sensors

to ISO 6020-2 - nominal pressure 10 MPa (100 bar) - max 15 MPa (150 bar)

1 PROXIMITY SENSORS: MAIN FEATURES

Reed	Hall effect
- High switching power, up to 230 Vpc or Vac - Suitable to directly pilot a power load - 2 wires circuit for easy connection	- Electronic sensor - Infinite electric life (no moving parts inside it) - High sensitivity and switching reliability - Not suitable to directly pilot a power load - 3 wires circuit to avoid voltage drop

2 PROXIMITY SENSORS: MAIN DATA

CKS cylinders are derived from standard CK (tab. B137) with stainless steel piston and housing and with a special design to equip external proximity sensors for rod position detection."Reed" or "Hall effect" sensors are easily assembled on one of the four tie rods by means of proper clamps which allows to position them along the cylinder housing. The sensors switch their electric circuit when they detect the permanent magnet integrated into the piston. Thus they can be used to perform motion cycles, operating sequences, fast-slow cycles and safety functions.

- Bore sizes from 25 to 100 mm
- 2 rod diameters per bore
- Piston and housing in stainless steel
- Rods and tie rods with rolled threads
- 14 standard mounting styles
- 3 seals options
- · Adjustable or fixed cushioning
- ATEX sensors
- · Attachments for rods and mounting styles, see tab. B800

For cylinder's dimensions and options see tab. B137

	Power supply	Max power	Max current	Voltage drop	Swite time	•	Circuit style		Output	Cable section	Cable shealt	Cable shealt [mm]	Temperature range [°C]	Protection degree
	[VDC/AC]	[W]	[mA]	[V]	ON	OFF		(-)						209,00
P/R (REED)	3 ÷230	10 VA	500	-	0,5	0,1	2 wires	N.O.	-	2x0,25	PVC	2500	-20 ÷+85	IP67
Q/S (HALL)	10 ÷30 (1)	6	250	0,7	0,2	0,1	3 wires	N.O.	PNP	3x0,14	PVC	2500	-20 ÷+85	IP67
ATEX (HALL)	8,2 (1)	6	250	-	0,2	0,1	3 wires	N.O.	-	2x0,14	PVC	6000	-20 ÷+70	IP67

Notes: (1) Only VDC

(2) N.O.= Normally Open

CKS

3 MODEL CODE

6 = front and rear

4 = rear only 5 = front only

7 = rear only 8 = front only

9 = front and rear

Cylinder series CKS to ISO 6020 - 2 CKSA with ATEX sensors Bore size, see section 8 from 25 to 100 mm Rod diameter, see sections 8 from 12 to 70 mm Stroke, see section 8		Beries number (2) Heads' configuration (1) (3) Oil ports positions B* = front head X* = rear head Cushioning adjustments positions, to be entered only if adjustable cushioning are selected E* = front head Z* = rear head * = selected position (1, 2, 3 or 4)
from 20 to 3000 mm		Options (3):
Mounting style (1)	REF. ISO	Rod end (1)
C = fixed clevis D = fixed eye E = feet G = front trunnion H = rear trunnion N = front flange P = rear flange S = fixed eye + spherical bearing T = threaded hole+tie rods extended V = rear tie rods extended W = both end tie rods extended X = basic execution Y = front tie rods extended Z = front threaded holes	MP1 MP3 MS2 MT1 MT2 ME5 ME6 MP5 MX7 MX2 MX1	F = female thread G = light female thread H = light male thread Proximity sensor type for CKS, see sections 1 and 2 (4) P = REED with connector Q = HALL with connector R = REED with cable output S = HALL with cable output Air bleeds (1) A = front air bleed W = rear air bleed Draining (1) L = rod side draining Sealing system (1)
Cushioning (1)		Sealing system (1) 1 = (NBR + POLYURETHANE) high static and dynamic sealing
0 = none Slow adjustable Fast fixed		2 = (FKM + PTFE) very low friction and high temperatures 4 = (NBR + PTFE) very low friction and high speeds

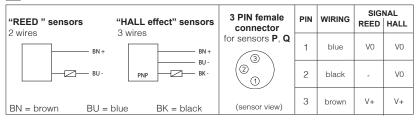
⁽¹⁾ For details refer to tab. B137 (3) To be entered in alphabetical order (2) For spare parts request indicate the series number printed on the nameplate only for series < 30 r (4) 2 proximity sensors are included in the supply, for spare parts see section 9

CYLINDERS

 $\mathbf{0} = \text{none } \mathbf{1} = 25 \, \text{mm} \ \mathbf{2} = 50 \, \text{mm} \ \mathbf{4} = 100 \, \text{mm} \ \mathbf{6} = 150 \, \text{mm} \ \mathbf{8} = 200 \, \text{mm}$

57

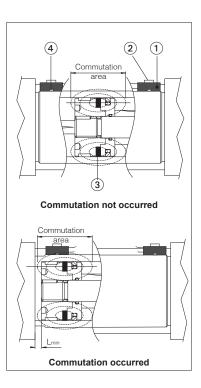
Spacer, see section 5


4 BASIC WORKING PRINCIPLES

The rod position detection system is composed by: one or more magnetic sensors ① fixed to a tie rod by proper clamps ② and a permanent magnet ③ integrated into the piston.

Both the "Reed" and "Hall effect" sensors are defined by a "commutation area" of variable dimension depending to the bore and sensor type (see section [6]). The permanent magnet generates a magnetic field of suitable power and shape. When the piston gets close to the sensor and the magnetic field enters into its "sensitive area" (6), the electric circuit is closed and the piston position detected, see figures at side. The electric circuit remains closed depending to the commutation area length, see section [6]. The distance of the piston rod from the mechanical stroke-end at which the sensor commutation occurs depends to the sensor type and position, see Lmin dimension in section [6]. The sensors can be assembled at any position of the cylinder stroke unscrewing the metallic clamp and moving the sensor to the desired position.

The sensors are equipped with a LED signal that indicates the commutation status.


5 ELECTRIC CIRCUITS

The sensors **P** and **Q** are supplied with 3 pin female connector All the sensors are supplied with an output cable 2,5 m long Reed sensors are also available with 3 wires circuit, **contact our technical office**

6 INSTALLATION AND WORKING DATA

		Option P / R (Reed sensors)							Option Q / S (Hall effect sensors)					
Ø Bore	Max piston		L min (Commutation		Max piston		L min (1) [mm]		Commutation Hysteresis	
	speed	Opti	on P	Opti	on R	area	Hysteresis speed	Opti			on S	area	Hysteresis	
	[m/s]	Front head	Rear head	Front head	Rear head	[mm]	[mm]	[m/s]	Front head	Rear head	Front head	Rear head	[mm]	[mm]
25	0.4	4	3	4	3	4	2	0.15	2.5	10	5	10	10	1
32	0.4	9	8.5	9.1	9.6	4	2	0.15	7.5	15	18	17.3	10	1
40	0.5	4	4	4	4	4	2	0.15	14	7	15	7	14	1
50	0.5	10.1	13.8	8.5	12.5	4	3	0.15	9.5	8	10	8	14	1
63	0.5	6	6	6	6	6	5	0.2	16	16	12	7	16	1
80	0.5	5	7	7	7	5	4	0.2	25	5	20	14	14	1
100	0.5	5	7	7	7	7	5	0.3	25	5	20	14	14	1

Note: (1) distance of the piston rod from the mechanical stroke-end at which the sensor commutation occurs with the sensor positioned stuck to the head, see figures in section 4

7 OPERATING LIMITS

The cylinder housing and piston are made in stainless steels to avoid dispersion and distorsion of the magnetic field generated by the permanent magnet, integrated into the piston. This limits the working pressure up to 100 bar: ensure to not exceed this pressure values.

For the proper use of the sensor and to avoid lecture faults (absence of signal or double signal) it is necessary to:

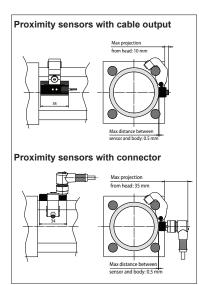
- Respect the max distance between the sensor and the body (max 0,5 mm)
- Avoid the presence of ferromagnetic objects near the sensor (minimum distance 10 mm)
- Make sure that there are no external magnetic fields around the cylinder
- Not exceed maximum piston speed shown in section 6

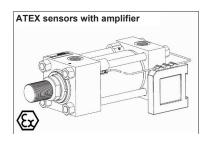
8 BORE / ROD SIZES AND STROKE

The table shows the available bore/rod sizes, refer to **tab. B137** for installation dimensions and options. For the proper use of proximity sensors the stroke must be selected greater than the values reported below, lower strokes can be achieved by selecting the spacer **1**. The introduction of spacers increases the overall cylinder's dimensions.

	Ø Bore	25	32	40	50	63	80	100
Rod	standard	12	14	18	22	28	36	45
Ø	differential	18	22	28	36	45	56	70
P	Min. stroke	20	20	25	25	30	30	40

9 ATEX SENSORS FOR CKA

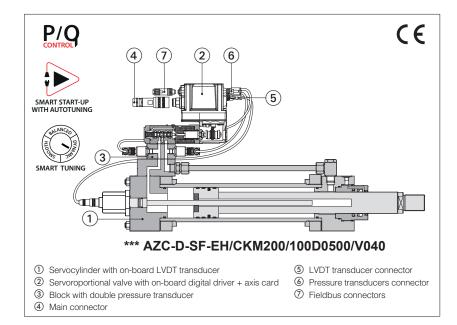

CKSA cylinders are supplied with magnetic sensors with ATEX certifications:


Ex II 1G Ex ia IIC T4 Ga for gas (zone 0/1/2),

Ex II 1D Ex ia IIIC t 135°C Da for dusts (zone 20/21/22)

The sensors are supplied with an amplifier which it serves as the interface between eletrical signals from the hazardous area and the non-hazardous area (safe zone).

For certification and start up refer to the user's guide included in the supply.



Digital electrohydraulic servoactuators

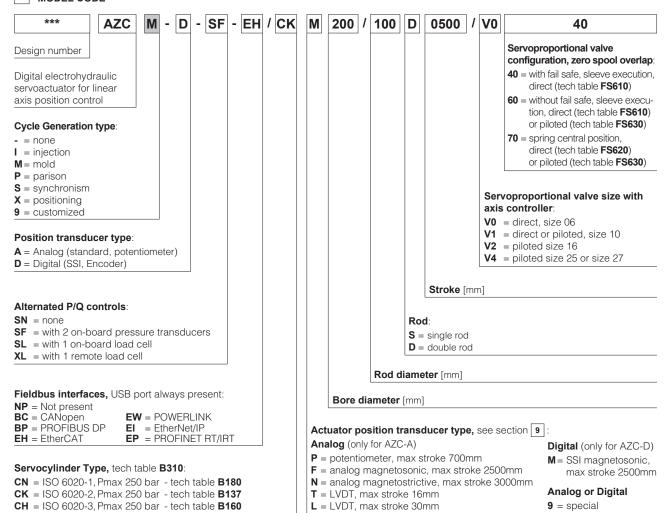
servocylinder plus servoproportional directional with on-board driver & axis card

AZC

Digital electrohydraulic servoactuators are stand-alone units performing closed loop position controls

The complete motion control cycle can be operated by external signals (from machine PLC) or programmed internally to the controller.

Alternated P/Q control add the force limitation to position regulation, requiring pressure or force transducers installation.


The servoacuators are made by a servocylinder with position transducer, servoproportional valve with on-board driver plus axis card, factory assembled and tested.

They can be provided with optional fieldbus interfaces for functional parameters setting, reference signals and real time diagnostics.

Smart Start-up procedure makes the commissioning quicker and easier, thanks to the Autotuning and Smart Tuning functionalities. Multiple PID sets allows to easily switch axis behaviour according to machine cycle.

1 MODEL CODE

CC = ISO 6022, Pmax 320bar - tech table B241

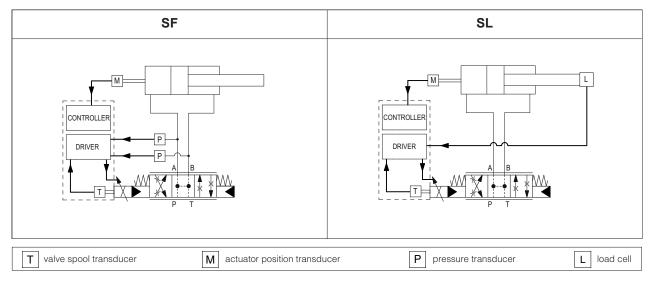
V = inductive, max stroke 1000mm

FS700 CYLINDERS

X = remoted

59

2 MAIN CHARACTERISTICS


Assembly position		Any position				
Ambient temperature rang	ge	standard execution = -20°C ÷ +60°C				
Storage temperature rang	je	Standard execution = -20°C ÷ +70°C				
Protection degree to EN60	0529	IP66 / IP67				
Duty factor		Continuous rating (ED=100%)				
Recommended fluid temp	erature	-20°C ÷ +60°C, with HFC hydraulic fluids = -20°C ÷ +50°C				
Recommended viscosity		20 ÷ 100 mm²/s - max allowed range 15 ÷ 380 mm²/s				
Max fluid	normal operation	ISO4406 class 18/16/13 NAS1638 class 7	see also filter section at			
contamination level	longer life	ISO4406 class 16/14/11 NAS1638 class 5	www.atos.com or KTF catalog			
Hydraulic f	fluid	Classification	Ref. Standard			
Mineral oils		HL, HLP, HLPD, HVLP, HVLPD	DIN 51524			
Flame resistant without wa	ater	HFDU, HFDR				
Flame resistant with water		HFC	ISO 12922			

3 POSITION CONTROL

Digital servoproportionals direct or pilot operated include valve with on-board digital driver plus axis card to perform the position closed loop of hydraulic actuator. Axis controllers are operated by an external or internally generated reference position signal. For detailed information about integral axis controller see tech tables **FS610**, **FS620**, **FS630**.

