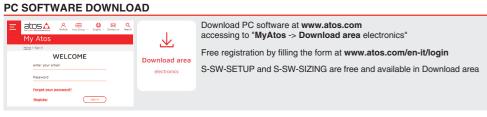

or SSP systems with high performance P/Q control and energy saving

SMART SERVOPUMP - SSP

Pump models: Drive model Servomotor model: D-MP series 20 or higher PGI PGIL PGIX2 РММ

IDENTIFICATION

PROGRAMMING TOOLS - not included


REMARK Atos PC software are designed for Windows based operative systems - Windows 10 or later

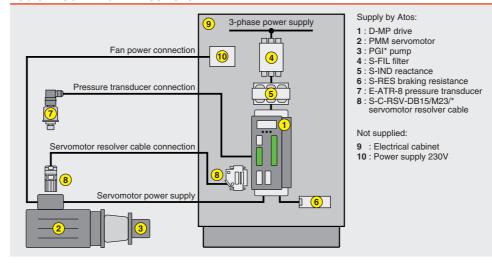
PROGRAMMING PC SOFTWARE

S-SW-SETUP supports NP (Serial RS485)

BC (CANopen) EH (EtherCAT)

BP (PROFIBUS DP) **EP** (PROFINET RT/IRT

RELATED DOCUMENTATION - www.atos.com


AS050 Basic for Smart servopumps - SSP - tech. table	S-MAN-SW	Programming software instructions manual
AS100 Smart servopumps - SSP - tech. table	S-MAN-HW	Installation instructions manual
AS200 Sizing criteria for servopumps - tech. table	S-MAN-S-BC	CANopen protocol programming manual
AS300 Cast iron internal gear pumps - tech. table	S-MAN-S-BP	PROFIBUS DP protocol programming manual
AS320 Cast iron double internal gear pumps - tech. table	S-MAN-S-EH	EtherCAT protocol programming manual
AS350 Aluminium internal gear pumps - tech. table	S-MAN-S-EP	PROFINET protocol programming manual
AS400 Electric motors for SSP servopumps - tech. table		
AS500 Electronic drives for SSP servopumps - tech. table		
AS800 Programming tools - tech. table		
AS810 Accessories for SSP servopumps - tech. table		
AS910 Operating and maintenance info - tech. table		

The purpose of this quickstart guide is show a logical sequence of basic operations. This guide does not cover all details or variants of Atos servopumps. All operations described in this document should be performed only by qualified personnel. Operations and images could be subject to change without notice. For further information please refer to related documentation.

CONTACT US

Atos spa - Italy - 21018 Sesto Calende www.atos.com

LOGIC BLOCK DIAGRAM - SSP SYSTEM

INSTALL	PROGRAMMING	
STEP 1	STEP 2	STEP 3
RECOVERY / REGENERATION	ELECTRICAL	SOFTWARE

STEP 1 RECOVERY / REGENERATION - PROCEDURE AFTER STORAGE

Drive cannot be used immediately after a storage period. In order to avoid faults during activation, the following procedures must be adopted (for more information please refer to S-MAN-HW manual).

RECOVERY

Leave the drive for 4 hours as indicated:

Temperature	0 ÷ 35 °C
Humidity	5 ÷ 75 %
Condensation	NO
Atmospheric pressure	61.6 ÷ 101.3 kPa
Recovery time (1)	4 h

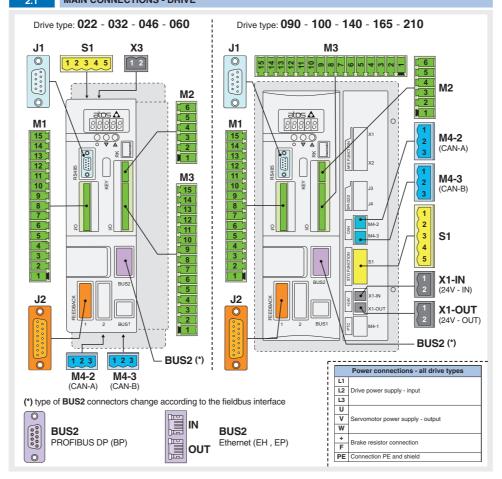
(1) After this recovery time there must be no trace of condensation, both inside and outside (well ventilated area)

REGENERATION

Only mandatory if the time elapsed since the last regeneration of electronic capacitors is between 6 and 12 months; power on the drive through L1, L2, L3 and X3 or X1-IN terminals for 2 h, without giving run enable. Once the regeneration process is completed, the drive can work normally.

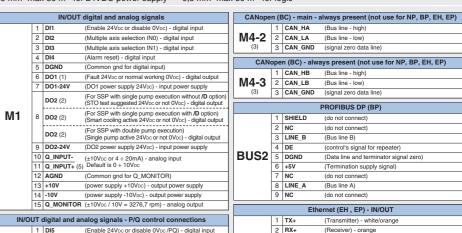
WARNING: the regeneration procedure of the power bus electrolytic capacitors given above is no more valid if:

• the time elapsed since the last regeneration is greater than 12 months • the time elapsed since purchase is longer than 12 months and the regeneration procedure has never been carried out


In these cases request the procedure to be used at Atos

STEP 2 ELECTRICAL

This section considers the different SSP models, illustrating the multiple variants of the available electrical connections. The electrical connections have to be wired according to the selected SSP code.


MAIN CONNECTIONS - DRIVE

2.2 CONNECTORS - DRIVE

Recommended LiYCY shielded max conductor size 1,5 mm²

1,5 mm² max 30 m - for 24VDC power supply - 0,5 mm² max 30 m - for logic

	2	DI6	(Pressure smart tuning selection IN0) - digital input
	3	DI7	(Pressure smart tuning selection IN1) - digital input
	4	DI8 (2)	(For SSP with single pump execution) (Not used) - digital output
"	4	DI8 (2)	(For SSP with double pump execution) (Single pump enabled 24Vpc or not 0Vpc) - digital outp
	5	DGND	(Common gnd for digital input)
	6	DO3 (1)	(Smart maintenance alert 24Vpc or not 0Vpc) - dig. or
М3	7	DO3-24V	(DO3 power supply 24Vpc) - input power supply
	8	DO4 (2)	(STO corrupted 24Vpc or not 0Vpc) - digital output
	9	DO4-24V	(DO4 power supply 24Vpc) - input power supply
	10	AGND	(Common gnd for P_MONITOR)
	11	P_INPUT-	(±10Vpc / 4 ÷ 20mA) - analog input
	12	P_INPUT+ (5)	Default is 0 ÷ 10Vpc
	13	AGND	(Common gnd for transducer signal)
	14	TR1 (5)	(±10Vpc / 4 ÷ 20mA) - analog input Default is 4 ÷ 20mA
	15	P_MONITOR	(±10Vpc / 10V = 819,2 bar) - analog output

	l A3					
ut	AU	2	V0_IN	(Power supply 0V _{DC}) - gnd power supply		
- 1						
	24V	DC	input power	supply - only for drives type 090 ÷ 210		
	X1-IN	1	V+_IN	(Power supply 24Vpc) - input power supply		
	X1-114	2	V0_IN	(Power supply 0Vpc) - gnd power supply		
_	24VDC output power supply - only for drives type 090 ÷ 210					
	X1-OUT	1	V+_OUT	(Power supply 24Voc) - input power supply		
	X1-001	2	V0_OUT	(Power supply 0Vpc) - gnd power supply		

PROFIBUS DP (BP)

(control's signal for repeater

(Termination supply signal)

(do not connect)

Ethernet (EH , EP) - IN/OUT

(Receiver) - gree (do not connect)

24VDC input power supply - only for drives type 022 ÷ 060

(Power supply 24Vpc) - input power suppl

(Transmitter) - white/green (do not connect)

(Data line and terminator signal zero

(Bus line B)

	No	t used - or	nly for GND and SHIELD connection	(3
	1	NC	(do not connect)	
	2	NC	(do not connect)	
VI2	3	NC	(do not connect)	(4
VIZ	4	NC	(do not connect)	
	5	GND	(Common gnd)	
	6	SHIELD	(Shield)	