4 ALTERNATED POSITION / FORCE CONTROL

SF and **SL** controls add the alternated force closed loop control to the actuator standard position control. A dedicated algorithm alternates pressure (force) depending on the actual hydraulic system conditions. For detailed information about SF, SL controls, see tech table **FS500**.

5 SMART START-UP

The automatic procedure supports the user during the commissioning phases of the axis control with guided procedures:

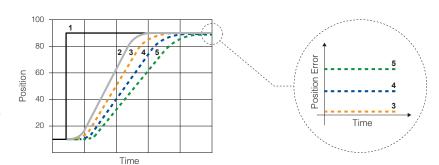
· General setting

It assists the user in system data setup, as like cylinder stroke, diameters, load mass, configure analog/digital signals and communication interface, position transducer setup.

• System check

It automatically executes position open loop movements to set axis control parameters, position transducer calibration and verify cylinder stroke.

Position autotuning


It automatically determines the optimal PID parametrization of the position control adapting the dynamic response to guarantee control precision and axis stability. Once the procedure is started, the control performs few automatic position open loop movements of the actuator, during which control parameters are calculated and stored.

6 SMART TUNING

Once the Smart Start-up procedure has been completed, the Smart tuning feature allows to further refine the position control response by choosing from 3 different levels of performance in positioning:

- dynamic best dynamics and accuracy (default factory setting)
- balanced average dynamics and accuracy
- **smooth** attenuated dynamics and accuracy to improve control stability in critical applications or in environments with electrical disturbances Settings can be changed any time via Z-SW software or fieldbus.

If required, control performance can be further customized by modifying PID parameter via Z-SW software.

- 1 = position reference signal
- 2 = generated position trajectory
- **3** = dynamic
- 4 = balanced
- **5** = smooth

7 MULTIPLE SETS

Multiple PID sets allows to easily switch axis behaviour according to machine cycle, selecting between independent groups of parameters for:

- position control PID
- force control PID and P/Q logics switching criteria

Settings can be changed any time via Z-SW software, fieldbus or digital input signals.

8 FIELDBUS - see tech. table GS510

Fieldbus allows valve direct communication with machine control unit for digital reference, valve diagnostics and settings. These execution allow to operate the valves through fieldbus or analog signals available on the main connector.

9 ACTUATOR'S TRANSDUCER CHARACTERISTICS

9.1 Position transducers

The accuracy of the position control is strongly dependent to the selected position transducer. Four different transducer interfaces are available on the axis cards, depending to the system requirements: potentiometer or analog signal (A execution), SSI or Encoder (D execution).

Transducers with digital interface allow high resolution and accurate measures, that combined with fieldbus communication grants highest performances.

Transducers with analog interface grant simple and cost effective solutions.

9.2 Pressure/force transducers

The accuracy of the force control is strongly dependent to the selected pressure/force transducer.

Alternated force controls require to install pressure transducers or load cell to measure the actual pressure/force values.

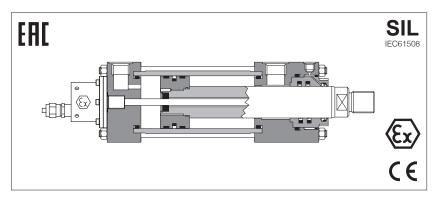
Pressure transducers allow easy system integration and cost effective solution for alternated position/force controls (see tech table **GS465** for pressure transducers details).

Load cell transducers allow the user to get high accuracy and precise regulations for alternated position/force control.

The characteristics of the remote pressure/force transducers must be always selected to match the application requirements and to obtain the best performances: transducer nominal range should be at least 115%÷120% of the maximum regulated pressure/force.

9.3 Transducers characteristics & interfaces - following values are just for reference, for details please consult the transducer's datasheet

		Pressure/Force				
Execution		Α	ı	SF, SL		
Input type	Potentiometer	Analog (3)	SSI (4) (5)	Incremental Encoder	Analog	
Power supply (1)	10 ÷ 30 VDC	+24 VDC	+24 VDC	+5 VDC / +24 VDC	+24 VDC	
Controller Interface	0 ÷ 10 V	0 ÷ 10V 4 ÷ 20 mA	Serial SSI binary/gray	TTL 5Vpp - 150 KHz	±10 Vpc 4 ÷ 20 mA	
Max speed	0,5 m/s	1 m/s	1 m/s	2 m/s	-	
Max Resolution	< 0.4 % FS	< 0.2 % FS	5 μm	1 μm (@ 0.15 m/s)	< 0.4 % FS	
Linearity error (2)	± 0.1% FS	< ±0.02% FS	< ± 0.02 % FS	< ± 0.001 % FS	< ±0.25% FS	
Repeatability (2)	± 0.05% FS	< ± 0.005% FS	< ± 0.005 % FS	< ± 0.001 % FS	< ±0.1% FS	


- (1) power supply provided by digital controller
- (2) percentage of total stroke
- (3) Output derived from 4 different types of transducers, see tech table B310
- (4) Output derived from 2 different types of transducers, see tech table B310
- (5) Balluff BTL7 with SSI interface is not supported

11/23 62

Hydraulic cylinders type CKA - for potentially explosive atmospheres

ATEX - ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)

1 ATEX CERTIFICATION

Cylinder type	Group	Equipment category	Gas/dust group	Temperature class (1)	Zone			
CKA	Ш	2 GD	II C/III C	T85°C(T6) / T135 °C(T4)	1,2,21,22			
CKA + ex-proof	Ш	2 G	IIΒ	T6/T5	1,2			
rod position transducer (2)	Ш	2 D	III C	T85°C/T100°C	21,22			
CKA + ex-proof proximity sensors	П	3 G	II	T4	2			

(1) Temperature class depends to the max fluid temperature and sealing system (2) The rod position transducer is certified to work with explosive gas (cat. 2G) and dust (cat. 2D)

CKA cylinders are derived from standard CK (tab.B137) with certification according to ATEX 2014/34/EU. They are designed to limit the external surface temperature, according to the certified class, to avoid the self-ignition of the explosive mixtures potentially present in the environment. CKAM servocylinders are equipped with ex-proof built-in digital magnetostrictive position transducer, ATEX certified.

- Optional ex-proof proximity sensors, ATEX certified
- Bore sizes from 25 to 200 mm
- · Attachments for rods and mounting styles, see tab. B800
- CKA cylinders are SIL compliance with IEC 61508 (TÜV certified), certification on request

For cylinder's dimensions and options see tab. B137

For cylinder's choice and sizing criteria see tab. B015

2 MODEL CODE									
CKA M / 10 -	50 / 22 / 22	* 0500	- S	3	0	1 -	Α -	B1E3X1Z3	**
Cylinder series									Series number (2)
CKA to ATEX 2014/34/EU dimensions to ISO 6020 - 2								Heads' configura	
Ex-proof position transducer See section 5 - = omit if not requested M = Digital magnetostrictive								only if adjustable of E* = front head	ents positions, to be enter ushioning are selected
Incorporated subplate (1)								Z * = rear head * = selected posi	tion (1, 2, 3 or 4)
- = omit if subplate is not requested 10 = size 06 20 = size 10 30 = size 16 40 = size 25							Rod F = f G = li	ons (1)(3): end emale thread ght female thread	
Bore size (1) from 25 to 200 mm							Over D = f Y = r	ght male thread sized oil ports ront oversized oil po ear oversized oil po	rt
Rod diameter (1) from 12 to 140 mm							R = f S = r	roof proximity sensor ront sensor ear sensor	ors, see section 9
Second rod diameter for double rod (1)							K = r	treatment iickel and chrome p nduction surface harc	lating lening and chrome platin
from 12 to 140 mm, omit for single rod Stroke (1)							A =f W =r Drain	leeds ront air bleed ear air bleed iing	
up to 5000 mm (4000 mm for CKAM)							L =r	od side draining	
Mounting style (1)	REF. ISO							tem, see section 8	
C = fixed clevis D = fixed eye E = feet G = front trunnion H = rear trunnion L = intermediate trunnion	MP1 (4) MP3 (4) MS2 MT1 MT2 (4) MT4 (5)				Spac	2 = (F 4 = (N 6 = (N	KM + F IBR + IBR + F	PTFE) very low friction PTFE) very low friction PTFE) very low friction	static and dynamic sealing an and high temperatures on and high speeds single acting - pushing on, single acting - pulling
 N = front flange P = rear flange S = fixed eye + spherical bearing T = threaded hole+tie rods extended V = rear tie rods extended 	ME5 ME6 (4) MP5 (4) MX7 MX2			Cush 0 = n	0 = n	one 2	= 50 n	nm 4 = 100 mm 6	= 150 mm 8 = 200 m
W = both end tie rods extended	MX2 MX1			Fast	adjus	table		Blow adjustable	Fast fixed
 X = basic execution Y = front tie rods extended Z = front threaded holes 	MX3 MX5			2 = fr	ear or ront or ront a		5	= rear only = front only = front and rear	7 = rear only 8 = front only 9 = front and rear

BX500

- (1) For details see table B137
- (3) To be entered in alphabetical order
- 3 = front and rear (2) For spare parts request indicate the series number printed on the nameplate only for series < 30

(4) Not available for double rod (5) XV dimension must be indicated in the model code

CYLINDERS

63

3 CERTIFICATION

In the following are resumed the cylinders marking according to Atex certification. Reference norm ISO 80079-36, ISO 80079-37

II 2G Ex h IIC T6, T4 Gb (gas)

II 2D Ex h IIIC T85°C, T135°C Db (dust)

GROUP II, Atex

= Group II for surface plants

= High protection (equipment category)

= For gas, vapours

= For dust

= Equipment for explosive atmospheres

= Gas group IIIC = Dust group

T88°CT135°C = Surface temperature class for dust, see section 7
T6/T4 = Surface temperature class for gas, see section 7

Gb/Db = EPL Equipment group

Compliance RoHS Directive 2011/65/EU as last update by 2015/65/EU (only CKAM) REACH Regulation (EC) no.1907/2006

4 INSTALLATION NOTES

Before installation and start-up refer to tab. BX900

- The max surface temperature indicated in the nameplate must be lower than the following values:

GAS - 80% of gas ignition temperature

DUST - max value between dust layer ignition temperature - 75°C and 2/3 of dust cloud ignition

- The ignition temperature of the fluid must be 50°C greater than the maximum surface temperature indicated in the nameplate
- The cylinder must be grounded using the threaded hole on the rear head, evidenced by the nameplate with ground symbol. The hydraulic cylinder must be put at the same electric potential of the machine

5 | EX-PROOF ROD POSITION TRANSDUCER

CODE: M

CKA cylinders are available with "Balluff" Ex-proof rod position transducer, ATEX certified to II 1/2 G Ex d IIC T6/T5 Ga/Gb for gas and II 2D Ex tb IIIC T85°C/T100°C Db IP 67 -40°C Ta +65°C (T6) -40°C Ta +80°C (T5) for dust. Ex-proof transducers meet the requirements of the following the contractions. lowing european standard documentations:

II 1/2 G Ex d IIC T6/T5 Ga/Gb

II 2D Ex tb IIIC T85°C/T100°C Db IP 67

EN 61241-0 EN 61241-0/AA EN 60079-0 EN 60079-1 EN 60079-26 EN 61241-1

For certification and start-up refer to the user's guide included in the supply The transducer is available with SIL and (certifications, contact our technical office.

Compliance with IEC 61508: 2010

CKA meets the requirements of:

- SC3 (systematic capability)
- max SÍL 2 (HFT = 0 if the hydraulic system does not provide the redundancy for the specific safety function where the component is applied)
- max SIL 3 (HFT = 1 if the hydraulic system provides the redundancy for the specific safety function where the component is applied) for CKAM refer to transducer, SIL certified, for max SIL level

7 MAIN CHARACTERISTICS AND FLUID REQUIREMENTS

Ambient temperature	-20÷+70°C; -40 ÷ +65°C for CKAM			
Fluid temperature	-20÷+70°C (T6); -20÷+120°C (T4) for seals type 2 (*)			
Max surface temperature	\leq +85 °C (T6); \leq +135 °C (T4) for seals type 2 (*)			
Max working pressure	16 MPa (160 bar)			
Max pressure	25 MPa (250 bar)			
Max frequency	5 Hz			
Max speed (see section 8)	1 m/s (seals type 2, 4, 6, 7); 0,5 m/s (seals type 1)			
Recommended viscosity	15 ÷ 100 mm²/s			
Max fluid contamination level	ISO4406 20/18/15 NAS1638 class 9, see also filte section at www.atos.com or KTF catalog			

CKA cylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (**HFA** oil in water emulsion, 90-95% water and 5-10% oil; **HFB** water in oil emulsion, 40% water; **HFC** water glycol, max 45% water) and synthetic fluids (**HFD-U** organic esters, HFD-R phosphate esters) depending to the sealing system.