(3) Connect the CANopen network to the M4-2 M4-3 is for proprietary messaging only For more information, please refer S-MAN-HW manual

4) Perform the cables connection following the IN and OUT indications

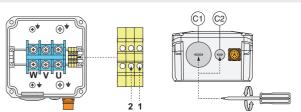
(1) DO1 and DO3 digital output with fast contact

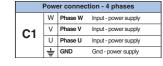
(2) DO2 and DO4 digital output with relay contact

(5) WARNING: input signals can be reconfigured between voltage and current using specific dip-switch present inside the drive; set the dip-switch with the drive powered off and before making the electrical connections as i would not be possible to remove the cover with connectors wired (see S-MAN-HW installation manual)

BUS2

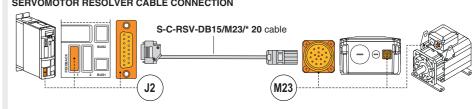
6 RX-


Va 1 V+_IN


Safe Torque Off (STO)				
	1	+24V_STO1 (Power supply STO1 - 24Vpc) - input power supply		
	2	0V_STO1	(first safety system channel)	
S1	3	NC	VC (do not connect)	
	4	+24V_STO2	24V_STO2 (Power supply STO2 - 24Vpc) - input power supply	
	5	0V STO2	OV_STO2 (second safety system channel)	

• the STO function must be tested periodically as indicated in the S-MAN-HW manual to avoid the servomotor control is automatically disabled

- if the STO function is not used, both channels +24V_STO1 and +24V_STO2 must be permanently connected
- even if the STO function is not used, it is still necessary to periodically test the STO function
- the STO1 and STO2 inputs must have a dedicated +24VDC feed line and given with a delay respect the auxiliary +24VDC voltage of X3 (consider for example a time of 1s); is not possible to connect together in parallel the STO1 and STO2 inputs with the X3 feed line: this kind of wiring could cause failures on STO operations



Input - power supply 230 V @ 50 ÷ 60 Hz C2

ELECTRICAL WIRING EXAMPLES

M1 CONNECTOR - DIGITAL / ANALOG SIGNALS

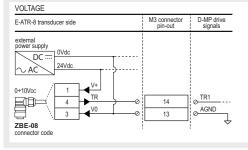
DIGITAL INPUT - DI1 (ENABLE or DISABLE)				
cabinet side	M1 connector pin-out	D-MP drive internal circuit		
Input - on/off signals		nu 1.6 K 10 V		
\bigcirc	1	ODIT TORK		
O>⊗	2	¿-DI2		
()⊳¢	3	⊘ []12.1 K ▼ = [
O>-◎	4	⊘ DI4		
1 (0 V) O	5	DGND		

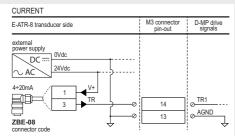
DIGITAL OUTPUT - DO1 (FAULT or NORMAL WORKING)			
cabinet side	M1 connector pin-out	D-MP drive internal circuit	
Output - on/off signals	7	ØD01-24V	
\bigcirc	6	001	
O⊳-«	9	D02-24V 47 V ∓▼	
O<-0	8	→ DO2	

ANALOG INPUT - Q_INPUT (FLOW REFERENCE)			
cabinet side	M1 connector pin-out	D-MP drive internal circuit	
Input - analog signal	10	© NPUT- 10 K 11 K 20 K	

ANALOG OUTPUT - Q_MONITOR (FLOW MONITOR)			
cabinet side	M1 connector pin-out	D-MP drive internal circuit	
Output - analog signal L (0 V)	15 12	Q_MONITOR 100 Ω AGND	