Note: (*) Cylinders with seals type 2 may also be certified **T6** limiting the max fluid temperature to 70°C

8 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015**When single acting seals are selected (types **6** and **7**), the not pressurized cylinder's chamber must be connected to the tank. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition.

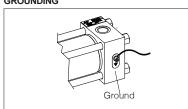
Sealing system		Features	Max speed [m/s]	Fluid temperature range	Fluids compatibility	ISO Standar Piston	ds for seals Rod	
1	NBR + POLYURETHANE	high static and dynamic sealing	0.5	-20°C to 70°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV	ISO 7425/1	ISO 5597/1	
2	FKM + PTFE	very low friction and high temperatures	1	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, fire resistance fluids HFA, HFB, HFD-U,HFD-R	ISO 7425/1	ISO 7425/2	
4	NBR + PTFE	very low friction and high speeds	1	-20°C to 70°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2	
6 - 7	NBR + PTFE	very low friction single acting - pushing/pulling	1	-20°C to 70°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, fire resistance fluids HFA. HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2	

9 EX-PROOF PROXIMITY SENSORS

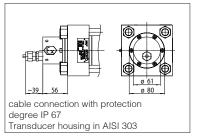
CODES: R = front sensor; S = rear sensor

CKA cylinders are available with ex-proof proximity sensors, ATEX certified to Ex II 3G Ex nA II T4
-25≤Ta≤80°C. They meet the requirements of the following european standard documentations: EN 60079-0, EN 60079-15.

Their functioning is based on the variation of the magnetic field, generated by the sensor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off) of the sensors. The sensor housing is made in stainless steel. For dimensions and details, contact our technical office.


For certification and start-up refer to the user's guide included in the supply

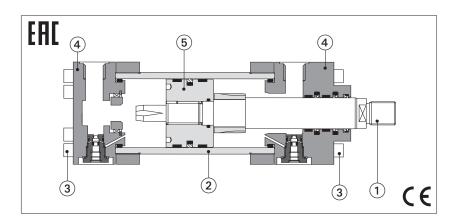
SENSORS TECHNICAL DATA	
Ambient temperature	-25 ÷ +80°C
Nominal voltage	24 VDC
Operating voltage	10 ÷ 30 VDC
Max load	200 mA
Repeatability	<5%
Protection degree	IP 68
Max frequency	1000 Hz
Max pressure	25 MPa


([⊇] (€@∦²º	G Ex h IIC T6,T4 Gb D Ex h IIIC T85°C,T135°C Db	С
	Tfmax	-20°C <tamb<+70°c< td=""><td></td></tamb<+70°c<>	
	Pmax	fmax 5Hz	
_	TÜV CY 20 A	TEX 0206333 X	
n	nade in Italy	www.atos.com	
No	tified body a	and certified number	
		and certified number	
Woı	king conditi	ons - legend	
No:	king conditi	ons - legend uid temperature	
Noi Ffm	king condition ax = Max flu ax = Max p	ons - legend uid temperature	

Marking according to Atex directive

GROUNDING

CKAM WITH ROD POSITION TRANSDUCER

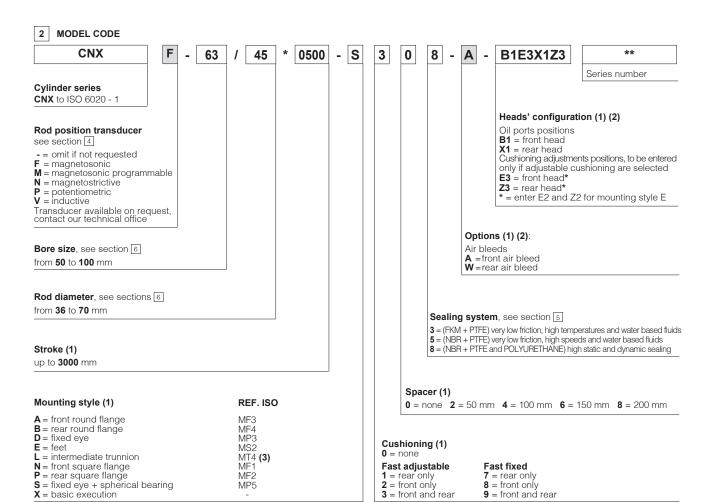


11/23

Stainless steel hydraulic cylinders type CNX

ISO 6020-1, round heads with counterflanges, Pnom 10 MPa (100 bar) - Pmax 15 MPa (150 bar)

1 MATERIALS AND SPECIFICATIONS


Cylinder component	Material	Features		
ROD ① and PISTON ⑤	AISI 431	High strenght and good corrosion resistance		
HOUSING ② and HEADS ④ AISI 316		Optimum corrosion resistance		
SCREWS 3 AISI 316 A		Optimum corrosion resistance and high strength		

CNX cylinders are derived from standard CN (tab. B180) with stainless steel construction to withstand extreme and corrosive environmental conditions and to ensure compatibility with water based fluids or pure water.

They are ideally suited for a variety of applications and industries including: pharmaceutical, marine, military, waste management, offshore and chemical processing.

- Bore sizes from **50** to **100** mm
- Strokes up to 3000 mm
- · Rods with rolled threads
- 9 standard mounting styles
- 3 seals options
- Rod guide rings for low wear
- Adjustable or fixed cushioning
- Optional built-in position transducer, see tab. B310

Stainless steel attachments are available on request, for dimensions see tab. B800 For cylinder dimensions and options see tab. B180

- (1) For details see tab. B180
- (2) To be entered in alphabetical order
- (3) XV dimension must be indicated in the model code, see tab. B180

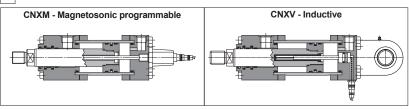
BW500 CYLINDERS 65

3 STAINLESS STEEL PROPERTIES

CNX cylinders are manufacured with selected stainless steel to withstand extended exposure to aggressive environments, the table at side shows the compatibility of AISI 316L and AISI 431 with the main aggressive substances.

The rod is chromeplated: chrome thickness 0,020 mm; hardness 850-1150 HV.

The low strength of AISI 316L limits the max pressure to 150 bar; for heavy duty applications AISI 630 is recommended, contact our technical office.


Material	Cylinder component	Mechanical properties Rm min [MPa] Rs min [MPa]		Corrosion resistance (2)
AISI 316L	housing and heads	450	195	> 1200 h
AISI 316 A4 70	screws	700	450	> 1200 h
AISI 431	piston and rod	800	600	> 600 h
AISI 420	Spherical bearing of style S	700	500	< 100 h
AISI 630 (17-4 ph) (1)	housing and rod	860	724	> 1000 h

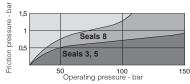
Note: (1) Available on request for heavy duty applications (2) Corrosion resistance in neutral salt spray to ISO 9227 NSS

Corrosion index for AISI 316L and AISI 431

Substance	Corrosio	on index
Substance	AISI 316L	AISI 431
Marine atmospheres	very good	good
Salt water	good	sufficient
33% Acetic acid	excellent	limited
2% Muriatic acid	good	limited
70% Phosphoric acid	limited	limited
65% Nitric acid	good	good
2% Sulfuric acid	excellent	limited
20% Sulfuric acid	limited	limited

4 CNX WITH BUILT-IN POSITION TRANSDUCER

CNX cylinders are also available with magnetostrictive, potentiometric and inductive rod position transducers

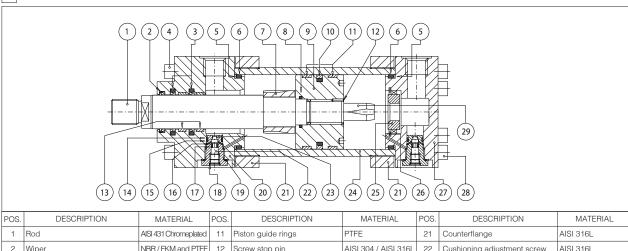

Stainless steel or aluminum materials used for transducers components make CNX servocylinders ideal for extreme working conditions as aggressive external environments or corrosive

For transducer performance and other details see tab. B310

5 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, fluid type and temperature.

For HFA fluids or pure water it is recommended the use of proper additives to increase the sealing working life. Contact our technical office to check the compatibility with other fluids not mentioned below and specify type and composition.

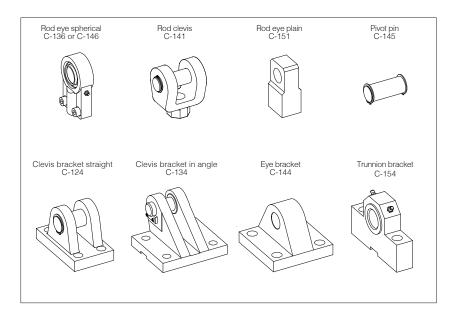

Sealing	Sealing Material Features		Max			ISO Standards for seals	
system	Wateriai	reatures	speed [m/s]	temperature range	Fidius companionity	Piston	Rod
3	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV fire resistance fluids HFA, HFB, HFD-U, HFD-R and water	ISO 7425/1	ISO 7425/2
5	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606; fire resistance fluids HFA, HFC (water max 45%), HFD-U and water	ISO 7425/1	ISO 7425/2
8	NBR + PTFE + POLYURETHANE	high static and dynamic sealing	1	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV	ISO 7425/1	ISO 7425/2

BORE / ROD SIZES

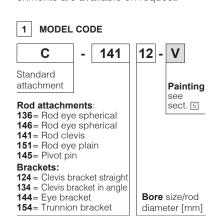
Ø Bore	50	63	80	100
Ø Rod	36	45	56	70

The table at side shows the available bore/rod sizes, see tab. B180 for installation dimensions and options

7 CYLINDER SECTION


POS.	DESCRIPTION	MATERIAL	PUS.	DESCRIPTION	IVIATERIAL	PU5.	DESCRIPTION	MATERIAL
1	Rod	AISI 431 Chromeplated	11	Piston guide rings	PTFE	21	Counterflange	AISI 316L
2	Wiper	NBR / FKM and PTFE	12	Screw stop pin	AISI 304 / AISI 316L	22	Cushioning adjustment screw	AISI 316L
3	Rod seal	NBR / FKM and PTFE	13	Rod guide rings	PTFE	23	Cushioning adjustment plug	AISI 316L
4	Screw	AISI 316 A4	14	Anti-extrusion ring	PTFE	24	Cylinder housing	AISI 316L
5	Anti-extrusion ring	PTFE	15	O-ring	FKM	25	Rear cushioning sleeve	Bronze
6	O-ring	NBR / FKM	16	O-ring	FKM	26	Toroidal ring	AISI 304 / AISI 316L
7	Front cushioning piston	AISI 431	17	Anti-extrusion ring	PTFE	27	Rear head	AISI 316L
8	O-ring	NBR / FKM	18	Seeger	AISI 304 / AISI 316L	28	Screw	AISI 316 A4
9	Piston	AISI 431	19	Seal	FKM	29	Rear cushioning piston	AISI 431
10	Piston seal	NBR / FKM and PTFE	20	Front head	AISI 316L			

11/23 66



Attachments for hydraulic cylinders

to ISO 6982, ISO 8132 and ISO 8133

The table at side shows the Atos range of standard rod attachments and brackets: they are available for each cylinder bore. See section 2 for possible combinations. Stainless steel attachments are available on request.