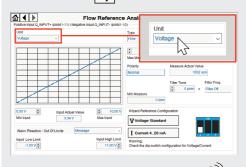
M3 CONNECTOR - DIGITAL / ANALOG SIGNALS


DIGITAL INPUT - DI5 (ENABLE or DISABLE P/Q CONTROL)				
cabinet side	M3 connector pin-out	D-MP drive internal circuit		
Input - on/off signals		DIE 16K 10V		
\bigcirc	1	ODIS TOTAL		
O⊳-¢	2	DI6		
O⊳-∘	3	⊘ []12.1 K 🔻 🕏		
(not used)	4	O DI8		
T(0 ∧) ○	5	Ø DGND ↓		


cabinet side M3 conne pin-ou		D-MP drive internal circuit
Output - on/off signals	7 6 9	DO3-24V DO3 DO4-24V DO4-24V
Ŏ ♦-•	8	© D04

ANALOG INPUT - P_INPUT (PRESSURE REFERENCE)				
cabinet side	M3 connector pin-out	D-MP drive internal circuit		
Input - analog signal	11 12	P_INPUT- 10 K 11 K 20 K 20 K		

ANALOG OUTPUT - Q_MONITOR (PRESSURE MONITOR)					
cabinet side	M3 connector pin-out	D-MP drive internal circuit			
Output - analog signal	15 13	P_MONITOR 100 Ω AGND			


M3 CONNECTOR - PRESSURE TRANSDUCER

HINT! - Wizard objects dictionary - only for BC, BP, EH, EP

Press CTRL + H on the PC keyboard to open the context help form Move arrow on parameter (e.g. Unit) to display the objects dictionary information to access the parameter via fieldbus If present **List**, press | **\rightharpoonup** | to display values accepted by the parameter

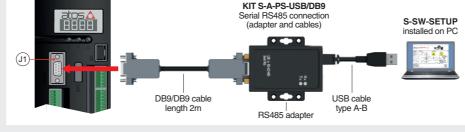
NOTE: alternatively right click on any parameter

SOFTWARE

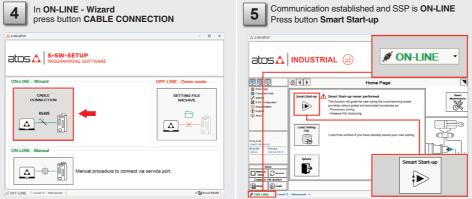
REMARK D-MP drives are factory preset with default parameters, only few programming operations are mandatory:

• perform the Smart Start-up procedure (highly suggested)

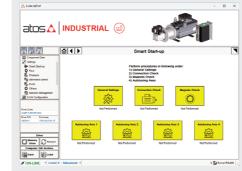
• only for drives with fieldbus interface (BC, BP, EH, EP) setup the network parameters and the source of reference signals Drive programming can be performed through S-SW-SETUP software or via fieldbus (not for NP)


3.1 CONNECTION

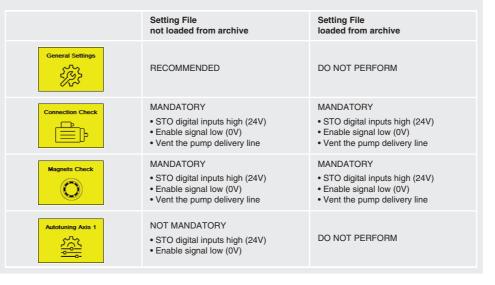
In order to access SSP parameterization:


Install S-SW-SETUP software on PC • Connect drive and power on with 24Vpc input power supply

Connect drive to the PC as shown below via serial port RS485


Launch the software using S-SW icon:

The Smart Start-up procedure is highly suggested in order to easily optimize the SSP systems.