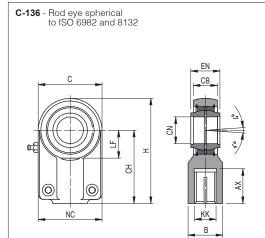
POSSIBLE COMBINATIONS

			attachments o	codes				Bracket	ts codes	
Ø Rod	(b)		OP		\Box	Ø Bore	00			OF THE PROPERTY OF THE PROPERT
12 18 opt. H (a)	NA	C-14612	C-14112	C-15112	C-14512	25	NA	C-13425	C-14425	C-15425
14 22 opt. H (a)	C-13616	C-14614	C-14114	C-15114	C-14514	32	NA	C-13432	C-14432	C-15432
18 22 opt.H(a) 28 opt.H	C-13618	C-14618	C-14118	C-15118	C-14518	40	C-12422 (c)	C-13440	C-14440	C-15440
22 28 opt. H (a) 36 opt. H	C-13622	C-14622	C-14122	C-15122	C-14522	50	C-12428 (c) C-12436 (d)	C-13450	C-14450	C-15450
28 36 opt.H(a) 45 opt.H	C-13628	C-14628	C-14128	C-15128	C-14522	63	C-12436 (c) C-12445 (d)	C-13463	C-14463	C-15463
36 45 opt.H(a) 56 opt.H	C-13636	C-14636	C-14136	C-15136	C-14536	80	C-12445 (c) C-12456 (d)	C-13480	C-14480	C-15480
45 56 opt.H(a) 70 opt.H	C-13645	C-14645	C-14145	C-15145	C-14545	100	C-12456 (c) C-12470 (d)	C-134100	C-144100	C-154100
56 70 opt.H(a) 90 opt.H	C-13656	C-14656	C-14156	C-15156	C-14556	125	C-12470 (c) C-12490 (d)	C-134125	C-144125	C-154125
70 90 opt.H(a) 110 opt.H	C-13670	C-14670	C-14170	C-15170	C-14570	160	C-12490 (c) C-124100 (d)	C-134160	C-144160	C-154160
90 110 opt.H(a) 140 opt.H	C-13690	C-14690	C-14190	C-15190	C-14590	200	C-124100 (c)	C-134200	C-144200	C-154200

Notes:
(a) Option H: light male thread, for details see table B137 or B140

(b) C-136 is also available for rods 110, 140, 180 and 220. See section 3

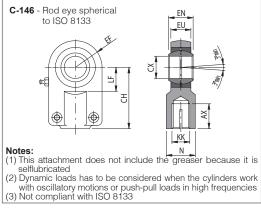
(c) For S mounting styles in CN cylinder

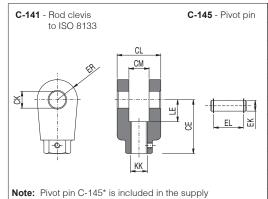

B800

(d) For S mounting styles in CC cylinder

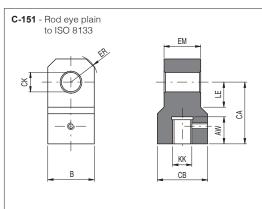
CYLINDERS

67


3 DIMENSIONS [mm]

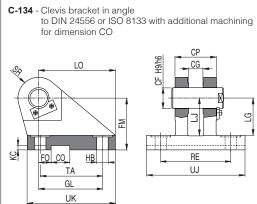

Notes:							
(1) This attachment	does	not	include	the	greaser	because	it is
selflubricated					-		

(2) Dynamic loads has to be considered when the cylinders work with oscillatory motions or push-pull loads in high frequencies
 (3) Attachment not compliant with ISO standard


	Code	KK	AX min	B max	C max	CB max	CH js13	CN H7	EN h12	Н	LF min	NC	Mass [kg]	Max load Dynamic	[kN] (2) Static	Screws torque
	C-13616 (1)	M12x1,25	17	19	33	11	38	12	12	54	13	32	0,11	10,8	24,5	6 Nm
	C-13618	M14x1,5	19	22	41	14	44	16	16	64	16,5	40	0,2	17,6	36,5	10 Nm
	C-13622	M16x1,5	23	28	50	17,5	52	20	20	75	20,5	47	0,35	30	48	25 Nm
	C-13628	M20x1,5	29	31	64	22	65	25	25	96	25,5	54	0,62	48	78	25 Nm
	C-13636	M27x2	37	38	80	28	80	32	32	118	30	66	1,15	67	114	49 Nm
	C-13645	M33x2	46	47	100	34	97	40	40	146	39	80	2,18	100	204	49 Nm
	C-13656	M42x2	57	58	126	42	120	50	50	179	47	96	3,96	156	310	86 Nm
	C-13670	M48x2	64	70	145	53,5	140	63	63	211	58	114	6,8	255	430	210 Nm
	C-13690	M64x3	86	91	184	68	180	80	80	270	74	148	13	400	695	410 Nm
	C-13690A (3)	M72x3	91	100	185	72	195	90	90	296	91	160	19,1	490	750	410 Nm
	C-136110	M80x3	96	110	228	85,5	210	100	100	322	94	178	25	610	1.060	710 Nm
	C-136110A (3)	M90x3	106	125	235	88	235	110	110	364	106	190	32	655	1.200	710 Nm
3	C-136140	M100x3	113	135	320	105	260	125	125	405	116	200	46	950	1.430	710 Nm
(C-136180	M125x4	126	165	400	133	310	160	160	488	145	250	82,5	1.370	2.200	710 Nm
	C-136220	M160x4	161	215	500	165	390	200	200	620	190	320	168	2.120	3.650	1500Nm

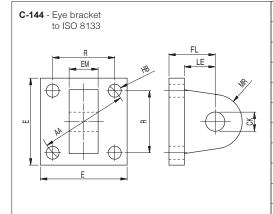
	Code	KK	AX	СН	сх	EF	EN	EU	LF	N	Mass	Max load		Screws
	Code	1111	min	js13	- OA	max	,	max	min	max	[kg]	Dynamic	Static	torque
	C-14612 (1)	M10x1,25	15	42	12 -0,008	18	10 .0,12 (3)	8,5	16	19	0,12	10,8	17	10 Nm
	C-14614 (1)	M12x1,25	17	48	16 .0,008	23	14 0 (3)	11,5	20	22	0,22	21,1	28,5	10 Nm
	C-14618 (1)	M14x1,5	19	58	20 .0,01	28	16 0 (3)	13,5	25	28	0,43	30	42,5	25 Nm
	C-14622	M16x1,5	23	68	25 .0,01	33	20 0 (3)	18	30	31	0,67	48	67	25 Nm
	C-14628	M20x1,5	29	85	30 -0,01	41	22 0 (3)	20	35	37	1,25	62	108	49 Nm
	C-14636	M27x2	37	105	40 .0,012	51	28 0 (3)	24	45	47	2,16	100	156	49 Nm
	C-14645	M33x2	46	130	50 .0,012	61	35 .0,12 (3)	31	58	57	3,9	156	245	86 Nm
S	C-14656	M42x2	57	150	60 -0,015	80	44 .0,15	39	68	69	7,15	245	380	210 Nm
k	C-14670	M48x2	64	185	80 .0,015	102,5	55 ⁰ _{-0,15}	48	92	91	15	400	585	410 Nm
3	C-14690	M64x3	86	240	100 -0,02	120	70 0.0,20	57	116	110	27,3	610	865	710 Nm

c	ode	кк	CE JS13	CK H9	CL max	CM A13	EK f8	EL min	ER max	LE min	Mass [kg]	Max load static [kN]
	14112 14512	M10x1,25	32	10	26	12	10	29	12	13	0,1	8
	14114 14514	M12x1,25	36	12	34	16	12	37	17	19	0,18	12,5
	14118 14518	M14x1,5	38	14	42	20	14	45	17	19	0,23	20
	14122 14522	M16x1,5	54	20	62	30	20	66	29	32	0,9	32
	14128 14522	M20x1,5	60	20	62	30	20	66	29	32	0,91	50
	14136 14536	M27x2	75	28	83	40	28	87	34	39	1,92	80
	14145 14545	M33x2	99	36	103	50	36	107	50	54	4,92	125
	14156 14556	M42x2	113	45	123	60	45	129	53	57	6,53	200
	14170 14570	M48x2	126	56	143	70	56	149	59	63	10,11	320
	14190 14590	M64x3	168	70	163	80	70	169	78	83	19,2	500

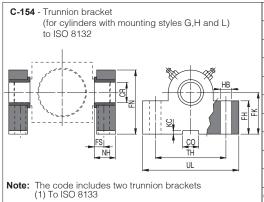


Code	KK	AW min	В	CA JS13	CB max	CK H9	EM h13	ER max	LE min	Mass [kg]	Max load static [kN]
C-15112	M10x1,25	14	18	32	18	10	12	12	13	0,08	8
C-15114	M12x1,25	16	22	36	22	12	16	17	19	0,15	12,5
C-15118	M14x1,5	18	25	38	20	14	20	17	19	0,22	20
C-15122	M16x1,5	22	35	54	30	20	30	29	32	0,5	32
C-15128	M20x1,5	28	40	60	30	20	30	29	32	1,1	50
C-15136	M27x2	36	50	75	40	28	40	34	39	1,5	80
C-15145	M33x2	45	70	99	50	36	50	50	54	2,5	125
C-15156	M42x2	56	100	113	65	45	60	53	57	4,2	200
C-15170	M48x2	63	116	126	90	56	70	59	63	11,8	320
C-15190	M64x3	85	160	168	110	70	80	78	83	17	500

C-124 - Clevis bracket straight to ISO 8132	
TB UH UD	


Note: Pivot pin and seeger are included in t Supplied with threaded holes for pivot p plate (not included)		
--	--	--

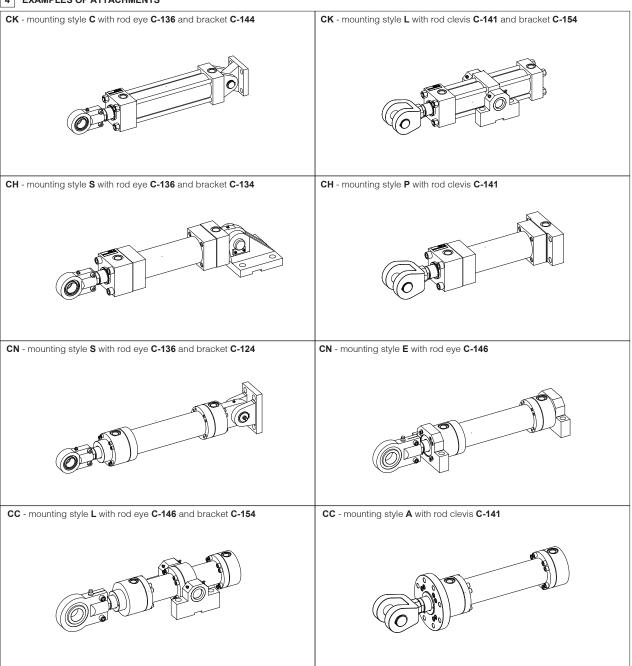
	Code	CK H9	CL h16	CM A13	FL JS12	HB H13	LE min	MR max	RC JS14	TB JS14	UD max	UH max	Mass [kg]	Max load static [kN]
	C-12414	12	28	12	34	9	22	12	20	50	40	70	0,31	8
	C-12418	16	36	16	40	11	27	16	26	65	50	90	0,59	12,5
	C-12422	20	45	20	45	11	30	20	32	75	58	98	0,9	20
	C-12428	25	56	25	55	13,5	37	25	40	85	70	113	1,6	32
	C-12436	32	70	32	65	17,5	43	32	50	110	85	143	2,8	50
	C-12445	40	90	40	76	22	52	40	65	130	108	170	5	80
İ	C-12456	50	110	50	95	26	65	50	80	170	130	220	10,1	125
	C-12470	63	140	63	112	33	75	63	100	210	160	270	15,4	200
/	C-12490	80	170	80	140	39	95	80	125	250	210	320	30	320
3	C-124100	100	210	100	180	45	120	100	160	315	260	400	60,2	500



Notes: Pivot pin with locking plate is included in the supply (1) Not compliant with ISO 8133 and DIN 24556 (2) Not compliant with ISO 8133

_	Code	CF H9 (1)	CG +0,1/+0,3	CO N9 (2)	CP h14	FM js13	FO	GL JS13	HB H13	KC (2)	LG	LJ min	LO max	RE js13	SR max	TA js13	UJ max		Mass [kg]	Max load static [kN]
J	C-13425	12	10	10	30	40	16	46	9	3,3	28	29	56	55	12	40	75	60	0,52	8
	C-13432	16	14	16	40	50	18	61	11	4,3	37	38	74	70	16	55	95	80	1,05	12,5
	C-13440	20	16	16	50	55	20	64	13,5 (1)	4,3	39	40	80	85	20	58	120	90	1,72	20
1	C-13450	25	20	25	60	65	22	78	15,5 (1)	5,4	48	49	98	100	25	70	140	110	2,72	32
ľ	C-13463	30	22	25	70	85	24	97	17,5 (1)	5,4	62	63	120	115	30	90	160	135	5,15	50
	C-13480	40	28	36	80	100	24	123	22	8,4	72	73	148	135	40	120	190	170	9,3	80
	C-134100	50	35	36	100	125	35	155	30	8,4	90	92	190	170	50	145	240	215	18,3	125
	C-134125	60	44	50	120	150	35	187	39	11,4	108	110	225	200	60	185	270	260	35	200
	C-134160	80	55	50	160	190	35	255	45	11,4	140	142	295	240	80	260	320	340	63	320
	C-134200	100	70	63	200	210	35	285	48	12,4	150	152	335	300	100	300	400	400	109	500