REMARK:

even if a setting file is loaded from the archive, the drive cannot be enabled until

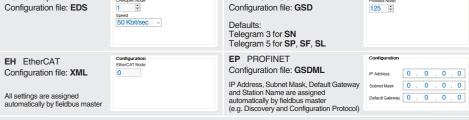
Connection Check and Magnets Check are performed

NOTE:

Smart Start-up allows to optimize parameters for up to 4 axes

3.2 FIELDBUS - Network Management - only for BC, BP, EH, EP

Node, Station Alias, IP Address, Baudrate, etc... can be set through:


1) Machine central unit (master) - please refer to S-MAN-S-** fieldbus protocol programming manual

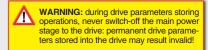
2) S-SW-SETUP software

BC CANopen

• switch to Level 2 - Advanced and browse to Network Management - Configuration to change below default settings:

BP PROFIBUS DP

- press Memory Store button and in Fieldbus Parameters press Store User button to save new setting into the drive (see 3.3)
- network configuration settings will be applied at next drive power-on or pressing the Restart button


NOTE: configuration files are available in MvAtos area - www.atos.com

buttons to store Drive Parameters

3.3 STORE

Parameters modifications will be stored into drive permanent memory:

3.4 BACK UP

press

Parameter modifications will be saved into PC memory:

• press Save button to access Computer SW Archive - Setting Files page, Setting File Name pop-up appears

• input a valid name into **Description** field and press **Ok** button

TROUBLESHOOTING

• presence of air; allow the SSP to run at low speed (<300rpm) flushing the oil through a relief valve present in the system and set at the lowest possible pressure; the pressure reference signal to the SSP should be higher than the relief valve pressure set

SSP does not follow the reference signal

- 3-phase power supply not correctly connected verify the 3-phase power supply
- drive is powered off check that the 24V power supply is present on X3 connector (only for size 022, 032, 046, 060)
- Connection Check and/or Magnets Check procedure not performed see STEP 3, section 3.1 (point 6)
- STO function not enabled check that the 24V supply is present on STO pins (S1 connector) drive is disabled – check that the 24V supply is present on enable pin (M1 connector)
- wrong connection of the pressure transducer to the drive check wiring connection
- system relief valves wrong setting verify relief valves setting
- suction line wrongly connected verify suction pipe
- PC software parameters modifications are lost when drive is switched off

• parameter store operation was not performed, check store procedure – see STEP 3, section 3.3

PC software parameters modifications have no effect on the drive

• drive is OFF LINE, check connection procedure - see STEP 3, section 3.1

Maintenance request

• maintenance of the pump and/or motor is required; these information are accessible via digital signals (DO3 - M3 connector) and/or fieldbus - follow Smart Maintenance instruction via the S-SW-SETUP software and the S-MAN-SW manual

HINT! - The alarms code are shown on the drive display (see the table below for typical alarms and corrective actions) Corrective Actions

	oouc	Description	CONTROLLED ACTIONS
	plus	DC Bus Voltage too Low	If the start-up sequence is not correctly executed each time the SSP is switched on, alarms A10.0 and A13.1 will be activated simultaneously.
		STO function enable	1) Turn on the 3-phase power supply and give 24Vbc input power supply 2) Wait a minimum of 200 ms and give the 2 STO digital inputs (51 connector). Attention: the 2 inputs must be given with a delay <50ms 3) Give the enable signal (M1 connector) 4) Give the reference signals (M1 and M3 connectors)
	A3.0	Drive Output Current Value too High	Reduce the speed reference signal <2000 rpm during the phase of the machine cycle where the alarm is generated Check motor cables conditions and verify motor insulation If the problem persists contact Atos service Center NOTE: A3.0 alarm cannot be reset either by logic input, or via serial or
			via fieldbus - it is necessary to restart the drive
	A10.0	DC Bus Voltage too Low	1) Check the 3-phase power supply 2) Verify the Start-up sequence – see STEP 3 3) If the problem is still present add / increase the ramp time on the increasing speed reference signal 4) If the problem persists contact Atos service Center
	A11.1 A11.2 A11.3	DC Bus Voltage too High	Check the braking resistance is correctly connected If the problem is still present add / increase the ramp time (0,25s should be enough) on the decreasing speed / pressure reference signal If the problem persists contact Atos service Center
	A12.1	Run without Power Soft Start	Introduce a delay from the PLC between power on and command enable
	A13.2	DC Bus Ripple too High	Reduce the speed reference signal Check the load In extreme cases check speed loop If the problem persists contact Atos service Center
	AT2	Pressure Transducer Out of Limits	Check the pressure transducer connection