Code	CK H9	AA	E max	EM h13	FL js13	HB H13	LE min	MR max	R js13	Mass [kg]	Max load static [kN]
C-14425	10	40	40	12	23	5,5	13	12	28,3	0,3	8
C-14432	12	47	46	16	29	6,6	19	17	33,2	0,45	12
C-14440	14	59	65	20	29	9	19	17	41,7	0,9	20
C-14450	20	74	79	30	48	13,5	32	29	52,3	1,3	32
C-14463	20	91	91	30	48	13,5	32	29	64,3	1,9	50
C-14480	28	117	118	40	59	17,5	39	34	82,7	4	80
C-144100	36	137	132	50	79	17,5	54	50	96,9	6,25	125
C-144125	45	178	174	60	87	24	57	53	125,9	11,4	200
C-144160	56	219	215	70	103	30	63	59	154,9	20,8	320
C-144200	70	269	256	80	132	33	82	78	190,2	38,8	500



A L	Code	CR H7	CO N9	FH max	FK JS12	FN max	FS js13	HB H13	KC 0/+0,3	NH max	TH js13	UL max	Mass [kg]	Max load static [kN]
	C-15425	12	10	25	34	50	8	9	3,3	17	40	63	0,46	8
	C-15432	16	16	30	40	60	10	11	4,3	21	50	80	0,83	12,5
	C-15440	20	16	38	45	70	10	11	4,3	21	60	90	1,21	20
	C-15450	25	25	45	55	80	12	13,5	5,4	26	80	110	2,15	32
	C-15463	32	25	52	65	100	15	17,5	5,4	33	110	150	4,63	50
	C-15480	40	36	60	76	120	16	22	8,4	41	125	170	7,78	80
	C-154100	50	36	75	95	140	20	26	8,4	51	160	210	14,3	125
	C-154125	63	50	85	112	180	25	33	11,4	61	200	265	23,4	200
	C-154160	80	50	112	140	220	31	39	11,4	81	250	325	53,1	320
	C-154200 (1)	100	63	150	200	300	42	52	12,4	101	320	410	112	500

B800 CYLINDERS

69

4 EXAMPLES OF ATTACHMENTS

5 SURFACE TREATMENT

Some attachments are provided with additional surface treatment to increase the corrosion resistance (24h in neutral salt spray), see table below for details. All the attachments, except pivot pin C-145, can be supplied with standard painting RAL 9007 (200h in neutral salt spray) selecting option **-V**, special painting are available on request.

Code	Surface treatment	Code	Surface treatment
C-136 or C-146	No treatment	C-124	No treatment
O C-141	No treatment	C-134	No treatment
C-151	Black phosphate	C-144	Black phosphate
C-145	Black phosphate	C-154	No treatment

11/23 70

Electric and electronic connectors

for CK* servocylinders

1 CONNECTORS FOR ANALOG POSITION TRANSDUCERS

CODE AND DIMENSIONS	APPLICATION	INTERNAL VIEW PINOUT (1)	FRONT VIEW	CABLE GLAND Ø CABLE	REFERENCE RULES
CON031 0 0 57	Straight female metallic connector - 5 pin: - magnetosonic transducer for CKF servocylinders - electronic conditioning card for CKN servocylinders Transducer output signal: analog	2 0 0 1 1 3 5 4		PG9 ø 6 ÷ 8 mm	M12 IEC 61076-2-101 Protection degree IP 67 EN 60529
CON041	Female plastic connector at 90° - 5 pin: - magnetosonic transducer for CKF servocylinders - electronic conditioning card for CKN servocylinders Transducer output signal: analog	2 0 1 1 3 5 4		PG9 ø 6 ÷ 8 mm	M12 IEC 61076-2-101 Protection degree IP 67 EN 60529
STC09131-D06- 5 58	Straight female metallic connector - 6 pin: - magnetosonic transducer for CKM servocylinders - magnetostrictive transducer for CKN servocylinders Transducer output signal: analog	6 5 5 2 3 4		PG7 ø 4 ÷ 6 mm	Protection degree IP 67 EN 60529
STC09131-6-	Female metallic connector at 90° - 6 pin: - magnetosonic transducer for CKM servocylinders - magnetostrictive transducer for CKN servocylinders Transducer output signal: analog	1 6 5 5 2 3 4		PG7 ø 4 ÷ 6 mm	Protection degree IP 67 EN 60529
STCO9131-D04- 8 57	Straight female metallic connector - 4 pin: - potentiometer transducer for CKP servocylinders - inductive transducer for CKV servocylinders Transducer output signal: analog	4 60 2 2 1 3		PG7 ø 4 ÷ 6 mm	M12 - coding A IEC 61076-2-101 Protection degree IP 67 EN 60529
STC09131-4- PG7	Female plastic connector at 90° - 4 pin: - potentiometer transducer for CKP servocylinders - inductive transducer for CKV servocylinders Transducer output signal: analog	1 2 3		PG7 ø 4 ÷ 6 mm	M12 - coding A IEC 61076-2-101 Protection degree IP 67 EN 60529

⁽¹⁾ the wiring of electrical terminals has to be realized according to specific servocylinder's technical table

2 CONNECTORS FOR SSI DIGITAL POSITION TRANSDUCERS

CODE AND DIMENSIONS	APPLICATION	INTERNAL VIEW PINOUT (1)	FRONT VIEW	CABLE GLAND Ø CABLE	REFERENCE RULES
370694	Straight female metallic connector - 8 pin: - potentiometer transducer for CKF servocylinders Transducer output signal: digital SSI	6 8 7 1 0 0 0 3 4 2 5		PG9 ø 4 ÷ 9 mm	Protection degree IP 67 EN 60529
370699	Female metallic connector at 90° - 8 pin: - potentiometer transducer for CKF servocylinders Transducer output signal: digital SSI	6 8 7 1 0 0 3 3 4 0 5 5		PG9 ø 6 ÷ 8 mm	Protection degree IP 67 EN 60529
STCO9131-D07- 9 -58.3	Straight female metallic connector - 7 pin: - potentiometer transducer for CKM servocylinders Transducer output signal: digital SSI	1 0 0 3		PG9 ø 6 ÷ 8 mm	Protection degree IP 67 EN 60529
STC09131-7- PG9	Female metallic connector at 90° - 7 pin: - potentiometer transducer for CKM servocylinders Transducer output signal: digital SSI	1 0 0 3		PG9 ø 6 ÷ 8 mm	Protection degree IP 67 EN 60529

⁽¹⁾ the wiring of electrical terminals has to be realized according to specific servocylinder's technical table

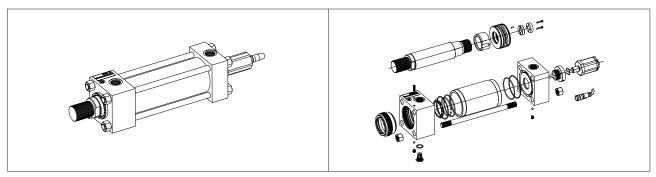
K810 CYLINDERS

3 CONNECTORS FOR FIELDBUS POSITION TRANSDUCERS

CODE AND DIMENSIONS		APPLICATION	INTERNAL VIEW PINOUT (1)	FRONT VIEW	CABLE GLAND Ø CABLE	REFERENCE RULES	
370523	52	Straight male metallic connector - 4 pin: - PROFINET for CKM servocylinders (input and output)	1-00-3		PG9 ø 5,5 ÷ 7,2 mm	Protection degree IP 67 EN 60529	
CON031	82 57	Straight female metallic connector - 5 pin: - PROFINET for CKM servocylinders (power supply)	2 0 0 1		PG9 ø 6 ÷ 8 mm	M12 IEC 61076-2-101 Protection degree IP 67 EN 60529	
560884	© ~ 62	Straight male metallic connector - 5 pin: - PROFIBUS DP for CKM servocylinders (input)	1-0003		PG9 ø 6,5 ÷ 8,5 mm	M12 - coding B IEC 61076-2-101 Protection degree IP 67 EN 60529	
560885	9 5 57 - 57	Straight female metallic connector - 5 pin: - PROFIBUS DP for CKM servocylinders (output)	2-0004		PG9 ø 6,5 ÷ 8,5 mm	M12 - coding B IEC 61076-2-101 Protection degree IP 67 EN 60529	
560886	28	Female plastic connector at 90° - 4 pin: - PROFIBUS DP for CKM servocylinders (power supply)	2-000	0000	PG7 ø 3,5 ÷ 5 mm	M8 IEC 61076-2-104 Protection degree IP 67 EN 60529	
560888	43 22.1 7	Straight female plastic connector - 4 pin: - PROFIBUS DP for CKM servocylinders (terminator)	2-0004	(\$000)	PG9 ø 6,5 ÷ 8,5 mm	M12 - coding B IEC 61076-2-101 Protection degree IP 67 EN 60529	

⁽¹⁾ the wiring of electrical terminals has to be realized according to specific servocylinder's technical table

11/23 72



Operating and maintenance information

for industrial cylinders & servocylinders

These operating and maintenance information are valid only for Atos hydraulic cylinders and are intended to provide useful guidelines to avoid risks when hydraulic cylinders are installed in a machine or a system. Information and notes on the transport and storage of hydraulic cylinders are also provided.

These norms must be strictly observed to avoid damages and ensure trouble-free operation. The respect of these operating and maintenance information ensures an increased working life and thus reduced repairing cost of the hydraulic cylinders and system.

1 SYMBOLS CONVENTIONS

This symbol refers to possible danger which can cause serious injuries

2 GENERAL NOTES

The cylinder operating and maintenance information are part of the operating instructions for the complete machine but they cannot replace them

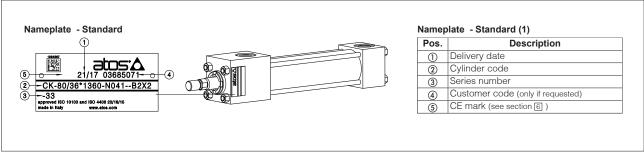
Atos is not liable for damages resulting from an incorrect observance of these instructions.

All the hydraulic cylinders have 1 year warranty; the expiration of warranty results from the following operations:

- Unauthorised mechanical or electronic interventions
- The hydraulic cylinders are not used exclusively for their intended purpose as defined in these operating and maintenance instructions

3 HARMONIZED STANDARDS

Hydraulic cylinders are subject to PED directive 2014/68/UE, see sec. (a) for details. Machinery Directive 2006/42/CE does not apply to hydraulic cylinders. For an overall view relevant to application of the European directive in electrohydraulics, see www.atos.com, tab. P004


 $\underline{\wedge}$ Check the code in the nameplate to ensure that the hydraulic cylinder is suitable for the installation area

4 WORKING CONDITIONS

The operation of hydraulic cylinders is not permitted at different operating and environmental conditions than those specified below

Description	CK, CK*, CH, CN	СС	
Ambient temperature	-20 ÷ +120°C	-20 ÷ +120°C	
Fluid temperature	-20 ÷ +120°C	-20 ÷ +120°C	
Max surface temperature	-	-	
Max working pressure	16 MPa (160 bar)	25 MPa (250 bar)	
Max pressure	25 MPa (250 bar)	32 MPa (320 bar) 5 Hz	
Max frequency	5 Hz		
Max speed	4 m/s		
Recommended viscosity	15 ÷ 100 mm²/s		
Max fluid contamination level	ISO4406 20/18/15 NAS1638 class 9, see also fill	er section at www.atos.com or KTF catalog	

5 NAMEPLATES

Notes: (1) The position of the nameplate on the rear or front heads can change due to the cylinder overall dimensions

B900 CYLINDERS

6 CE MARKING

Hydraulic cylinders are considered as pressure vessels and thus they are subject to the PED directive (2014/68/UE), point 1 a) of article 4. Particularly they are designed to be used with fluids of group 2 (oil hydraulic fluids) and they have to be marked if the product **Pmax** x **V** (Volume under pressure) is higher than 10.000 bar x liter. Tables below show the minimum stroke over which the cylinders have to be CE marked. ATEX cylinders are CE marked according to ATEX directive (2014/34/EU).

Cylinders CK, CH and CN - Pmax = 250 bar						
Bore [mm]	Rod [mm]	Stroke r single rod	oke min [mm] I double rod			
125	56 70 90	3255	4075 4745 5000			
160	70 90 110	1985	2460 2910 3770			
200	90 140	1270	1595 2495			
250	140	810	1185			
320	180	495	725			
400	220	315	455			

Cylinders CC - Pmax = 320 bar						
Bore [mm]	Rod [mm]	Stroke min [mm] single rod double rod				
100	70	3975	5000			
125	90	2545	5000			
140	90	2030	3455			
160	110	1550	2945			
180	110	1225	1960			
200	140	990	1950			
250	180	635	1320			
320	220	385	735			
400	280	245	485			

7 SAFETY NOTES

7.1 General

- The presence of cushioning can lead to a peak of pressure that can reduce the cylinder working life, ensure that the dissipated energy is less than the max value reported in tab. B015
- Make sure that the maximum working conditions, shown in section 4, are not exceeded
- Ensure to use hydraulic fluids compatible with the selected sealing system, see tab. B137, B140, B160, B180, B241 and B310
- The rod must be handled with care to prevent damages on the surface coating which can deteriorate the sealing system and lead to the corrosion of the basic material
- The mounting screws must be free from shearing stress
- Transverse forces on the rods must always be avoided
- When the cylinder has to drive a rotating structure or where little alignment errors are expected, mounting style with spherical bearing should be used
- Contact surfaces, support elements in tolerance, elastic materials and labels must be covered before painting the cylinder

7.2 Proximity sensors

- Proximity sensors are supplied already adjusted, if other regulations are necessary see tab. B137 or contact our technical office
- Ensure not to remove the sensor while the cylinder is under pressure
- The connectors must never be plugged or unplugged when the power supply is switched-on

7.3 Position measuring system

- Position transducers must never be removed, if not otherwise specified in tab. B310, while the cylinder is under pressure
- Observe the information provided in tab. B310 for the electronic connections
- The connectors must never be plugged or unplugged when the power supply is switched-on

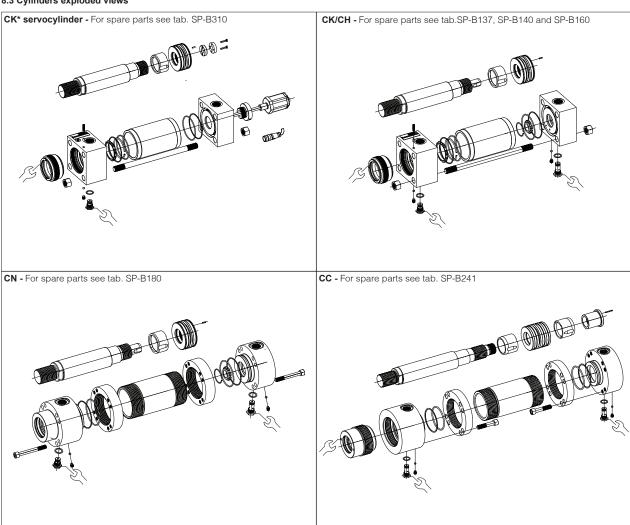
7.4 Installation

- Consult tab. P002 for installation, commissioning and maintenance of electrohydraulic system
- The piping have to be dimensioned according to the max pressure and max flow rate required
- All pipes and surfaces must be cleaned from dirt before mounting
- Remove all plug screws and covers before mounting
- Make sure that connections are sealed before giving pressure to the system
- Ensure to not exchange the pipe ports when connecting the cylinders
- Bleed-off the system or the hydraulic cylinder using the proper device, see the technical data sheet for details
- Ensure that the cylinder mounting allow easy of acces for the purpose of maintenance and the adjustment of cushioning

8 MAINTENANCE

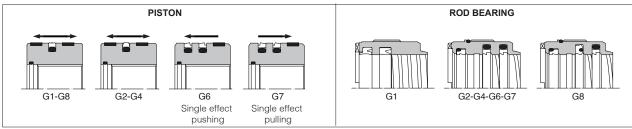
Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

8.1 Preliminary check and ordinary maintenance


Atos hydraulic cylinders don't require any maintenance after commissioning. Anyway it is recommended to take into account the following remarks:

- Results of maintenance and inspection must be planned and documented
- Check oil escaping from oil ports or leakages at the cylinder heads
- Check for damages of the chromeplated surface of the rod: damages may indicate oil contamination or the presence of excessive transverse load
- Determine lubricating intervals for spherical clevises, trunnion and all parts not self-lubricated
- The rod should always be retracted during long stop of the machine or system
- Remove any salt, machining residuals or other dirt cumulated on the rod surface
- Follow the maintenance instructions of the fluid manufacturer

Before beginning any repairing observe the following guidelines:


- Unauthorized opening of the cylinder during the warranty period results in the warranty expiration
- Be sure to use only original spare parts manufactured or supplied by Atos
- Provide all the required tools to make the repair operations safely and not damage the components
- Read and follow all the safety notes given in section [7]
- Ensure that the cylinder is well locked before beginning any operation
- Disassembly or assembly the cylinder with the right order as indicated in section 8.3
- When mounting rod or piston guides and seals observe the correct position as indicated in section 8.4. Any bad positioning can result in oil leakages
- It is strongly recommended the use of expanding sleeves to insert the seals in the proper groove
- Tighten all the screws or nuts as follow: lubricates the threads, insert the screw or the nut by hand for some turns, tighten the screw crosswise with the tightening torque specified in the technical table (a pneumatic screw driver may be used)
- Rod bearing and piston must be locked respectively to the front head and to the rod by means of special pin to avoid unscrewing
- The replacement of wear parts such as seals, rod bearing and guide rings depends on the operating conditions, temperature and quality of the fluid

8.3 Cylinders exploded views

 $\textbf{Note:} \ \, \cancel{\nwarrow} \ \, \text{this symbol means that a particular equipment is required for mounting, contact our technical office}$

8.4 Sealing system mounting

9 TRANSPORT AND STORAGE

9.1 Transport

Observe the following guidelines for transport of hydraulic cylinders:

- Cylinders have to be transported using a forklift truck or a lifting gear always ensuring a stable position of the cylinder
- Cylinders have to be transported in horizontal position in their original packaging
- Use soft lifting belts to move or lift the cylinders in order to avoid damages
- Before any movement check the cylinders weight (due to tolerances, the weight may be 10% greater than the values specified in the technical table)

Additional parts such as pipes, subplates and transducers must never be used for lifting

9.2 Storage

Corrosion protection is achieved with alkyd primer painting RAL 9007: the primer grants a storage period up to 12 months. Additionally all cylinders are tested

with mineral oil OSO 46; the oil film, presents in the cylinder chambers after testing, ensures the internal corrosion protection.

- Anyway be care to observe the following remarks:
 When a storage in the open air is foreseen ensure that cylinders are well protected against water
- The cylinders must be inspected at least once a year and rotated through 90° every six months to preserve the seals

⚠ In case of storage period longer than 12 months, contact our technical office

10 CYLINDERS TROUBLESHOOTING

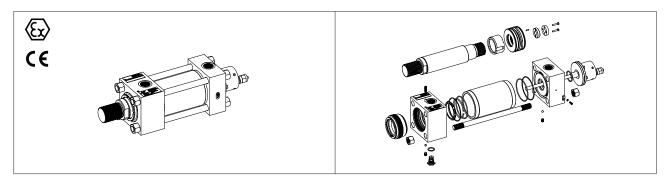
TROUBLE	POSSIBLE CAUSES	SOLUTIONS	
	High lateral loads involve a premature wear of the bronze bushing, seals and wear rings	a) Improve the precision of the machine alignment b) Decrease lateral loads c) Install a pivoted mounting style C-D-G-H-S-L	
	Fluid contaminants produce scratch and score marks on the seals	Check the fluid contamination class is < 20/18/15	
	Chemical attack cause the deterioration of seals compound	Check seals compatibility with operating fluid	
	High temperatures (fluid/ambient) the seals dark and flaked	a) Decrease the fluid temperature b) Install G2 sealings for high temperatures	
Oil leakage	Low temperature (ambient) make the seals brittle	a) Move the cylinder in a higher temperature zone b) Install G9 seals for low temperatures	
	High rod speed reduce the lubricant capacity of the seals	For rod speed > 0,5 m/s Install G2 - G4 seals	
	High frequency reduce the lubricant capacity of the seals	For rod frequency > 5 hz Install G0 seals	
	Output rod speed higher than the input one	Check the rod speed ratio in/out complies with the minimum ${\rm R}_{\rm min}$ value, see tech.table ${\bf B015}$	
	The pressurization of the mixture air/mineral oil may involve self combustion dangerous for the seals (Diesel effect)	Bleed off completely the air inside the hydraulic circuit	
	Overpressure	a) Limit the pressure of the system b) Install G2-G4-G8 seals if overpressure cannot be reduced	
Wiper or seal extrusion	Rod seals leakages may involve overpressures among wiper and rod seal, causing their extrusion	a) See possible causes and solutions for oil leakage troubles b) Install draining option L	
	Rod speed too low at end stroke	a) Check the cushioning adjustment is not fully open, regulate it if necessary b) Replace "fast" cushioning 1-2-3, with "slow" cushioning 4-5-6 the cushioning is not effective with cushioning adjustment fully closed	
Lose of cushioning effect	Cushioning adjustment cartridge with improper regulation	Close the cushioning adjustment screw till restoring the cushioning effect	
	Fluid contaminants produce scratch and score marks on the cushioning piston	Check the fluid contamination class is < 20/18/15	
Rod locked or impossible to move	Overpressure in the cushioning chamber could involve the cushioning piston locking	a) Replace "fixed" cushioning 7-9 with "adjustable" cushioning 1-3 b) For adjustable cushioning, open the cushioning adjustment to decrease the max pressure inside the cushioning chamber c) Check the energy dissipated by the cushioning is lower than max energy dissipable, see tech.table B015	
	Fluid contaminants may lock the piston because of its tight tolerances	Check the fluid contamination class is < 20/18/15	
Rod failure	Overload/overpressure involves ductile rod failure	a) Check the overpressure inside the cylinder and decrease it b) Check the compliance with the admitted operating pressure according to the cylinder series	
Rou failure	High load/pressure coupled to high frequencies or long life expectation involves fatigue rod failure	 a) Check the expected rod fatigue working life proposed in tech. table B015 b) Decrease the operating pressure 	
Dod vibration	Seals with excessive friction could involve rod vibration and noise	Install low friction PTFE seals G2-G4 , see tech.table B015	
Rod vibration	Air in the circuit may involve a jerky motion of the rod	Bleed off completely the air inside the hydraulic circuit	
Rod motion without oil pressure	Variations in the fluid temperature involve the fluid expansion / compression thus the rod moving	a) Decrease the temperature variations in the oil b) Change the fluid type to decrease the coefficient of thermal expansion	
prossure	Excessive oil leakage from the piston or rod seals	See likely causes and solutions for oil leakage troubles	
	Impact of the piston with the heads caused by high speed (>0,05 m/s)	a) Decrease the rod speed b) Install external or internal cushioning system 1-9, see tech.table B015 for the max energy that can be dissipated	
Noisy cylinder	Fluid contaminants, foreign particles inside the cylinder may generate unusual noise	Check the fluid contamination class is < 20/18/15	
	High oil flow speed > 6 m/s	a) Increase the piping diameters to reduce the oil flow speed b) Install oversized oil ports, options D-Y	

11 SERVOCYLINDERS TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSES	SOLUTIONS		
	Improper electronic connections may involve the transducer malfunctioning	Check the electronic connections scheme in tech table B310		
Transducer malfunctioning / failure	Not stabilized power supply may involve dangerous peak of voltage	Install a voltage stabilizer		
		Be carefull to switch off the power supply before connecting the position transducer		

Note: for cylinders troubleshooting refer to section $\boxed{\mbox{10}}$

11/23 76



Operating and maintenance information

for ex-proof cylinders & servocylinders

These operating and maintenance information are valid only for Atos ex-proof cylinders & servocylinders; they are intended to provide useful guidelines to avoid risks when hydraulic cylinders are installed in a machine or a system. Information and notes about transportation and storage of hydraulic cylinders are also provided.

These norms must be strictly observed to avoid damages and ensure trouble-free operation. The respect of these operating and maintenance information ensures an increased working life and thus reduced repairing cost of the hydraulic cylinders and system.

1 SYMBOLS CONVENTIONS

This symbol refers to possible danger which can cause serious injuries

2 GENERAL NOTES

The cylinder operating and maintenance information are part of the operating instructions for the complete machine but they cannot replace them

Atos is not liable for damages resulting from an incorrect observance of these instructions.

All the hydraulic cylinders have 1 year warranty; the expiration of warranty results from the following operations:

- Unauthorised mechanical or electronic interventions
- The hydraulic cylinders are not used exclusively for their intended purpose as defined in these operating and maintenance instructions

3 HARMONIZED STANDARDS

CKA cylinders meet the requirements laid down in the Explosion protection directive 2014/34/EU with reference to European standards documentations:

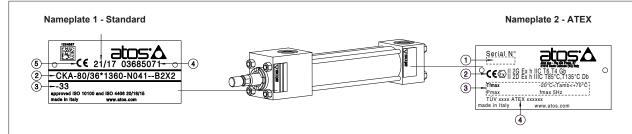
ISO 80079-36

"Non electrical equipment for potentially explosive atmospheres - Basic method and requirements" "Non electrical equipment for explosive atmospheres - Protection constructional safety 'c', liquid immersion 'k'" ISO 80079-37

The hydraulic cylinder must be exclusively used in areas and zones assigned to the equipment group and category. Also observe the other details about explosion protection given as follow. See section 6 for zones in relation to equipment groups and category.

Check the code in the nameplate to ensure that the hydraulic cylinder is suitable for the installation area

4 WORKING CONDITIONS


The operation of hydraulic cylinders is not permitted at different operating and environmental conditions than those specified below

Description	CKA, CKAM
Ambient temperature	-20 ÷ +70°C -40 ÷ +65°C for CKAM
Fluid temperature	-20 ÷ +70°C (T6) -20 ÷ +120°C (T4) for seals type G2 (1)
Max surface temperature	\leq +85 °C (T6) \leq +135 °C (T4) for seals type G2 (1)
Max working pressure	16 MPa (160 bar)
Max pressure	25 MPa (250 bar)
Max frequency	5 Hz
Max speed	1 m/s 0,5 m/s for seals type G1
Recommended viscosity	15 ÷ 100 mm²/s
Max fluid contamination level	ISO4406 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog

Note: (1) Cylinders with seals type G2 may also be certified T6 limiting the max fluid temperature to 70°C

BX900 CYLINDERS

5 NAMEPLATES

Nameplate 1 - Standard (2)

Pos.	Description
1	Delivery date
2	Cylinder code
3	Series number
4	Customer code (only if requested)
(5)	CE mark

Nameplate 2 - ATEX (1)(2)

Pos.	Description
1	Cylinder serial number
2	Marking according to ATEX directive
3	Working limit conditions
4	Notified body and certified number

Working conditions - legend

Sym. Meaning		
Tfmax	Max fluid temperature	
Pmax	Max pressure	
Tamb	Ambient temperature	
fmax	Max frequency	

Notes: (1) ATEX cylinders are supplied with 2 nameplates: standard and ATEX

(2) The position of the nameplate on the rear or front heads can change due to the cylinder overall dimensions

6 ATEX CERTIFICATION

The user must define the overall areas of the system into different explosive atmospheres zones in accordance with directive EN 60079-10-1/2. The table below shows the available installation zones related to the equipment group and category.

EN 60	EN 60079-0 Directive 2014/34/EU		2014/34/EU	Application, properties	Zones
EPL	Group	Equipment group	Category	(exerpt from Directives)	EN 60079-10- 1/2
Gb		II	2G	Potentially explosive atmospheres, in which explosive gases, mists or vapors are likely to occur occasionally. High level of protection	1, 2
Gc	- 11	II 3G Potentially explosive atmospheres, in which explosive gases, mists or vapors are likely to occur for short periods. Normal level of protection		2	
Db	occasionally. High level of protection Potentially explosive atmospheres in which explosive dust/air mixtures are likely to d		Potentially explosive atmospheres, in which explosive dust/air mixtures are likely to occur occasionally. High level of protection	21,22	
Dc			22		

 \triangle

The cylinder group and category may change when rod position transducers or proximity sensors are provided, see table below and tab. BX500. For details about certification and safety notes consult the user's guides included in the supply

Cylinder type		Group	Equipment category	Gas/dust group	Temperature class	Zone
CKA		II	2 GD	II C/III C	T85°C(T6) / T135°C(T4)	1,2,21,22
CKA with ex-proof rod position transducer	GAS	II	2 G	IIΒ	T6/T5	1,2
CIVA with ex-proof rod position transducer	DUST	II	2 D	IIIC	T85°C/T100°C	21,22
CKA with ex-proof proximity sensors		II	3 G	II	T4	2

II 2G Ex h IIC T6,T4 Gb (gas)

II 2D Ex h IIIC T85°C, T135°C Db (dust)

GROUP II, Atex

= Group II for surface plants

= High protection (equipment category)

= For gas, vapours

D = For dust

Ex = Equipment for explosive atmospheres
IIC = Gas group

IIIC = Dust group

T85°C/T135°C = Surface temperature class for dust
T6/T4 = Surface temperature class for gas
Gb/Db = EPL Equipment group

7 SAFETY NOTES

7.1 General

- The presence of cushioning can lead to a peak of pressure that can reduce the cylinder working life, ensure that the dissipated energy is less than the max value reported in tab. B015
- Make sure that the maximum working conditions, shown in section 4 are not exceeded
- Ensure to use hydraulic fluids compatible with the selected sealing system, see tab. BX500
- The rod must be handled with care to prevent damages on the surface coating which can deteriorate the sealing system and lead to the corrosion of the basic material
- The mounting screws must be free from shearing stress
- Transverse forces on the rods must always be avoided
- When the cylinder has to drive a rotating structure or where little alignment errors are expected, mounting style with spherical bearing should be used
- Contact surfaces, support elements in tolerance, elastic materials and labels must be covered before painting the cylinder

7.2 Proximity sensors

- Proximity sensors are supplied already adjusted, if other regulations are necessary see tab. BX500 or contact our technical office
- Ensure not to remove the sensor while the cylinder is under pressure
- The connectors must never be plugged or unplugged when the power supply is switched-on

7.3 Position measuring system

- Position transducers must never be removed, if not otherwise specified in tab. BX500, while the cylinder is under pressure
- Observe the information provided in tab. BX500 for the electronic connections
- The connectors must never be plugged or unplugged when the power supply is switched-on

7.4 Installation

- Consult tab. P002 for installation, commissioning and maintenance of electrohydraulic system
- The piping have to be dimensioned according to the max pressure and max flow rate required
- All pipes and surfaces must be cleaned from dirt before mounting
- Remove all plug screws and covers before mounting
- Make sure that connections are sealed before giving pressure to the system
- Ensure to not exchange the pipe ports when connecting the cylinders
- Bleed-off the system or the hydraulic cylinder using the proper device, see the technical data sheet for details
- Ensure that the cylinder mounting allow easy of acces for the purpose of maintenance and the adjustment of cushioning
- The max surface temperature indicated in the nameplate must be lower than the following values:

GAS - 80% of gas ignition temperature

DUST - max value between dust layer ignition temperature - 75°C and 2/3 of dust cloud ignition temperature

- The ignition temperature of the fluid must be 50°C greater than the maximum surface temperature indicated in the nameplate
- The cylinder must be grounded using the threaded hole on the rear head, evidenced by the nameplate with ground symbol. The hydraulic cylinder must be put at the same electric potential of the machine
- It is responsibility of the user to verify that the maximum inlet fluid temperature does not exceed the value reports in the technical data

For details about ex-proof proximity sensors or position transducer refer to the user's guide included in the supply

8 MAINTENANCE

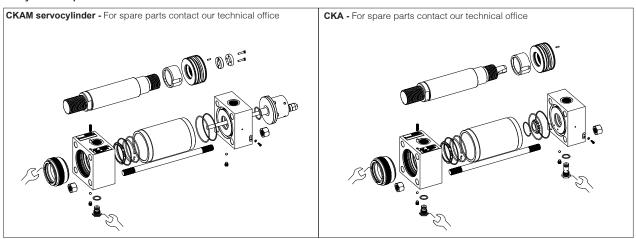
- Ordinary maintenance of the cylinder consist of cleaning of the external surfaces using a wet cloth to avoid accumulation of dust layer > 5 mm
- Do not use compressed air for cleaning to avoid any dangerous dust dispersion on the surrounding atmosphere
- Any sudden increment in temperature requires immediate stop of the system and inspection of the relevant components

8.1 Preliminary check and ordinary maintenanceAtos hydraulic cylinders don't require any maintenance after commissioning. Anyway it is recommended to take into account the following remarks:

Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

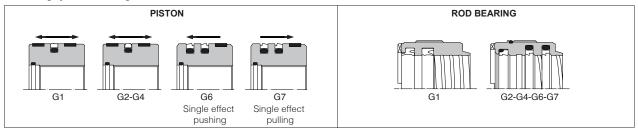
- Results of maintenance and inspection must be planned and documented
- Check oil escaping from oil ports or leakages at the cylinder heads
- Check for damages of the chromeplated surface of the rod: damages may indicate oil contamination or the presence of excessive transverse load
- Determine lubricating intervals for spherical clevises, trunnion and all parts not self-lubricated
- The rod should always be retracted during long stop of the machine or system

Any repairing must be performed only by experienced personnel, authorized by Atos


- Remove any salt, machining residuals or other dirt cumulated on the rod surface
- Follow the maintenance instructions of the fluid manufacturer

8.2 Repairing

Before beginning any repairing observe the following guidelines:


- Unauthorized opening of the cylinder during the warranty period results in the warranty expiration
- Be sure to use only original spare parts manufactured or supplied by Atos
- Provide all the required tools to make the repair operations safely and not damage the components
- Read and follow all the safety notes given in section 7
- Ensure that the cylinder is well locked before beginning any operation
- Disassembly or assembly the cylinder with the right order as indicated in section 8.3
- When mounting rod or piston guides and seals observe the correct position as indicated in section 8.4. Any bad positioning can result in oil leakages
- It is strongly recommended the use of expanding sleeves to insert the seals in the proper groove
- Tighten all the screws or nuts as follow: lubricates the threads, insert the screw or the nut by hand for some turns, tighten the screw crosswise with the tightening torque specified in the technical table (a pneumatic screw driver may be used)
- Rod bearing and piston must be locked respectively to the front head and to the rod by means of special pin to avoid unscrewing
- The replacement of wear parts such as seals, rod bearing and guide rings depends on the operating conditions, temperature and quality of the fluid

8.3 Cylinders exploded views

 $\textbf{Note:}~~ & \swarrow \text{this symbol means that a particular equipment is required for mounting, contact our technical office}$

8.4 Sealing system mounting

9 TRANSPORT AND STORAGE

9.1 Transport

Observe the following guidelines for transport of hydraulic cylinders:

- Cylinders have to be transported using a forklift truck or a lifting gear always ensuring a stable position of the cylinder
- Cylinders have to be transported in horizontal position in their original packaging
- Use soft lifting belts to move or lift the cylinders in order to avoid damages
- Before any movement check the cylinders weight (due to tolerances, the weight may be 10% greater than the values specified in the technical table)

9.2 Storage

Corrosion protection is achieved with alkyd primer painting RAL 9007: the primer grants a storage period up to 12 months. Additionally all cylinders are tested with mineral oil OSO 46; the oil film, presents in the cylinder chambers after testing, ensures the internal corrosion protection.

- Anyway be care to observe the following remarks:
- When a storage in the open air is foreseen ensure that cylinders are well protected against water
- The cylinders must be inspected at least once a year and rotated $\,$ through 90° every six months to preserve the seals

♠ In case of storage period longer than 12 months, contact our technical office

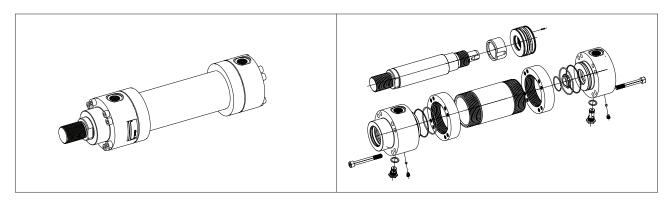
10 CYLINDERS TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSES	SOLUTIONS
	High lateral loads involve a premature wear of the bronze bushing, seals and wear rings	a) Improve the precision of the machine alignment b) Decrease lateral loads c) Install a pivoted mounting style C-D-G-H-S-L
	Fluid contaminants produce scratch and score marks on the seals	Check the fluid contamination class is < 20/18/15
	Chemical attack cause the deterioration of seals compound	Check seals compatibility with operating fluid
	High temperatures (fluid/ambient) the seals dark and flaked	a) Decrease the fluid temperature b) Install G2 sealings for high temperatures
Oil leakage	Low temperature (ambient) make the seals brittle	a) Move the cylinder in a higher temperature zone b) Install G9 seals for low temperatures
	High rod speed reduce the lubricant capacity of the seals	For rod speed > 0,5 m/s Install G2 – G4 seals
	High frequency reduce the lubricant capacity of the seals	For rod frequency > 5 hz Install G0 seals
	Output rod speed higher than the input one	Check the rod speed ratio in/out complies with the minimum R _m value, see tech.table B015
	The pressurization of the mixture air/mineral oil may involve self combustion dangerous for the seals (Diesel effect)	Bleed off completely the air inside the hydraulic circuit
Wiper or seal extrusion	Overpressure	a) Limit the pressure of the system b) Install G2-G4-G8 seals if overpressure cannot be reduced
	Rod seals leakages may involve overpressures among wiper and rod seal, causing their extrusion	a) See possible causes and solutions for oil leakage troubles b) Install draining option L
Lose of cushioning effect	Rod speed too low at end stroke	a) Check the cushioning adjustment is not fully open, regulate it if necessar b) Replace "fast" cushioning 1-2-3, with "slow" cushioning 4-5-6 the cushioning is not effective with cushioning adjustment fully closed
	Cushioning adjustment cartridge with improper regulation	Close the cushioning adjustment screw till restoring the cushioning effect
	Fluid contaminants produce scratch and score marks on the cushioning piston	Check the fluid contamination class is < 20/18/15
Rod locked or impossible to move	Overpressure in the cushioning chamber could involve the cushioning piston locking	a) Replace "fixed" cushioning 7-9 with "adjustable" cushioning 1-3 b) For adjustable cushioning, open the cushioning adjustment to decrease the max pressure inside the cushioning chamber c) Check the energy dissipated by the cushioning is lower than makenergy dissipable, see tech.table B015
	Fluid contaminants may lock the piston because of its tight tolerances	Check the fluid contamination class is < 20/18/15
Rod failure	Overload/overpressure involves ductile rod failure	a) Check the overpressure inside the cylinder and decrease it b) Check the compliance with the admitted operating pressur according to the cylinder series
	High load/pressure coupled to high frequencies or long life expectation involves fatigue rod failure	a) Check the expected rod fatigue working life proposed in tecl table B015 b) Decrease the operating pressure
Rod vibration	Seals with excessive friction could involve rod vibration and noise	Install low friction PTFE seals G2-G4 , see tech.table B015
	Air in the circuit may involve a jerky motion of the rod	Bleed off completely the air inside the hydraulic circuit
Rod motion without oil pressure	Variations in the fluid temperature involve the fluid expansion / compression thus the rod moving	a) Decrease the temperature variations in the oil b) Change the fluid type to decrease the coefficient of thermexpansion
	Excessive oil leakage from the piston or rod seals	See likely causes and solutions for oil leakage troubles
Noisy cylinder	Impact of the piston with the heads caused by high speed (>0,05 m/s)	a) Decrease the rod speed b) Install external or internal cushioning system 1-9, see tech.tabl B015 for the max energy that can be dissipated
	Fluid contaminants, foreign particles inside the cylinder may generate unusual noise	Check the fluid contamination class is < 20/18/15
	High oil flow speed > 6 m/s	a) Increase the piping diameters to reduce the oil flow speed b) Install oversized oil ports, options D-Y

11 SERVOCYLINDERS TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSES	SOLUTIONS
	Improper electronic connections may involve the transducer malfunctioning	Check the electronic connections scheme in tech table B310
	Not stabilized power supply may involve dangerous peak of voltage	Install a voltage stabilizer
		Be carefull to switch off the power supply before connecting the position transducer

Note: for cylinders troubleshooting refer to section 10



Operating and maintenance information

for stainless steel cylinders

These operating and maintenance information are valid only for Atos hydraulic cylinders and are intended to provide useful guidelines to avoid risks when hydraulic cylinders are installed in a machine or a system. Information and notes on the transport and storage of hydraulic cylinders are also provided.

These norms must be strictly observed to avoid damages and ensure trouble-free operation. The respect of these operating and maintenance information ensures an increased working life and thus reduced repairing cost of the hydraulic cylinders and system.

1 SYMBOLS CONVENTIONS

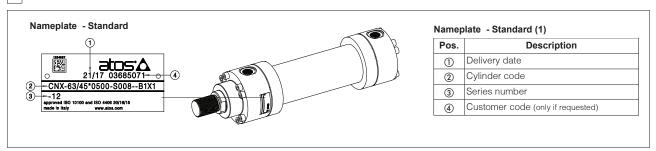
This symbol refers to possible danger which can cause serious injuries

2 GENERAL NOTES

The cylinder operating and maintenance information are part of the operating instructions for the complete machine but they cannot replace them

Atos is not liable for damages resulting from an incorrect observance of these instructions.

All the hydraulic cylinders have 1 year warranty; the expiration of warranty results from the following operations:


- Unauthorised mechanical or electronic interventions
- The hydraulic cylinders are not used exclusively for their intended purpose as defined in these operating and maintenance instructions

3 WORKING CONDITIONS

The operation of hydraulic cylinders is not permitted at different operating and environmental conditions than those specified below

Description	CNX
Ambient temperature	-20 ÷ +120°C
Fluid temperature	-20 ÷ +120°C
Max surface temperature	-
Max working pressure	10 MPa (100 bar)
Max pressure	15 MPa (150 bar)
Max frequency	5 Hz
Max speed	4 m/s
Recommended viscosity	15 ÷ 100 mm²/s
Max fluid contamination level	ISO4406 20/18/15 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog

4 NAMEPLATES

Notes: (1) The position of the nameplate on the rear or front heads can change due to the cylinder overall dimensions

BW900 CYLINDERS

82

5 SAFETY NOTES

5.1 General

- The presence of cushioning can lead to a peak of pressure that can reduce the cylinder working life, ensure that the dissipated energy is less than the max value reported in **tab. B015**
- Make sure that the maximum working conditions, shown in section 3, are not exceeded
- Ensure to use hydraulic fluids compatible with the selected sealing system, see tab. BW500
- The rod must be handled with care to prevent damages on the surface coating which can deteriorate the sealing system and lead to the corrosion of the basic material
- The mounting screws must be free from shearing stress
- Transverse forces on the rods must always be avoided
- When the cylinder has to drive a rotating structure or where little alignment errors are expected, mounting style with spherical bearing should be used
- Contact surfaces, support elements in tolerance, elastic materials and labels must be covered before painting the cylinder

5.2 Position measuring system

- Position transducers must never be removed, if not otherwise specified in tab. B310, while the cylinder is under pressure
- Observe the information provided in tab. B310 for the electronic connections
- The connectors must never be plugged or unplugged when the power supply is switched-on

5.3 Installation

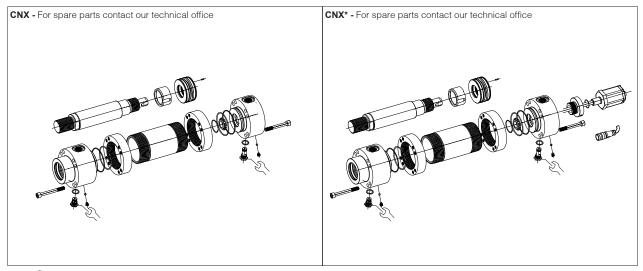
- Consult tab. P002 for installation, commissioning and maintenance of electrohydraulic system
- The piping have to be dimensioned according to the max pressure and max flow rate required
- All pipes and surfaces must be cleaned from dirt before mounting
- Remove all plug screws and covers before mounting
- Make sure that connections are sealed before giving pressure to the system
- Ensure to not exchange the pipe ports when connecting the cylinders
- Bleed-off the system or the hydraulic cylinder using the proper device, see the technical data sheet for details
- Ensure that the cylinder mounting allow easy of acces for the purpose of maintenance and the adjustment of cushioning

6 MAINTENANCE

Maintenance must be carried out only by qualified personnel with a specific knowledge of hydraulics and electrohydraulics

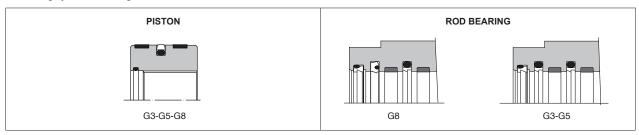
6.1 Preliminary check and ordinary maintenance

Atos hydraulic cylinders don't require any maintenance after commissioning. Anyway it is recommended to take into account the following remarks:


- Results of maintenance and inspection must be planned and documented
- Check oil escaping from oil ports or leakages at the cylinder heads
- Check for damages of the chromeplated surface of the rod: damages may indicate oil contamination or the presence of excessive transverse load
- Determine lubricating intervals for spherical clevises, trunnion and all parts not self-lubricated
- The rod should always be retracted during long stop of the machine or system
- Remove any salt, machining residuals or other dirt cumulated on the rod surface
- Follow the maintenance instructions of the fluid manufacturer

6.2 Repairing

Before beginning any repairing observe the following guidelines:


- Unauthorized opening of the cylinder during the warranty period results in the warranty expiration
- Be sure to use only original spare parts manufactured or supplied by Atos
- Provide all the required tools to make the repair operations safely and not damage the components
- Read and follow all the safety notes given in section 5
- Ensure that the cylinder is well locked before beginning any operation
- Disassembly or assembly the cylinder with the right order as indicated in section **6.3**
- When mounting rod or piston guides and seals observe the correct position as indicated in section 6.4. Any bad positioning can result in oil leakages
- It is strongly recommended the use of expanding sleeves to insert the seals in the proper groove
- Tighten all the screws or nuts as follow: lubricates the threads, insert the screw or the nut by hand for some turns, tighten the screw crosswise with the tightening torque specified in the technical table (a pneumatic screw driver may be used)
- Rod bearing and piston must be locked respectively to the front head and to the rod by means of special pin to avoid unscrewing
- The replacement of wear parts such as seals, rod bearing and guide rings depends on the operating conditions, temperature and quality of the fluid

6.3 Cylinders exploded views

Note: this symbol means that a particular equipment is required for mounting, contact our technical office

6.4 Sealing system mounting

7 TRANSPORT AND STORAGE

7.1 Transport

Observe the following guidelines for transport of hydraulic cylinders:

- Cylinders have to be transported using a forklift truck or a lifting gear always ensuring a stable position of the cylinder
- Cylinders have to be transported in horizontal position in their original packaging
- Use soft lifting belts to move or lift the cylinders in order to avoid damages
- Before any movement check the cylinders weight (due to tolerances, the weight may be 10% greater than the values specified in the technical table)

Additional parts such as pipes, subplates and transducers must never be used for lifting

7.2 Storage

Corrosion protection is achieved with alkyd primer painting RAL 9007: the primer grants a storage period up to 12 months. Additionally all cylinders are tested with mineral oil OSO 46; the oil film, presents in the cylinder chambers after testing, ensures the internal corrosion protection. Anyway be care to observe the following remarks:

- When a storage in the open air is foreseen ensure that cylinders are well protected against water
- The cylinders must be inspected at least once a year and rotated through 90° every six months to preserve the seals

In case of storage period longer than 12 months, contact our technical office

BW900 **CYLINDERS**

8 CYLINDERS TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSES	SOLUTIONS
Oil leakage	High lateral loads involve a premature wear of the bronze bushing, seals and wear rings	a) Improve the precision of the machine alignment b) Decrease lateral loads c) Install a pivoted mounting style D-S-L
	Fluid contaminants produce scratch and score marks on the seals	Check the fluid contamination class is < 20/18/15
	Chemical attack cause the deterioration of seals compound	Check seals compatibility with operating fluid
	High temperatures (fluid/ambient) the seals dark and flaked	a) Decrease the fluid temperature b) Install G3 sealings for high temperatures
	Low temperature (ambient) make the seals brittle	Move the cylinder in a higher temperature zone
	High rod speed reduce the lubricant capacity of the seals	For rod speed > 5 m/s Install G3-G5 seals
	Output rod speed higher than the input one	Check the rod speed ratio in/out complies with the minimum R_{min} value, see tech.table $\textbf{B015}$
	The pressurization of the mixture air/mineral oil may involve self combustion dangerous for the seals (Diesel effect)	Bleed off completely the air inside the hydraulic circuit
Wiper or seal extrusion	Overpressure	a) Limit the pressure of the system b) Install G3-G5 seals if overpressure cannot be reduced
	Rod seals leakages may involve overpressures among wiper and rod seal, causing their extrusion	See possible causes and solutions for oil leakage troubles
	Rod speed too low at end stroke	Check the cushioning adjustment is not fully open, regulate it if necessary
Lose of cushioning effect	Cushioning adjustment cartridge with improper regulation	Close the cushioning adjustment screw till restoring the cushioning effect
	Fluid contaminants produce scratch and score marks on the cushioning piston	Check the fluid contamination class is < 20/18/15
Rod locked or impossible to move	Overpressure in the cushioning chamber could involve the cushioning piston locking	a) Replace "fixed" cushioning 7-9 with "adjustable" cushioning 1-3 b) For adjustable cushioning, open the cushioning adjustment to decrease the max pressure inside the cushioning chamber c) Check the energy dissipated by the cushioning is lower than max energy dissipable, see tech.table B015
	Fluid contaminants may lock the piston because of its tight tolerances	Check the fluid contamination class is < 20/18/15
Rod failure	Overload/overpressure involves ductile rod failure	a) Check the overpressure inside the cylinder and decrease it b) Check the compliance with the admitted operating pressure according to the cylinder series
	High load/pressure coupled to high frequencies or long life expectation involves fatigue rod failure	a) Check the expected rod fatigue working life proposed in tech. table B015 b) Decrease the operating pressure
Rod vibration	Seals with excessive friction could involve rod vibration and noise	Install low friction PTFE seals G3-G5
	Air in the circuit may involve a jerky motion of the rod	Bleed off completely the air inside the hydraulic circuit
Rod motion without oil pressure	Variations in the fluid temperature involve the fluid expansion / compression thus the rod moving	a) Decrease the temperature variations in the oil b) Change the fluid type to decrease the coefficient of thermal expansion
	Excessive oil leakage from the piston or rod seals	See likely causes and solutions for oil leakage troubles
Noisy cylinder	Impact of the piston with the heads caused by high speed (>0,05 m/s)	a) Decrease the rod speed b) Install external or internal cushioning system 1-9, see tech.table B015 for the max energy that can be dissipated
	Fluid contaminants, foreign particles inside the cylinder may generate unusual noise	Check the fluid contamination class is < 20/18/15
	High oil flow speed > 6 m/s	Increase the piping diameters to reduce the oil flow speed

9 SERVOCYLINDERS TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSES	SOLUTIONS
Transducer	t anouacon mananottoning	Check the electronic connections scheme in tech table B310
	Not stabilized power supply may involve dangerous peak of voltage	Install a voltage stabilizer
		Be carefull to switch off the power supply before connecting the position transducer

Note: for cylinders troubleshooting refer to section 8

11/23

Worldwide Sales Organization

A sales network with 25 branches, 120 sales professionals and distributors in more than 80 countries, together with great responsiveness and focus on customers

Atos spa

Italy - 21018 Sesto Calende Phone +39 0331 922078 info@atos.com www.atos.com

> Atos Cylinders Division Italy - 41122 Modena infocylinder@atos.com

